ALL-TO-ALL COMMUNICATION

- All-to-all communication in a network:
 - All-to-all personalized exchange: every node sends a distinct message to every other node.
 - All-to-all broadcast:
 every node sends the same message to all other nodes.
 Special case of all-to-all personalized exchange, with less time complexity.
- Applications of all-to-all communication
 - Matrix multiplication, LU-factorization, Householder transformations, matrix transposition, and fast Fourier transform (FFT).

All-to-all broadcast

- Networks considered:
 - Hypercube networks:
 - shorter communication delay but poorer scalability
 - Mesh and torus networks:
 bounded node degree and better scalability
- Assumptions:
 - Full-duplex communication channel
 - Each node has all-port capability
 - Messages broadcast are of the same length
- Goal:

Achieve maximum degree of parallelism in message transmission. **Previous Related Work:**

All-to-all broadcast algorithms in a torus:

• Saad and Schultz:

Each node sends the message along horizontal ring, and then vertical ring.

• Calvin, Perennes, and Trystram: Recursive algorithm.

In these algorithms, some degree of parallelism was achieved among different nodes, but no time overlap for the messages passing through the same node.

The new algorithm:

- Further explores the parallelism in message transmission and achieves some degree of parallelism among the messages passing through the same node
- Optimal in message transmission time
- Total communication delay close to the lower bound of all-to-all broadcast
- Conceptually simple, and symmetrical for every message and every node
- Easy implementation in hardware

Properties of 2D Meshes and Tori

- Each node (x, y) has up to four neighbors: (x - 1, y), (x + 1, y), (x, y - 1), and (x, y + 1)
- Distance between $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$: $dist(P_1, P_2)$

- Mesh:

$$dist(P_1, P_2) = |x_1 - x_2| + |y_1 - y_2|$$

- Torus:

$$dist(P_1, P_2) = \min\{|x_1 - x_2|, n - |x_1 - x_2|\} + \min\{|y_1 - y_2|, n - |y_1 - y_2|\}$$

• *d*-neighbor:

The distance between two nodes equals d.

• Example:

Node (-1, -1) and node (2, 2) in a mesh are 6-neighbors

• Diameter:

Maximum distance between any two nodes in the network

 $-n \times n$ mesh: 2(n-1)

- $-n \times n$ torus: $2\lfloor \frac{n}{2} \rfloor$
- Circle centered at a node: The set of nodes with an equal distance to the node
- Radius of circle: The distance to the center
- Perimeter of circle: Cardinality of the node set of the circle

• In an infinite mesh, the perimeter of a circle with radius d is

$$C_d = \begin{cases} 1 & \text{if } d = 0\\ 4d & \text{if } d \ge 1 \end{cases}$$

• Circles centered at the same node with different radii in a mesh

• In a $(2k+1) \times (2k+1)$ torus, the perimeter of a circle with radius d, where $0 \le d \le 2k$, is

$$C_{d} = \begin{cases} 1 & \text{if } d = 0 \\ 4d & \text{if } 1 \le d \le k \\ 4(2k+1-d) & \text{if } k+1 \le d \le 2k \end{cases}$$

• Circles centered at a node with different radii in a 5 × 5 torus

• In a $2k \times 2k$ torus, the perimeter of a circle with radius d, where $0 \le d \le 2k$, is

$$C_{d} = \begin{cases} 1 & \text{if } d = 0 \\ 4d & \text{if } 1 \le d \le k - 1 \\ 4k - 2 & \text{if } d = k \\ 4(2k - d) & \text{if } k + 1 \le d \le 2k - 1 \\ 1 & \text{if } d = 2k \end{cases}$$

• Circles centered at a node with different radii in a 4 × 4 torus

Broadcasting in a Mesh or Torus

• Buffer structure of a node:

• Logical format of a message:

Source node	Maggaga apptant
address	wiessage coment

• Lower bound for broadcast

- $-\alpha$: startup time
- $-\delta$: switching time
- $-\gamma$: transmission time
- -L: the number of bytes per message

Theorem 1 (1) The maximum communication delay of one-to-all broadcast is at least $\alpha + \delta + 2(n - 1)L\gamma$ in an $n \times n$ mesh, and is at least $\alpha + \delta + 2\lfloor \frac{n}{2} \rfloor L\gamma$ in an $n \times n$ torus. (2) The maximum communication delay of all-to-all broadcast in all-port model is at least $\alpha + \delta + \frac{n^2 - 1}{2}L\gamma$ in an $n \times n$ mesh, and is at least $\alpha + \delta + \frac{n^2 - 1}{4}L\gamma$ in an $n \times n$ torus.

