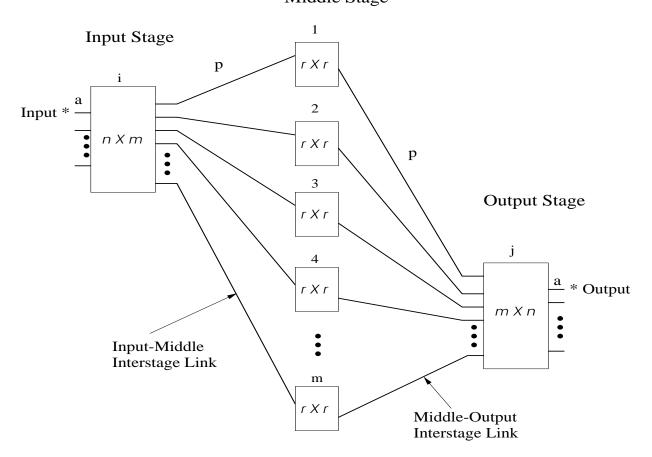
PERFORMANCE MODELING

Focus on analyzing the blocking behavior of a network that does not satisfy the nonblocking condition, that is, develop analytical models on blocking probability.

Lee's Model for unicast Clos networks:

• The *m* paths between a given input and output pair in the Clos network: Middle Stage



- a: the probability that a typical input (or output) link is busy
- p: the probability that an interstage link is busy.
- Random routing strategy is used: assume that the incoming traffic is uniformly distributed over the *m* interstage links and the events that individual links in the network are busy are independent.
- The probability that an interstage link is busy is $p = \frac{an}{m}$.
- The probability that an interstage link is idle is q = 1 - p.
- The probability that a path (consisting of two interstage links) cannot be used for a connection is $1 q^2$.

• The blocking probability (i.e., all *m* paths cannot be used)

$$P_B = [1 - q^2]^m$$

• Example:

$$n = 32, m = 2n - 1 = 63, a = 1$$

 $P_B = 2.5 \times 10^{-8} \neq 0$

Does not meet the deterministic nonblocking condition.

Jacobaeus' Model:

• The blocking probability

$$P_B = \frac{(n!)^2 (2-a)^{2n-m} a^m}{m! (2n-m)!}$$

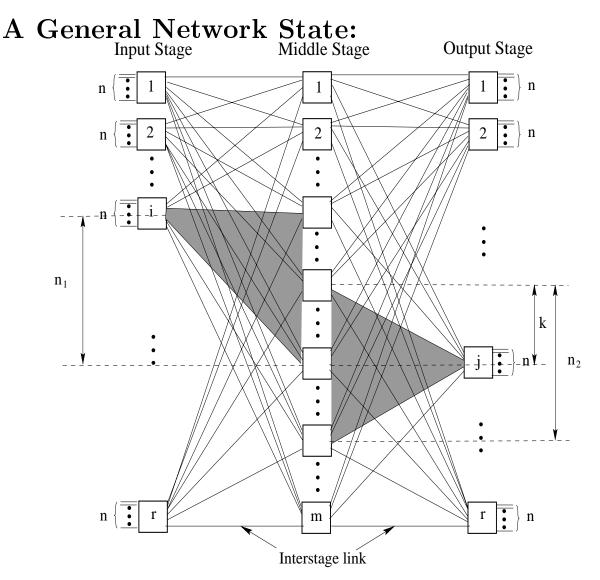
• Example:

$$n = 32, m = 2n - 1 = 63, a = 1$$

 $P_B = 3.4 \times 10^{-20} \neq 0$

Still does not meet the deterministic nonblocking condition.





A three-stage Clos network with n_1 busy input-middle interstage links from input stage switch i, n_2 busy middle-output interstage links to output stage switch j, and k pairs of the interstage links overlapped.

Notations and Assumptions

- If a busy input-middle interstage link and a busy middle-output interstage link share the same middle stage switch, this pair of links is said to be *overlapped*.
- Let n_1 denote the event that there are n_1 busy input-middle interstage links from input stage switch *i*.
- Let n_2 denote the event that there are n_2 busy middle-output interstage links to output stage switch j.
- Random routing strategy is used: assume that the incoming traffic is uniformly distributed over the *m* interstage links and the events that individual links in the networks are busy are independent.

