ALL-TO-ALL COMMUNICATION

- All-to-all communication in a network:
- All-to-all personalized exchange: every node sends a distinct message to every other node.
- All-to-all broadcast:
every node sends the same message to all other nodes.

Special case of all-to-all personalized exchange, with less time complexity.

- Applications of all-to-all communication
- Matrix multiplication, LU-factorization, Householder transformations, matrix transposition, and fast Fourier transform (FFT).

All-to-all broadcast

- Networks considered:
- Hypercube networks:
shorter communication delay but poorer scalability
- Mesh and torus networks:
bounded node degree and better scalability
- Assumptions:
- Full-duplex communication channel
- Each node has all-port capability
- Messages broadcast are of the same length
- Goal:

Achieve maximum degree of parallelism in message transmission.

Previous Related Work:

All-to-all broadcast algorithms in a torus:

- Saad and Schultz:

Each node sends the message along horizontal ring, and then vertical ring.

- Calvin, Perennes, and Trystram: Recursive algorithm.

In these algorithms, some degree of parallelism was achieved among different nodes, but no time overlap for the messages passing through the same node.

The new algorithm:

- Further explores the parallelism in message transmission and achieves some degree of parallelism among the messages passing through the same node
- Optimal in message transmission time
- Total communication delay close to the lower bound of all-to-all broadcast
- Conceptually simple, and symmetrical for every message and every node
- Easy implementation in hardware

Properties of 2D Meshes and Tori

- Each node (x, y) has up to four neighbors:
$(x-1, y),(x+1, y),(x, y-1)$, and $(x, y+1)$
- Distance between $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$:
$\operatorname{dist}\left(P_{1}, P_{2}\right)$
- Mesh:

$$
\operatorname{dist}\left(P_{1}, P_{2}\right)=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|
$$

- Torus:

$$
\begin{aligned}
\operatorname{dist}\left(P_{1}, P_{2}\right) & =\min \left\{\left|x_{1}-x_{2}\right|, n-\left|x_{1}-x_{2}\right|\right\} \\
& +\min \left\{\left|y_{1}-y_{2}\right|, n-\left|y_{1}-y_{2}\right|\right\}
\end{aligned}
$$

- d-neighbor:

The distance between two nodes equals d.

- Example:

Node ($-1,-1$) and node $(2,2)$ in a mesh are 6neighbors

- Diameter:

Maximum distance between any two nodes in the network
$-n \times n$ mesh: $2(n-1)$
$-n \times n$ torus: $2\left\lfloor\frac{n}{2}\right\rfloor$

- Circle centered at a node:

The set of nodes with an equal distance to the node

- Radius of circle:

The distance to the center

- Perimeter of circle:

Cardinality of the node set of the circle

- In an infinite mesh, the perimeter of a circle with radius d is

$$
C_{d}= \begin{cases}1 & \text { if } d=0 \\ 4 d & \text { if } d \geq 1\end{cases}
$$

- Circles centered at the same node with different radii in a mesh

- In a $(2 k+1) \times(2 k+1)$ torus, the perimeter of a circle with radius d, where $0 \leq d \leq 2 k$, is

$$
C_{d}= \begin{cases}1 & \text { if } d=0 \\ 4 d & \text { if } 1 \leq d \leq k \\ 4(2 k+1-d) & \text { if } k+1 \leq d \leq 2 k\end{cases}
$$

- Circles centered at a node with different radii in a 5×5 torus

- In a $2 k \times 2 k$ torus, the perimeter of a circle with radius d, where $0 \leq d \leq 2 k$, is

$$
C_{d}= \begin{cases}1 & \text { if } d=0 \\ 4 d & \text { if } 1 \leq d \leq k-1 \\ 4 k-2 & \text { if } d=k \\ 4(2 k-d) & \text { if } k+1 \leq d \leq 2 k-1 \\ 1 & \text { if } d=2 k\end{cases}
$$

- Circles centered at a node with different radii in a 4×4 torus

Broadcasting in a Mesh or Torus

- Buffer structure of a node:

- Logical format of a message:
- Lower bound for broadcast
$-\alpha$: startup time
$-\delta$: switching time
$-\gamma$: transmission time
- L : the number of bytes per message

Theorem 1 (1) The maximum communication delay of one-to-all broadcast is at least $\alpha+\delta+2(n-$ 1) $L \gamma$ in an $n \times n$ mesh, and is at least $\alpha+\delta+2\left\lfloor\frac{n}{2}\right\rfloor L \gamma$ in an $n \times n$ torus. (2) The maximum communication delay of all-to-all broadcast in all-port model is at least $\alpha+\delta+\frac{n^{2}-1}{2} L \gamma$ in an $n \times n$ mesh, and is at least $\alpha+\delta+\frac{n^{2}-1}{4} L \gamma$ in an $n \times n$ torus.