Broadcast Pattern

- Basic idea:
 - Controlled message flooding
 - Use a specially designed spanning tree rooted at the source node (broadcast pattern)
 - Logical broadcast phases:
 In phase d, the message originating from a node reaches all its d-neighbors.
- Consider an infinite mesh first

• Broadcast pattern from source node (x_0, y_0)

• Formal description of broadcast pattern

– Define three functions:

$$U(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x < 0 \end{cases}$$

(

$$I(x) = \begin{cases} 1 & \text{if } x > 0 \\ -1 & \text{if } x < 0 \end{cases}$$

$$mod_2(x) = x \mod 2$$

- When a broadcast message originating from node (x_0, y_0) reaches node (x, y), it continues to broadcast to the neighbors of node (x, y)as follows. Case 1: $x = x_0$ and $y = y_0$. (x, y) broadcasts the message to all of its four neighbors (x, y+1), (x, y-1), (x+1, y), and (x - 1, y).

Case 2: Either $x = x_0$ or $y = y_0$ but not both.

(x, y) multicasts the message to its two neighbors (x_1, y_1) and (x_2, y_2)

2.1:
$$x = x_0$$
 and $y \neq y_0$, i.e. along the y-axis.
 x_1, y_1, x_2 , and y_2 satisfy

$$\begin{split} x_1 &= x + mod_2(y - y_0 + U(I(y - y_0))) \\ y_1 &= y + I(y - y_0) \times mod_2(y - y_0 + 1 - U(I(y - y_0))) \\ x_2 &= x - mod_2(y - y_0 + U(-I(y - y_0))) \\ y_2 &= y + I(y - y_0) \times mod_2(y - y_0 \\ &\quad +1 - U(-I(y - y_0))) \end{split}$$

2.2: $x \neq x_0$ and $y = y_0$, i.e. along the *x*-axis. x_1, y_1, x_2 , and y_2 satisfy $x_1 = x + I(x - x_0) \times mod_2(x - x_0 + U(I(x - x_0)))$

$$y_1 = y + mod_2(x - x_0 + 1 - U(I(x - x_0)))$$

$$x_2 = x + I(x - x_0) \times mod_2(x - x_0 + U(-I(x - x_0)))$$

$$y_2 = y - mod_2(x - x_0 + 1 - U(-I(x - x_0)))$$

Case 3: $x \neq x_0$ and $y \neq y_0$.

(x, y) sends the message to its neighbor (x_3, y_3) where x_3 and y_3 satisfy

$$\begin{aligned} x_3 &= x + I(x - x_0) \times mod_2((x - x_0) + (y - y_0) + \\ & U(I(x - x_0) \times I(y - y_0))) \\ y_3 &= y + I(y - y_0) \times mod_2((x - x_0) + (y - y_0) + \\ & 1 - U(I(x - x_0) \times I(y - y_0))) \end{aligned}$$

Case 3 can be viewed as a generic form for all cases if letting I(0) take 1 and -1 respectively.

• Observations:

- Message is sent out in the direction leaving the origin
- Message is broadcast to all its four neighbors from a node with the same x-coordinate and y-coordinate as the origin
- Message is multicast to its two neighbors from a node with the same x-coordinate or y-coordinate as the origin
- Message is sent to only one of its neighbors
 from a node with a different x-coordinate
 and y-coordinate from the origin

Theorem 2 Each node in an infinite mesh can be reached exactly once by using the broadcast pattern.

- For a mesh, the broadcast pattern is trimmed at the boundary of the mesh
- For a torus, perform additional check:

Additional check for a torus:

For any node (x_1, y_1) which is a neighbor of node (x, y) chosen from the broadcast pattern,

if $dist((x_0, y_0), (x, y)) \ge dist((x_0, y_0), (x_1, y_1))$ then remove (x_1, y_1) from the list of the neighbors to which node (x, y) relays the message originating from node (x_0, y_0) .