Probability of k Interstage Links Overlapped

Lemma 1 Given events n_1 and n_2 , the probability that k pairs of links are overlapped in the Clos network is given by

 $= \frac{\Pr\{k \text{ pairs of links overlapped} \mid n_1, n_2\}}{\binom{n_1}{k}\binom{m-n_1}{n_2}} = \frac{\binom{n_2}{k}\binom{m-n_2}{n_1-k}}{\binom{m}{n_1}}$

Proof.

- $\binom{m}{n_1}\binom{m}{n_2}$ ways to choose n_1 busy input-middle interstage links and n_2 busy middle-output interstage links.
- k pairs of overlapped links can be constructed as follows:
 - $-\binom{m}{n_1}$ ways to choose n_1 busy input-middle interstage links;
 - $-\binom{n_1}{k}$ ways to choose k input-middle interstage links overlapped with kmiddle-output interstage links;
 - $-\binom{m-n_1}{n_2-k}$ ways to choose the rest of n_2-k middle-output interstage links.
- The probability that k pairs of links are overlapped is

$$\frac{\binom{m}{n_1}\binom{n_1}{k}\binom{m-n_1}{n_2-k}}{\binom{m}{n_1}\binom{m}{n_2}} = \frac{\binom{n_1}{k}\binom{m-n_1}{n_2-k}}{\binom{m}{n_2}}.$$

Relationship between k pairs of links overlapped and a connection request blocked: A connection request not blocked iff

 $n_1 + n_2 - k < m$

which implies

$$k \ge \max\{0, n_1 + n_2 - m + 1\}$$

We also have

$$k \le \min\{n_1, n_2\}$$

 $\Pr\{ \begin{array}{c} \operatorname{connection not blocked} \mid \boldsymbol{n_1, n_2} \} = \\ \frac{1}{\binom{m}{n_2}} \sum_{k=\max\{0, n_1+n_2-m+1\}}^{\min\{n_1, n_2\}} \binom{n_1}{k} \binom{m-n_1}{n_2-k} \\ \end{array} \right\} =$

Under the assumption that the events that individual links in the network are busy are independent

$$\Pr{\{\boldsymbol{n_1}, \boldsymbol{n_2}\}} = \Pr{\{\boldsymbol{n_1}\}} \cdot \Pr{\{\boldsymbol{n_2}\}}$$

We have

$$\Pr\{\boldsymbol{n_1}\} = \frac{\binom{m}{n_1} p^{n_1} q^{m-n_1}}{\sum\limits_{j=0}^{n-1} \binom{m}{j} p^j q^{m-j}}$$

$$\Pr\{\boldsymbol{n_2}\} = \frac{\binom{m}{n_2}p^{n_2}q^{m-n_2}}{\sum\limits_{j=0}^{n-1}\binom{m}{j}p^jq^{m-j}}$$

Blocking Probability

$$= \frac{\Pr\{\text{connection not blocked}\}}{\sum_{n_1=0}^{n-1} \sum_{n_2=0}^{n-1} \frac{1}{\binom{m}{n_2}} \sum_{k=\max\{0,n_1+n_2-m+1\}}^{\min\{n_1,n_2\}} \binom{n_1}{k} \binom{m-n_1}{n_2-k} \binom{m}{n_1} p^{n_1} q^{m-n_1} \binom{m}{n_2} p^{n_2} q^{m-n_2}}{\left[\sum_{j=0}^{n-1} \binom{m}{j} p^j q^{m-j}\right]^2}$$
$$= \frac{\sum_{n_1=0}^{n-1} \sum_{n_2=0}^{n-1} \sum_{k=\max\{0,n_1+n_2-m+1\}}^{\min\{n_1,n_2\}} \binom{m}{n_1} \binom{n_1}{k} \binom{m-n_1}{n_2-k} p^{n_1+n_2} q^{2m-n_1-n_2}}{\left[\sum_{j=0}^{n-1} \binom{m}{j} p^j q^{m-j}\right]^2}$$

 $P_B = 1 - \Pr\{\text{connection not blocked}\}$

Theorem 1 The blocking probability of the Clos network P_B becomes zero when the number of middle stage switches $m \ge 2n - 1$.