Broadcast Pattern

- Basic idea:
- Controlled message flooding
- Use a specially designed spanning tree rooted at the source node (broadcast pattern)
- Logical broadcast phases:

In phase d, the message originating from a node reaches all its d-neighbors.

- Consider an infinite mesh first
- Broadcast pattern from source node $\left(x_{0}, y_{0}\right)$

- Formal description of broadcast pattern
- Define three functions:

$$
\begin{aligned}
& U(x)= \begin{cases}1 & \text { if } x>0 \\
0 & \text { if } x<0\end{cases} \\
& I(x)= \begin{cases}1 & \text { if } x>0 \\
-1 & \text { if } x<0\end{cases} \\
& \bmod _{2}(x)=x \bmod 2
\end{aligned}
$$

- When a broadcast message originating from node (x_{0}, y_{0}) reaches node (x, y), it continues to broadcast to the neighbors of node (x, y) as follows.
ase 1: $x=x_{0}$ and $y=y_{0}$.
(x, y) broadcasts the message to all of its four neighbors $(x, y+1),(x, y-1),(x+1, y)$, and $(x-$ $1, y)$.

Jase 2: Either $x=x_{0}$ or $y=y_{0}$ but not both.
(x, y) multicasts the message to its two neighbors $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$
2.1: $x=x_{0}$ and $y \neq y_{0}$, i.e. along the y-axis. x_{1}, y_{1}, x_{2}, and y_{2} satisfy

$$
\begin{aligned}
x_{1}= & x+\bmod _{2}\left(y-y_{0}+U\left(I\left(y-y_{0}\right)\right)\right) \\
y_{1}= & y+I\left(y-y_{0}\right) \times \bmod _{2}\left(y-y_{0}+1-U\left(I\left(y-y_{0}\right)\right)\right) \\
x_{2}= & x-\bmod _{2}\left(y-y_{0}+U\left(-I\left(y-y_{0}\right)\right)\right) \\
y_{2}= & y+I\left(y-y_{0}\right) \times \bmod _{2}\left(y-y_{0}\right. \\
& \left.+1-U\left(-I\left(y-y_{0}\right)\right)\right)
\end{aligned}
$$

2.2: $x \neq x_{0}$ and $y=y_{0}$, i.e. along the x-axis.
x_{1}, y_{1}, x_{2}, and y_{2} satisfy
$x_{1}=x+I\left(x-x_{0}\right) \times \bmod _{2}\left(x-x_{0}+U\left(I\left(x-x_{0}\right)\right)\right)$

$$
\begin{aligned}
& y_{1}=y+\bmod _{2}\left(x-x_{0}+1-U\left(I\left(x-x_{0}\right)\right)\right) \\
& x_{2}=x+I\left(x-x_{0}\right) \times \bmod _{2}\left(x-x_{0}+U\left(-I\left(x-x_{0}\right)\right)\right) \\
& y_{2}=y-\bmod _{2}\left(x-x_{0}+1-U\left(-I\left(x-x_{0}\right)\right)\right)
\end{aligned}
$$

Jase 3: $x \neq x_{0}$ and $y \neq y_{0}$.
(x, y) sends the message to its neighbor $\left(x_{3}, y_{3}\right)$ where x_{3} and y_{3} satisfy

$$
\begin{aligned}
x_{3}= & x+I\left(x-x_{0}\right) \times \bmod _{2}\left(\left(x-x_{0}\right)+\left(y-y_{0}\right)+\right. \\
& \left.U\left(I\left(x-x_{0}\right) \times I\left(y-y_{0}\right)\right)\right) \\
y_{3}= & y+I\left(y-y_{0}\right) \times \bmod _{2}\left(\left(x-x_{0}\right)+\left(y-y_{0}\right)+\right. \\
& \left.1-U\left(I\left(x-x_{0}\right) \times I\left(y-y_{0}\right)\right)\right)
\end{aligned}
$$

Case 3 can be viewed as a generic form for all cases if letting $I(0)$ take 1 and -1 respectively.