All-to-All Broadcast Algorithm

- Buffers are used to resolve the possible contention of multiple messages
- Higher level description of the algorithm

All-to-All Broadcast Algorithm: for each node (x, y) in the network do in parallel for each input and output buffer do in parallel case of an output buffer: repeat remove a message from the buffer; send it to corresponding neighboring node (enter into the input buffer of the neighbor); until no more message arrives at the buffer; end case; case of an input buffer: repeat remove a message from the buffer; extract source address of the message, say, (x_0, y_0) ; copy the message content to (x_0, y_0) entry of the buffer matrix: calculate the addresses of the neighbors to be multicast by using the broadcast pattern; for a torus, perform the additional check in Table 1; multicast the message to the output buffers connected to the corresponding neighbors; until no more message arrives at the buffer; end case; end for; end for; End

- Observations:
 - Each node is continuously receiving (and sending) messages from (and to) its four neighbors
 - In each buffer, messages in earlier phase d'always arrive before those in a later phase d'', for any d' < d''
 - In phase d, the message originating from a node reaches all its d-neighbors, and the messages originating from all d-neighbors of a node reach the node

• Question:

Whether the incoming (and outgoing) messages are uniformly distributed to the four input (and output) buffers at each node

Theorem 3 According to the broadcast pattern, in phase d of all-to-all broadcast in an infinite mesh, each node (x_0, y_0) receives 4d messages originating from all its 4d d-neighbors via the four input channels of node (x_0, y_0) , with d messages from each input channel, and at the end of the phase, it will send 4(d+1) messages to its four 1-neighbors via the four output channels, with d+1 messages on each output channel. **Proof.** By induction on phase d.

- Need to show in phase k the 4(k+1) outgoing messages are uniformly distributed to the four output buffers at node (x₀, y₀).
- Consider the 4k k-neighbors of node (x_0, y_0) . They can be grouped into four groups:

Group I: $(x_0 + l, y_0 + k - l)$ for $0 \le l \le k$

Group II: $(x_0 - k + l, y_0 + l)$ for $0 \le l \le k$

Group III: $(x_0 - k + l, y_0 - l)$ for $0 \le l \le k$

Group IV: $(x_0 + l, y_0 - k + l)$ for $0 \le l \le k$

Four special nodes (x_0, y_0+k) , (x_0-k, y_0) , (x_0, y_0-k) and (x_0+k, y_0) each is counted twice and thus each group has k+1 nodes.

4k k-neighbors of node (x_0, y_0) (k = 4):

By the broadcast pattern, the following 1-neighbors of (x_0, y_0) are chosen to relay messages from Groups I, II, III, and IV, respectively.

$$\begin{cases} (x_0 - 1, y_0) \text{ if } k \text{ is even} \\ (x_0, y_0 - 1) \text{ if } k \text{ is odd} \end{cases}$$
$$\begin{cases} (x_0, y_0 - 1) \text{ if } k \text{ is even} \\ (x_0 + 1, y_0) \text{ if } k \text{ is odd} \end{cases}$$
$$\begin{cases} (x_0 + 1, y_0) \text{ if } k \text{ is even} \\ (x_0, y_0 + 1) \text{ if } k \text{ is odd} \end{cases}$$
$$\begin{cases} (x_0, y_0 + 1) \text{ if } k \text{ is even} \\ (x_0 - 1, y_0) \text{ if } k \text{ is odd} \end{cases}$$

Corollary 1 In all-to-all broadcast using the algorithm in Table 2 in an $n \times n$ torus, each channel between two adjacent nodes in the network relays $\frac{n^2-1}{4}$ messages.

Proof. The total number of messages through a single channel is

$$\sum_{d=1}^{2\lfloor \frac{n}{2} \rfloor} \frac{C_d}{4} = \frac{1}{4} \left(\sum_{d=0}^{2\lfloor \frac{n}{2} \rfloor} C_d - 1 \right) = \frac{n^2 - 1}{4}$$

Corollary 2 In all-to-all broadcast using the algorithm in Table 2 in an $n \times n$ mesh, each channel between two adjacent nodes in the network relays at most $\frac{n^2-1}{2}$ messages.