Proof. The following equalities hold

$$\sum_{\substack{v=0\\v=0}}^{u} \binom{s}{v} \binom{t}{u-v} = \binom{s+t}{u}$$
$$\sum_{\substack{v=0\\v=0}}^{\min\{u,s\}} \binom{s}{v} \binom{t}{u-v} = \binom{s+t}{u}$$
(1)

When $m \ge 2n - 1$, for any $n_1, n_2, 0 \le n_1, n_2 \le n - 1$,

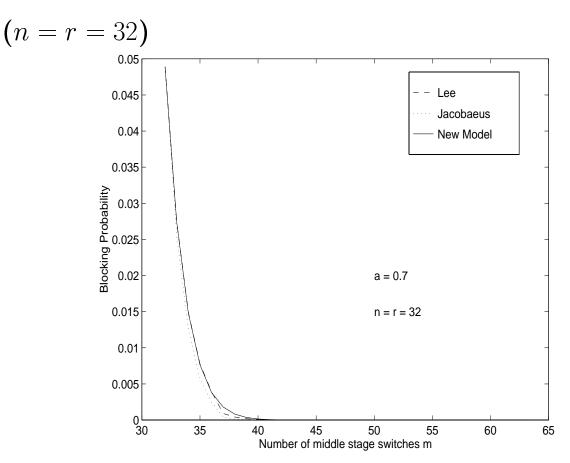
$$n_1 + n_2 \le 2(n-1) \le m-1,$$

which implies $\max\{0, n_1 + n_2 - m + 1\} = 0$. Using equality (1), we have

$$\frac{1}{\binom{m}{n_2}} \sum_{k=0}^{\min\{n_1,n_2\}} \binom{n_1}{k} \binom{m-n_1}{n_2-k} = 1.$$

 $\Pr\{\text{connection not blocked}\} = \frac{\sum_{n_1=0}^{n-1} \sum_{n_2=0}^{n-1} 1 \cdot \binom{m}{n_1} p^{n_1} q^{m-n_1} \cdot \binom{m}{n_2} p^{n_2} q^{m-n_2}}{\left[\sum_{j=0}^{n-1} \binom{m}{j} p^j q^{m-j}\right]^2} = 1$

and $P_B = 1 - 1 = 0$.



Blocking Probability Comparison

The blocking probabilities of the Clos network in three models: Lee, Jacobaeus and the new model, for a network with n = r = 32 and $n \le m \le 2n - 1$, under network input link utilization a = 0.7.

	-			
n	m	$P_B(\text{Lee})$	$P_B({ m Jacobaeus})$	P_B (This paper)
0.4	0.4	0.000	0.000	0.000
64	64	0.002	0.002	0.002
64	68	0.0002	0.00016	0.0002
64	72	1.5×10^{-5}	6.2×10^{-6}	1.5×10^{-5}
64	76	8×10^{-7}	1.5×10^{-7}	8×10^{-7}
				_
120	128	10^{-7}	$3.5 imes 10^{-8}$	10^{-7}
240	256	10^{-14}	1.3×10^{-15}	1.3×10^{-14}

Blocking probability comparison, a = 0.7.

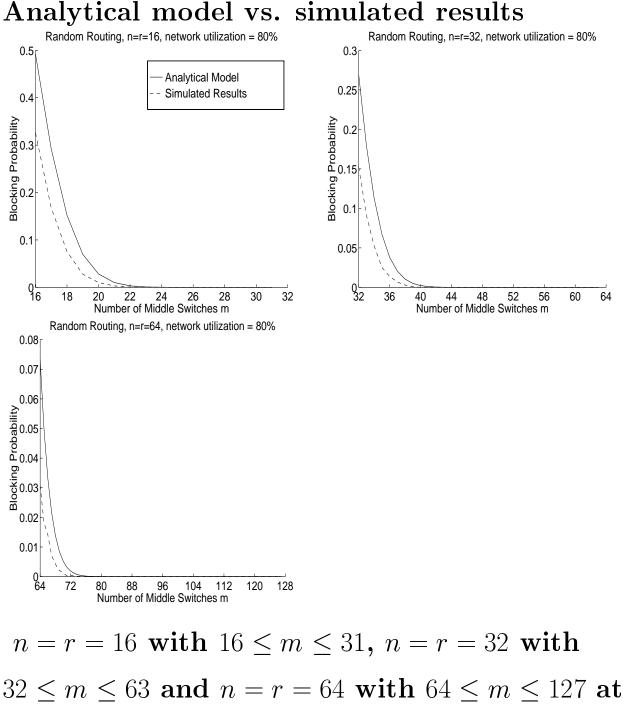
Experimental Simulations

- Simulations were carried out for random routing strategy.
- Three network configurations were simulated:

$$n = r = 16, \ 16 \le m \le 31$$

$$n = r = 32, \ 32 \le m \le 63$$

- $n = r = 64, \ 64 \le m \le 127$
- Network utilization: $50\% \le a \le 90\%$
- Fully packed switches: $1 \le d \le 4$
- 10,000 connection requests processed per configuration.



Analytical model vs. simulated results

80% network utilization.

Summary:

Proposed a new analytical model on the blocking probability of the Clos networks under random routing strategy.

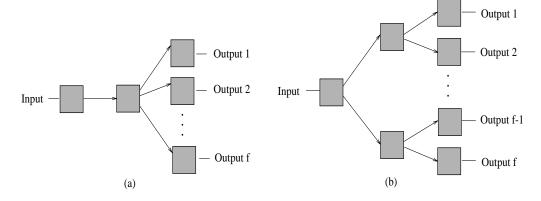
- The newly proposed model can more accurately describe the blocking behavior of the network and is consistent with the well-known deterministic nonblocking condition.
- The analytical model is consistent with the blocking probabilities acquired through simulation.
- The new model may be extended to other routing strategies.

Analytical model for the blocking probability of multicast Clos networks

- The necessary and sufficient nonblocking condition obtained suggests that there is little room for further improvement on the multicast nonblocking condition.
- What is the blocking behavior of the multicast network with smaller number of middle stage switches? For example, a network with only the same number of middle stage switches as a nonblocking permutation network, i.e. m = 2n 1.
- Develop an analytical model for the blocking probability of v(m, n, r) multicast network.
- Look into the blocking behavior of the networks under various routing strategies through simulations to validate the model.

The limitation of Lee's model when applied to multicast communication

• Different ways to realize a multicast connection with fanout *f*.



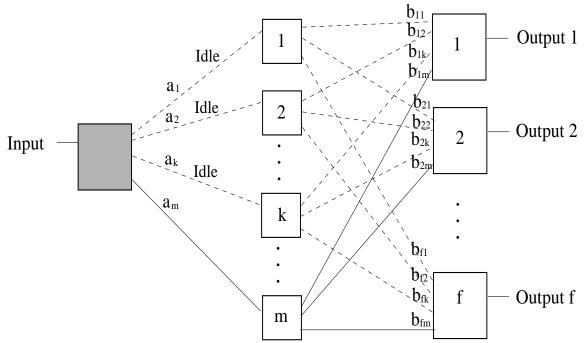
The total number of ways to realize a multicast connection with fanout f
 (1 ≤ f ≤ r) is

$$\sum_{j=1}^{f} \binom{m}{j} S(f,j)j!,$$

where S(f, j) is the Stirling number of the second kind.

• The dependencies among multicast trees make the problem intractable.

Analytical model for multicast communication A subnetwork associated with a multicast connection with fanout f, where k input-middle interstage links are idle. Input stage Middle stage Output stage



Notations and assumptions

- a_i : the event that the input-middle interstage link a_i is busy.
- b_{ij} : the event that the middle-output interstage link b_{ij} is busy.
- ε : the event that the connection request with fanout f cannot be realized.
- σ : the state of the input-middle interstage links a_1, a_2, \ldots, a_m .
- $P(\boldsymbol{\varepsilon}|\sigma)$: the conditional blocking probability in this state.
- $P(\sigma)$: the probability of being in state σ .

$$P(\sigma) = q^k p^{m-k}$$

• Still follow Lee's assumption that the events that individual links are busy are independent.