- Observations:
- Message is sent out in the direction leaving the origin
- Message is broadcast to all its four neighbors from a node with the same x-coordinate and y-coordinate as the origin
- Message is multicast to its two neighbors from a node with the same x-coordinate or y-coordinate as the origin
- Message is sent to only one of its neighbors from a node with a different x-coordinate and y-coordinate from the origin

Theorem 2 Each node in an infinite mesh can be reached exactly once by using the broadcast pattern.

- For a mesh, the broadcast pattern is trimmed at the boundary of the mesh
- For a torus, perform additional check:

Additional check for a torus:

For any node $\left(x_{1}, y_{1}\right)$ which is a neighbor of node (x, y) chosen from the broadcast pattern,

$$
\text { if } \operatorname{dist}\left(\left(x_{0}, y_{0}\right),(x, y)\right) \geq \operatorname{dist}\left(\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)\right)
$$

then remove $\left(x_{1}, y_{1}\right)$ from the list of the neighbors to which node (x, y) relays the message originating from node $\left(x_{0}, y_{0}\right)$.

All-to-All Broadcast Algorithm

- Buffers are used to resolve the possible contention of multiple messages
- Higher level description of the algorithm

All-to-All Broadcast Algorithm:

for each node (x, y) in the network do in parallel for each input and output buffer do in parallel case of an output buffer: repeat remove a message from the buffer; send it to corresponding neighboring node (enter into the input buffer of the neighbor); until no more message arrives at the buffer; end case;
case of an input buffer:
repeat
remove a message from the buffer;
extract source address of the message, say, $\left(x_{0}, y_{0}\right)$; copy the message content to $\left(x_{0}, y_{0}\right)$ entry of the buffer matrix; calculate the addresses of the neighbors to be multicast by using the broadcast pattern; for a torus, perform the additional check in Table 1; multicast the message to the output buffers connected to the corresponding neighbors;
until no more message arrives at the buffer; end case;
end for;
end for;
End

- Observations:
- Each node is continuously receiving (and sending) messages from (and to) its four neighbors
- In each buffer, messages in earlier phase d^{\prime} always arrive before those in a later phase $d^{\prime \prime}$, for any $d^{\prime}<d^{\prime \prime}$
- In phase d, the message originating from a node reaches all its d-neighbors, and the messages originating from all d-neighbors of a node reach the node
- Question:

Whether the incoming (and outgoing) messages are uniformly distributed to the four input (and output) buffers at each node

Theorem 3 According to the broadcast pattern, in phase d of all-to-all broadcast in an infinite mesh, each node (x_{0}, y_{0}) receives $4 d$ messages originating from all its $4 d$ d-neighbors via the four input channels of node $\left(x_{0}, y_{0}\right)$, with d messages from each input channel, and at the end of the phase, it will send $4(d+1)$ messages to its four 1-neighbors via the four output channels, with $d+1$ messages on each output channel.

Proof. By induction on phase d.

- Need to show in phase k the $4(k+1)$ outgoing messages are uniformly distributed to the four output buffers at node $\left(x_{0}, y_{0}\right)$.
- Consider the $4 k k$-neighbors of node $\left(x_{0}, y_{0}\right)$. They can be grouped into four groups:

Group I: $\left(x_{0}+l, y_{0}+k-l\right)$ for $0 \leq l \leq k$
Group II: $\left(x_{0}-k+l, y_{0}+l\right)$ for $0 \leq l \leq k$
Group III: $\left(x_{0}-k+l, y_{0}-l\right)$ for $0 \leq l \leq k$
Group IV: $\left(x_{0}+l, y_{0}-k+l\right)$ for $0 \leq l \leq k$
Four special nodes $\left(x_{0}, y_{0}+k\right),\left(x_{0}-k, y_{0}\right),\left(x_{0}, y_{0}-\right.$ $k)$ and $\left(x_{0}+k, y_{0}\right)$ each is counted twice and thus each group has $k+1$ nodes.
$4 k k$-neighbors of node $\left(x_{0}, y_{0}\right)(k=4)$:

By the broadcast pattern, the following 1-neighbors of $\left(x_{0}, y_{0}\right)$ are chosen to relay messages from Groups I, II, III, and IV, respectively.