Delay Analysis in All-to-All Broadcast

- Switching time overlapped with transmission time
- Messages in any direction are pipelined

Theorem 4 The total delay of the all-to-all broadcast algorithm for an $n \times n$ torus is no more than

$$\alpha + \delta + L\gamma + \left(\frac{n^2 - 1}{4} - 1\right) \max\{\delta, L\gamma\} + \min\{\delta, L\gamma\}$$

where α , δ , γ and L are the startup time, the switching time, the transmission time per byte, and the number of bytes per message, respectively.

The total delay of the first three phases of allto-all broadcast. (a) $\delta \leq L\gamma$. (b) $\delta > L\gamma$.

Corollary 3 The total delay of the all-to-all broadcast algorithm for an $n \times n$ torus is no more than

$$\begin{cases} \alpha + 2\delta + \left(\frac{n^2 - 1}{4}\right)L\gamma & \text{if } \delta \leq L\gamma \\ \alpha + 2L\gamma + \left(\frac{n^2 - 1}{4}\right)\delta & \text{if } \delta > L\gamma \end{cases}$$

- Observations:
 - The new algorithm is optimal in transmission time
 - The total communication delay is close to the optimal value within only a small constant δ , for $\delta \leq L\gamma$.
 - Easily implemented in hardware so that the algorithm can achieve the optimum in practice.

Comparisons

- Saad and Schultz[12]'s horizontal/vertical algorithm for a torus: $2\alpha + 2\lfloor \frac{n}{2} \rfloor \delta + (\frac{n^2-1}{2})L\gamma.$
- Calvin, Perennes, and Trystram[15]'s recursive algorithm for a torus: $2\log_5(n^2)\alpha + \frac{3}{2}(n-1)\delta + \frac{n^2-1}{2}L\gamma.$
- The transmission time of the both algorithms is twice as long as the new algorithm.
- Both algorithms cannot take advantage of overlapping of the switching time and the transmission time as does the new algorithm.
- When $\delta > 2L\gamma$, both algorithms take less time than the proposed algorithm. However, in general we can have $\delta < L\gamma$.

Summary:

A new all-to-all broadcast algorithm in all-port 2D mesh and torus networks.

- The algorithm can be implemented in either packet-switched networks or virtual cut-through and wormhole-switched networks.
- The new algorithm utilizes a controlled message flooding based on a specially designed broadcast pattern.
- The new algorithm takes advantage of overlapping of message switching time and transmission time, and achieves optimal transmission time for all-to-all broadcast.

- In most cases, the total communication delay is close to the lower bound of all-to-all broadcast within a small constant range.
- The algorithm is conceptually simple, and symmetrical for every message and every node, so that it can be easily implemented in hardware and achieves the optimum in practice.
- The algorithm can also be extended to multidimensional meshes and tori.

All-to-all personalized exchange

Previous work

- All-to-all personalized exchange in an *n*-node hypercube
 - One-port model: time $O(n \log n)$
 - All-port model: time O(n)
- All-to-all personalized exchange in an *n*-node mesh/torus network
 - Two dimensional: time $O\left(n^{\frac{3}{2}}\right)$
 - -k dimensional: time $O\left(n^{\frac{k+1}{k}}\right)$
- Drawback:
 - Hypercubes: poor scalability due to the unbounded node degrees
 - Meshes and tori: longer communication delay due to the limitations of the topologies

All-to-all personalized exchange in multistage interconnection network

• Given *n* processors $P_0, P_1, \ldots, P_{n-1}$, an $n \times n$ MIN can be used for inter-processor communication

- Crossbar: hardware cost is too high
- Benes network: not every permutation is easily routable
- Banyan network: self-routing unique path network, fast switch setting: O(n) time for all-to-all personalized exchange, single input/output port per processor.