Blocking probability for a multicast connection with fanout f

$$P_B(f) = P(\boldsymbol{\varepsilon}) = \sum_{\sigma} P(\sigma) P(\boldsymbol{\varepsilon}|\sigma)$$
$$= \sum_{k=0}^m \binom{m}{k} q^k p^{m-k} P(\boldsymbol{\varepsilon}|\bar{\mathbf{a}}_1, \dots, \bar{\mathbf{a}}_k, \mathbf{a}_{k+1}, \dots, \mathbf{a}_m)$$

Blocking property of the subnetwork

Lemma 2 Assume that the interstage links a_1, a_2, \ldots, a_k in the subnetwork are idle. A multicast connection from an input of the input switch to f distinct output switches cannot be realized if and only if there exists an output switch whose first k inputs are busy.

• Let ε' be the event that the connection request with fanout f cannot be realized given links a_1, a_2, \ldots, a_k are idle.

$$P(\boldsymbol{\varepsilon}') = P(\boldsymbol{\varepsilon}|\mathbf{\bar{a}}_1, \dots, \mathbf{\bar{a}}_k, \mathbf{a}_{k+1}, \dots, \mathbf{a}_m).$$

• From Lemma 2, event ε' can be expressed in terms of events \mathbf{b}_{ij} 's:

$$\boldsymbol{\varepsilon'} = (\mathbf{b}_{11} \cap \mathbf{b}_{12} \cap \cdots \cap \mathbf{b}_{1k})$$
$$\cup (\mathbf{b}_{21} \cap \mathbf{b}_{22} \cap \cdots \cap \mathbf{b}_{2k}) \cup \cdots$$
$$\cup (\mathbf{b}_{f1} \cap \mathbf{b}_{f2} \cap \cdots \cap \mathbf{b}_{fk}).$$

• The probability of event ε'

$$P(\boldsymbol{\varepsilon'}) = 1 - \prod_{i=1}^{f} P(\overline{\mathbf{b}_{i1} \cap \mathbf{b}_{i2} \cap \dots \cap \mathbf{b}_{ik}})$$

= $1 - \prod_{i=1}^{f} [1 - P(\mathbf{b}_{i1} \cap \mathbf{b}_{i2} \cap \dots \cap \mathbf{b}_{ik})]$
= $1 - \prod_{i=1}^{f} (1 - p^k) = 1 - (1 - p^k)^f$

Blocking probability for a multicast connection with fanout f

$$P_B(f) = \sum_{k=0}^{m} \binom{m}{k} q^k p^{m-k} [1 - (1 - p^k)^f].$$

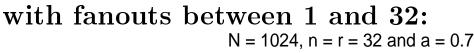
Unicast special case (f = 1):

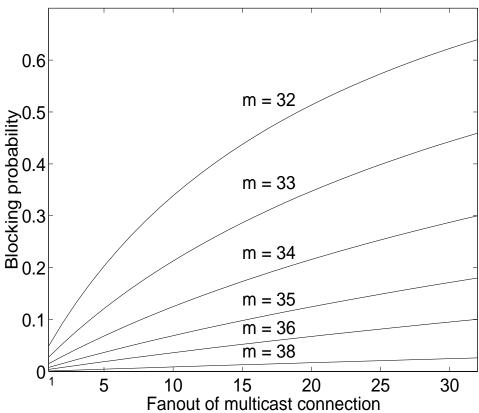
$$P_B(1) = \sum_{k=0}^m \binom{m}{k} q^k p^{m-k} [1 - (1 - p^k)]$$

= $p^m \sum_{k=0}^m \binom{m}{k} q^k$
= $p^m (1 + q)^m$
= $(1 - q)^m (1 + q)^m = (1 - q^2)^m.$

This is exactly Lee's blocking probability for the v(m, n, r) permutation network.

Blocking probabilities for v(m, 32, 32) network





The blocking probability $P_B(f)$ is an increasing sequence of fanout f.

Average blocking probability over all fanouts

• Suppose the probability distribution for different fanouts in a multicast connection is

$$\{w_f | 0 \le w_f \le 1, 1 \le f \le r, \sum_{i=1}^r w_i = 1\}.$$

 The average value of the blocking probability, simply referred to as the blocking probability of the v(m, n, r) multicast network:

$$P_B = \sum_{f=1}^r P_B(f) \cdot w_f.$$

• Suppose the fanout is uniformly distributed over 1 to r.

$$P_B = \frac{1}{r} \sum_{f=1}^r P_B(f)$$

= $\frac{1}{r} \sum_{f=1}^r \sum_{k=0}^m \binom{m}{k} q^k p^{m-k} [1 - (1 - p^k)^f].$

Asymptotic bound on the blocking probability

• The following inequality holds

 $1 - (1 - x)^l < lx,$

where 0 < x < 1, and l is an integer ≥ 1 .