$$
\begin{aligned}
& \begin{cases}\left(x_{0}-1, y_{0}\right) & \text { if } k \text { is even } \\
\left(x_{0}, y_{0}-1\right) & \text { if } k \text { is odd }\end{cases} \\
& \begin{cases}\left(x_{0}, y_{0}-1\right) & \text { if } k \text { is even } \\
\left(x_{0}+1, y_{0}\right) & \text { if } k \text { is odd }\end{cases} \\
& \begin{cases}\left(x_{0}+1, y_{0}\right) & \text { if } k \text { is even } \\
\left(x_{0}, y_{0}+1\right) & \text { if } k \text { is odd }\end{cases} \\
& \begin{cases}\left(x_{0}, y_{0}+1\right) & \text { if } k \text { is even } \\
\left(x_{0}-1, y_{0}\right) & \text { if } k \text { is odd }\end{cases}
\end{aligned}
$$

Corollary 1 In all-to-all broadcast using the algorithm in Table 2 in an $n \times n$ torus, each channel between two adjacent nodes in the network relays $\frac{n^{2}-1}{4}$ messages.

Proof. The total number of messages through a single channel is

$$
\sum_{d=1}^{2\left\lfloor\frac{n}{2}\right\rfloor} \frac{C_{d}}{4}=\frac{1}{4}\left(\sum_{d=0}^{2\left\lfloor\frac{n}{2}\right\rfloor} C_{d}-1\right)=\frac{n^{2}-1}{4}
$$

ESE536/CSE636 Switching and Routing in Parallel and Distributed Systems/Prof. Yang 177
Corollary 2 In all-to-all broadcast using the algorithm in Table 2 in an $n \times n$ mesh, each channel between two adjacent nodes in the network relays at most $\frac{n^{2}-1}{2}$ messages.

Delay Analysis in All-to-All Broadcast

- Switching time overlapped with transmission time
- Messages in any direction are pipelined

Theorem 4 The total delay of the all-to-all broadcast algorithm for an $n \times n$ torus is no more than

$$
\alpha+\delta+L \gamma+\left(\frac{n^{2}-1}{4}-1\right) \max \{\delta, L \gamma\}+\min \{\delta, L \gamma\}
$$

where α, δ, γ and L are the startup time, the switching time, the transmission time per byte, and the number of bytes per message, respectively.

The total delay of the first three phases of all-to-all broadcast. (a) $\delta \leq L \gamma$. (b) $\delta>L \gamma$.

(a)

(b)

ESE536/CSE636 Switching and Routing in Parallel and Distributed Systems/Prof. Yang 181
Corollary 3 The total delay of the all-to-all broadcast algorithm for an $n \times n$ torus is no more than

$$
\begin{cases}\alpha+2 \delta+\left(\frac{n^{2}-1}{4}\right) L \gamma & \text { if } \delta \leq L \gamma \\ \alpha+2 L \gamma+\left(\frac{n^{2}-1}{4}\right) \delta & \text { if } \delta>L \gamma\end{cases}
$$

- Observations:
- The new algorithm is optimal in transmission time
- The total communication delay is close to the optimal value within only a small constant δ, for $\delta \leq L \gamma$.
- Easily implemented in hardware so that the algorithm can achieve the optimum in practice.

Comparisons

- Saad and Schultz[12]'s horizontal/vertical algorithm for a torus: $2 \alpha+2\left\lfloor\frac{n}{2}\right\rfloor \delta+\left(\frac{n^{2}-1}{2}\right) L \gamma$.
- Calvin, Perennes,and Trystram[15]'s recursive algorithm for a torus:
$2 \log _{5}\left(n^{2}\right) \alpha+\frac{3}{2}(n-1) \delta+\frac{n^{2}-1}{2} L \gamma$.
- The transmission time of the both algorithms is twice as long as the new algorithm.
- Both algorithms cannot take advantage of overlapping of the switching time and the transmission time as does the new algorithm.
- When $\delta>2 L \gamma$, both algorithms take less time than the proposed algorithm. However, in general we can have $\delta<L \gamma$.

Summary:

A new all-to-all broadcast algorithm in all-port 2D mesh and torus networks.