Network Structure and Permutation

- An $n \times n$ banyan network composed of $\log n$ stages of 2×2 switches
 - E.g. An 8×8 banyan network

- A permutation is a full one-to-one mapping between the network inputs and outputs.
- A permutation in $n \times n$ network denoted as

$$\rho = \begin{pmatrix} 0 & 1 & \dots & n-1 \\ a_0 & a_1 & \dots & a_{n-1} \end{pmatrix}$$

where $a_i \in \{0, 1, \dots, n-1\}$ for $0 \le i \le n-1$, and $a_i \ne a_j$ for $i \ne j$

• Identity permutation is denoted as I

- Each stage can be considered as a shorter $n \times n$ network
- Each set of interstage links can also be as a shorter $n \times n$ network
- σ_i : the stage permutation of stage *i*
- τ_i: the interstage permutation between stage
 i and stage i + 1, expressed as the following
 mapping:

$$p_{m-1}p_{m-2}\dots p_{i+2}p_{i+1}p_i\dots p_1p_0 \xrightarrow{\tau_i} p_{m-1}p_{m-2}\dots p_{i+2}p_0p_i\dots p_1p_{i+1},$$

- i.e., the function of swapping bit 1 for bit i+2
- The overall permutation of a banyan network is the composition:

$$\sigma_{m-1}\tau_{m-2}\sigma_{m-2}\ldots\tau_0\sigma_0$$

Realizing All-to-All Personalized Exchange in Banyan Networks

- Lower Bound for All-to-All Personalized Exchange
 - The maximum communication delay of allto-all personalized exchange in an $n \times n$ banyan network of $\log n$ stages is at least $\Omega(n + \log n)$.
- All-to-All Personalized Exchange Algorithm Using a Latin Square
 - A Latin square is defined as an $n \times n$ matrix

in which the entries $a_{i,j}$'s are numbers in $\{0, 1, 2, ..., n-1\}$ and no two entries in a row (or a column) have the same value.

All-to-all personalized exchange algorithm (ATAPE) f begin

- Step 1. for each processor j ($0 \le j \le n-1$) do in parallel
 - 1.1 for each $a_{i,j}$ $(0 \le i \le n-1)$ in the Latin square do in sequential prepare a personalized message from processor j to processor $a_{i,j}$; insert the message into the message queue j;
- Step 2. for each processor j ($0 \le j \le n-1$) do in parallel
- 2.1 for each message with destination address $a_{i,j}$ $(0 \le i \le n-1)$ in the message queue j do in sequential send the message destined to $a_{i,j}$ through input j of the network; end;
- Time complexity of ATAPE: $O(n + \log n)$

Two Methods for Constructing a Latin Square

- A set of basic permutations ϕ_i $(1 \le i \le m)$
 - Definition:

$$p_{m-1}p_{m-2}\dots p_ip_{i-1}p_{i-2}\dots p_1p_0 \xrightarrow{\phi_i} p_{m-1}p_{m-2}\dots p_i\bar{p}_{i-1}p_{i-2}\dots p_1p_0$$

- Properties:

*
$$\phi_i \phi_j = \phi_j \phi_i$$
, for $1 \le i, j \le m$
* $\phi_i \phi_i = I$, for $1 \le i \le m$

- Example: Basic permutations for an 8×8 mapping. Each arc represents a mapping between two numbers

$$\phi_1: 0 1 2 3 4 5 6 7$$

$$\phi_2: 0 1 2 3 4 5 6 7$$

$$\phi_3: 0 1 2 3 4 5 6 7$$

- The first construction of a Latin square
 - Given m basic permutations $\phi_1, \phi_2, \dots, \phi_m$, construct $\Psi = \{\phi_{i_1}\phi_{i_2}\cdots\phi_{i_k}|m \ge i_1 > i_2 > \dots > i_k \ge 1 \text{ and } 1 \le k \le m\}$
 - -Note that $|\Psi| = n 1$.
 - Let $\rho_1, \rho_2, \ldots, \rho_{n-1}$ be the n-1 permutations in Ψ , and $a_0, a_1, \ldots, a_{n-1}$ be a list of numbers such that $\{a_0, a_1, \ldots, a_{n-1}\} = \{0, 1, \ldots, n-1\}$. Then the following matrix is a Latin square.