• By applying the above inequality, we can obtain an upper bound on P_B :

$$P_B < \frac{1}{r} \sum_{f=1}^{r} \sum_{k=0}^{m} \binom{m}{k} q^k p^{m-k} \cdot f \cdot p^k$$

= $\frac{1}{r} (1 - q^2)^m \sum_{f=1}^{r} f$
= $\frac{r+1}{2} [1 - (1 - p)^2]^m$

Consider two cases:

Case 1: m = n + c, for some constant c > 1. Note that $p = \frac{an}{m}$, where *a* is a constant and $0 \le a < 1$. Then

$$[1 - (1 - p)^2]^m = \left[1 - \left(1 - \frac{an}{m}\right)^2\right]^m < [1 - (1 - a)^2]^m$$

which implies

$$P_B = O(r \cdot \delta^m),$$

where $\delta = 1 - (1 - a)^2$.

Case 2: m = dn, for some constant d > 1. Since $p < \frac{n}{m} = \frac{1}{d}$,

$$P_B < \frac{r+1}{2} \left[1 - \left(1 - \frac{1}{d} \right)^2 \right]^m = O(r \cdot {\delta'}^m),$$

where $\delta' = 1 - (1 - \frac{1}{d})^2$. That is, δ' is a constant such that $0 < \delta' < 1$.

In both cases, if r = O(n) we obtain

$$P_B = O(e^{-\epsilon n})$$

where ϵ is a constant > 0, which means the blocking probability tends to zero very quickly as n increases.

More accurate blocking probability

- In the case of k > n 1, there must exist some idle input on each of f output switches.
- The condition blocking probability

$$P(\boldsymbol{\varepsilon}|\bar{\mathbf{a_1}}, \dots, \bar{\mathbf{a_k}}, \mathbf{a_{k+1}}, \dots, \mathbf{a_m}) \\ = \begin{cases} 1 - (1 - p^k)^f & \text{if } 1 \le k \le n - 1 \\ 0 & \text{if } k \ge n. \end{cases}$$

• The blocking probability for a multicast connection with fanout f

$$P_B(f) = \sum_{k=m-n}^{m} \binom{m}{k} q^k p^{m-k} [1 - (1 - p^k)^f]$$

= $\sum_{i=0}^{n} \binom{m}{m-n+i} q^{m-n+i} p^{n-i} [1 - (1 - p^{m-n+i})^f].$

Comparison between the old $P_B(f)$ and the new $P_B(f)$ for n = 32, m = 64, r = 32, and a = 0.7.

Fanout f	$P_B(f)$ (old)	$P_B(f)$ (new)
1	5.46×10^{-16}	2.77×10^{-17}
2	1.09×10^{-15}	5.55×10^{-17}
5	2.74×10^{-15}	1.46×10^{-16}
8	4.38×10^{-15}	2.33×10^{-16}
12	6.57×10^{-15}	3.51×10^{-16}
16	8.76×10^{-15}	4.66×10^{-16}
20	1.10×10^{-14}	5.87×10^{-16}
24	1.31×10^{-14}	6.99×10^{-16}
28	1.53×10^{-14}	8.12×10^{-16}
32	1.75×10^{-14}	9.33×10^{-16}

Generalization to asymmetric Clos networks

• Asymmetric Clos type network or

$$v(m, n_1, r_1, n_2, r_2)$$
 network

- n_1 : number of inputs on each input switch
- r_1 : number of input switches
- n_2 : number of outputs on each output switch r_2 : number of output switches

•
$$P(\bar{\mathbf{a}}_{\mathbf{i}}) = p_a = \frac{an_1}{m}, \ q_a = 1 - p_a$$

•
$$P(\overline{\mathbf{b}_{i,j}}) = p_b = \frac{an_2}{m}, \ q_b = 1 - p_b$$

• Blocking probability for a multicast connection with fanout *f*

$$P_B(f) = \sum_{k=0}^{m} \binom{m}{k} q_a^k p_a^{m-k} [1 - (1 - p_b^k)^f]$$

Experimental study Extensive simulations were carried out for seven routing control strategies. Definitions:

• Connection request I_i :

the output switches to be connected from input port i in a multicast connection.

- Available middle switches of input port *i*: the set of middle switches with idle links to input port *i*.
- Destination set of a middle switch: busy outputs of a middle switch.

- A generic routing algorithm
- Step 1: If no available middle switches for the current connection request, then exit.
- Step 2: Choose a non-full middle switch among the available middle switches for the connection request according to some control strategy. If no such middle switch exit.
- Step 3: Realize as large as possible portion of the connection request in the middle switch chosen in Step 2.
- Step 4: Update the connection request by discarding the portion that is satisfied by the middle switch chosen in Step 2.
- Step 5: If the connection request is non-empty, go to Step 1.

Routing control strategies

- 1. Smallest Absolute Cardinality Strategy
- 2. Largest Absolute Cardinality Strategy
- 3. Average Absolute Cardinality Strategy
- 4. Smallest Relative Cardinality Strategy
- 5. Largest Relative Cardinality Strategy
- 6. Average Relative Cardinality Strategy
- 7. Random Strategy

Model assumptions

- Three types of traffic distributions are considered: uniform traffic, uniform/constant, and Poisson traffic.
- In the steady state, the arrival rate of the connection requests is approximately equal to the departure rate (service rate) of the connections.
- A new multicast connection request is randomly generated among all idle network input ports and output ports.

• During the network operation, a certain workload is maintained. The workload is measured by the network utilization, which is defined as

 $\mathbf{Utilization} = \frac{\mathbf{The \ total \ number \ of \ busy \ output \ ports}}{N}$

• The blocking probability in the simulation is computed by

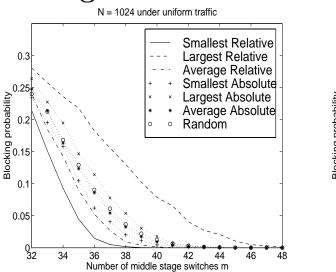
 $P_B = \frac{\text{The total number of connection requests blocked}}{\text{The total number of connection requests generated}}$

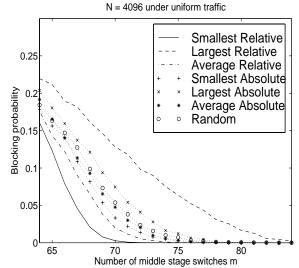
Experimental simulations

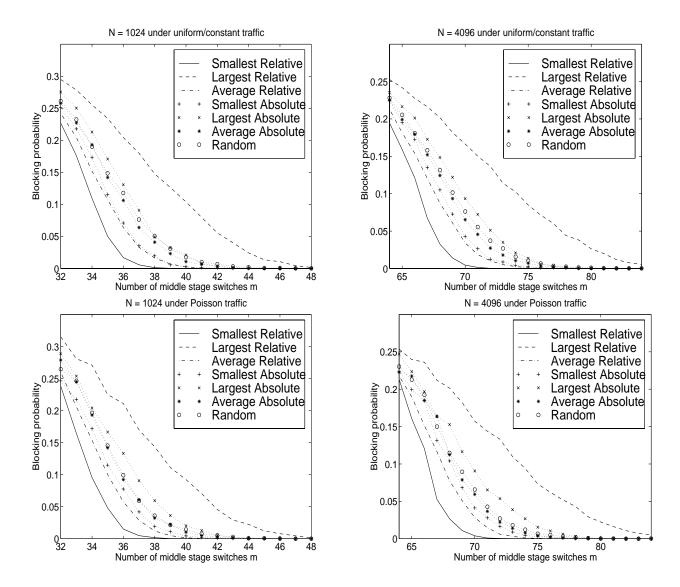
- Two network configurations: N = 1024, n = r = 32, and $32 \le m \le 48$. N = 4096, n = r = 64, and $64 \le m \le 84$.
- Seven routing control strategies
- Three types of traffic: uniform, uniform/constant, and Poisson
- Initial network utilization = 90%
- 25,000 connection requests processed per configuration per strategy