- The second construction of a Latin square
 - An algorithm to build the Latin square row by row in an iterative fashion
 - Minimum complexity $O(n^2)$
 - The algorithm description

Algorithm LatinSquare (List $\{a_0, a_1, \ldots, a_{n-1}\}$) /*main*/ begin

List $BL \leftarrow$ List {};

BuildBasicList(m); /* $m = \log n$ */

BuildLatinSquare(BL, { $a_0, a_1, \ldots, a_{n-1}$ });

end;

Function BuildBasicList(int k)

begin

if (k == 1)

BL.append(ϕ_1);

return;

end if

BuildBasicList(k-1);

BL.append(ϕ_k);

BuildBasicList(k-1);

end;

Function BuildLatinSquare(List $\{\phi_{k_1}, \phi_{k_2}, \dots, \phi_{k_{n-1}}\}$,

List $\{a_0, a_1, \ldots, a_{n-1}\}$)

begin

for i = 0 to n - 1 do

- The matrix generated by the second construction is a Latin square
- An example of the second construction
 - (a) The 3-bit Gray code sequence generated by applying the basic permutation list to number 0.
- (b) An 8×8 Latin square generated by the algorithm

ООС Ф.)	0 4	2	6 ×	1	5	3	7
φ ¹ φ	L t	1 5	3	7	0	4	2	6
$\phi_2 \downarrow 011$	Φ_2	3 7	1	5	2	6	0	4
φ ₁ ↓	ф 1		\geq	\geq	\ge	_		
010)	2 6	0	4	3	7	1	5
\$ 3 ↓	ϕ_3	_		_		_		
110)	6 2	4	0	7	3	5	1
ф ₁	$\mathbf{\Phi}_{1}$		~	\sim			_	
111	-	7_3_	5	1	6	2	4	0
$\phi_2 \downarrow$	$\mathbf{\phi}_2$							
101	L	5 1	7	3	4	0	6	2
ф 1	ф 1		\rightarrow	\sim	~	<		
100)	4 0	6	2	5	1	7	3
(a)				(b)				

• The Latin squares generated by the two constructions are equivalent. Generating Permutations for All-to-All Personalized Exchange in Banyan Networks

- Generate admissible permutations to form the Latin square needed in algorithm ATAPE
- Method: simply let each stage permutation $\sigma_i = \phi_1$ or *I*.
- Proof sketch:

Let
$$au = au_{m-2} au_{m-3} \dots au_1 au_0$$

Apply
$$(\tau_{m-2}\tau_{m-3}\cdots\tau_{m-i-1})\phi_1 =$$

 $\phi_{m-i+1}(\tau_{m-2}\tau_{m-3}\cdots\tau_{m-i-1})$

All such admissible permutations form a Latin square as that in the first construction method.

• By the equivalence of the two constructions, the Latin square can be constructed by simply using the second algorithm LatinSquare(List $\{\tau(0), \tau(1), \ldots, \tau(n-1)\})$

\bullet An example of 8×8 banyan network

– The generated Latin square

- All possible switch settings, in which each stage is set to either ϕ_1 or I.

Time Complexity and Comparisons

Network	Node	Diameter/	Comm.		
\mathbf{type}	degree	No. stages	delay		
Hypercube					
1-port model	$\log n$	$\log n$	$O(n\log n)$		
Hypercube					
all-port model	$\log n$	$\log n$	O(n)		
2D mesh/torus	4	$O(n^{rac{1}{2}})$	$O(n^{rac{3}{2}})$		
3D mesh/torus	6	$O(n^{rac{1}{3}})$	$O(n^{rac{4}{3}})$		
Banyan	1	$\log n$	O(n)		

Summary

- An optimal all-to-all personalized exchange algorithm for banyan networks is presented.
- The new algorithm is based on a special Latin square, which corresponds to a set of admissible permutations of a banyan network.
- The off-line Latin square construction algorithm needs to be run only once at the time a network is built.
- The all-to-all personalized exchange implemented in banyan networks is favorably compared with other type of networks in terms of the number of I/O ports per processor and the communication delay.
- The proposed approach can be similarly applied to other unique-path, self-routing multistage networks.