Simulation results

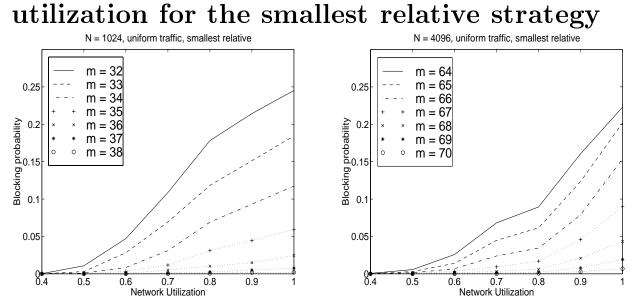
The blocking probability of the v(m, n, r)multicast network under seven routing control strategies:

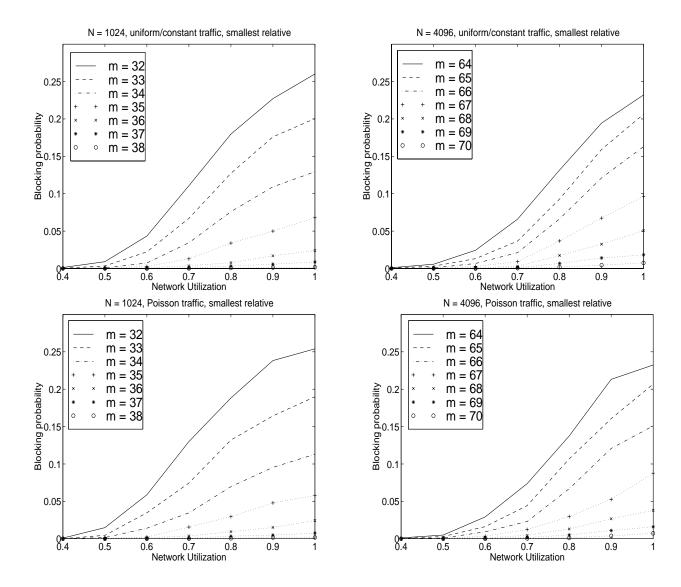




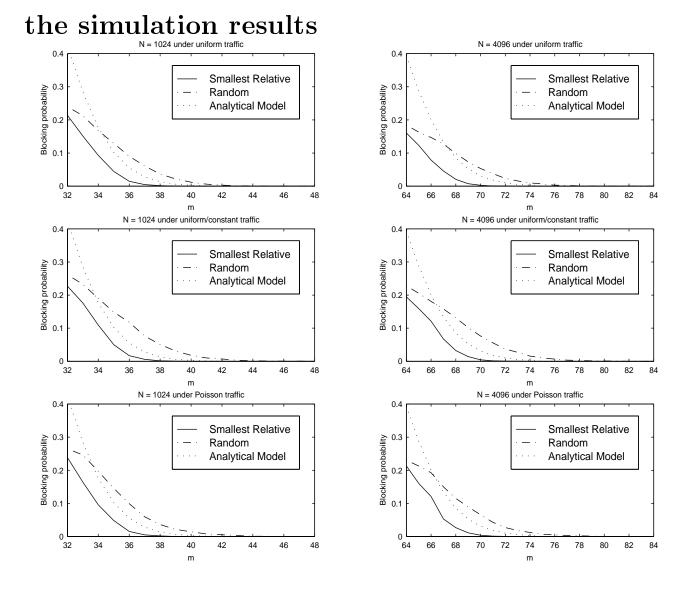


The blocking probability of the v(m, n, r)multicast networks under different network





Comparison between the analytical model and



Summary:

Studied the blocking behavior of the multicast Clos network along two parallel lines:

- developed an analytical model for the blocking probability of the multicast Clos network;
- studied the blocking behavior of the network under various routing control strategies through simulations.

Observations:

- A network with a small m, such as m = n + cor dn, is almost nonblocking for multicast connections, although theoretically it requires $m \ge \Theta\left(n\frac{\log r}{\log \log r}\right)$ to achieve nonblocking for multicast connections.
- Routing control strategies are effective for reducing the blocking probability of the multicast network. The best routing control strategy can provide a factor of 2 to 3 performance improvement over random routing.
- The results indicate that a Clos network with a comparable cost to a permutation network can provide cost-effective support for multicast communication.