- The algorithm can be implemented in either packet-switched networks or virtual cut-through and wormhole-switched networks.
- The new algorithm utilizes a controlled message flooding based on a specially designed broadcast pattern.
- The new algorithm takes advantage of overlapping of message switching time and transmission time, and achieves optimal transmission time for all-to-all broadcast.
- In most cases, the total communication delay is close to the lower bound of all-to-all broadcast within a small constant range.
- The algorithm is conceptually simple, and symmetrical for every message and every node, so that it can be easily implemented in hardware and achieves the optimum in practice.
- The algorithm can also be extended to multidimensional meshes and tori.

All-to-all personalized exchange

Previous work

- All-to-all personalized exchange in an n-node hypercube
- One-port model: time $O(n \log n)$
- All-port model: time $O(n)$
- All-to-all personalized exchange in an n-node mesh/torus network
- Two dimensional: time $O\left(n^{\frac{3}{2}}\right)$
- k dimensional: time $O\left(n^{\frac{k+1}{k}}\right)$
- Drawback:
- Hypercubes: poor scalability due to the unbounded node degrees
- Meshes and tori: longer communication delay due to the limitations of the topologies

All-to-all personalized exchange in multistage interconnection network

- Given n processors $P_{0}, P_{1}, \ldots, P_{n-1}$, an $n \times n$ MIN can be used for inter-processor communication

- Crossbar: hardware cost is too high
- Benes network: not every permutation is easily routable
- Banyan network: self-routing unique path network, fast switch setting: $O(n)$ time for all-to-all personalized exchange, single input/output port per processor.

Network Structure and Permutation

- An $n \times n$ banyan network composed of $\log n$ stages of 2×2 switches
E.g. An 8×8 banyan network

- A permutation is a full one-to-one mapping between the network inputs and outputs.
- A permutation in $n \times n$ network denoted as

$$
\rho=\left(\begin{array}{cccc}
0 & 1 & \ldots & n-1 \\
a_{0} & a_{1} & \ldots & a_{n-1}
\end{array}\right)
$$

where $a_{i} \in\{0,1, \ldots, n-1\}$ for $0 \leq i \leq n-1$, and $a_{i} \neq a_{j}$ for $i \neq j$

- Identity permutation is denoted as I
- Each stage can be considered as a shorter $n \times n$ network
- Each set of interstage links can also be as a shorter $n \times n$ network
- σ_{i} : the stage permutation of stage i
- τ_{i} : the interstage permutation between stage i and stage $i+1$, expressed as the following mapping:

$$
\begin{aligned}
& p_{m-1} p_{m-2} \ldots p_{i+2} p_{i+1} p_{i} \ldots p_{1} p_{0} \xrightarrow{\tau_{i}} \\
& p_{m-1} p_{m-2} \ldots p_{i+2} p_{0} p_{i} \ldots p_{1} p_{i+1},
\end{aligned}
$$

i.e., the function of swapping bit 1 for bit $i+2$

- The overall permutation of a banyan network is the composition:

$$
\sigma_{m-1} \tau_{m-2} \sigma_{m-2} \ldots \tau_{0} \sigma_{0}
$$

Realizing All-to-All Personalized Exchange in Banyan Networks

- Lower Bound for All-to-All Personalized Exchange
- The maximum communication delay of all-to-all personalized exchange in an $n \times n$ banyan network of $\log n$ stages is at least $\Omega(n+\log n)$.
- All-to-All Personalized Exchange Algorithm Using a Latin Square
- A Latin square is defined as an $n \times n$ matrix

$$
\left[\begin{array}{cccc}
a_{0,0} & a_{0,1} & \cdots & a_{0, n-1} \\
a_{1,0} & a_{1,1} & \cdots & a_{1, n-1} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n-1,0} & a_{n-1,1} & \cdots & a_{n-1, n-1}
\end{array}\right]
$$

in which the entries $a_{i, j}$'s are numbers in $\{0,1,2, \ldots, n-1\}$ and no two entries in a row (or a column) have the same value.

All-to-all personalized exchange algorithm (ATAPE) f begin
Step 1. for each processor $j(0 \leq j \leq n-1)$
do in parallel
1.1 for each $a_{i, j}(0 \leq i \leq n-1)$ in the

Latin square do in sequential
prepare a personalized message
from processor j to processor $a_{i, j}$; insert the message into the message queue j;
Step 2. for each processor $j(0 \leq j \leq n-1)$
do in parallel
2.1 for each message with destination address $a_{i, j}(0 \leq i \leq n-1)$ in the message queue j do in sequential send the message destined to $a_{i, j}$ through input j of the network;
end;
Time complexity of ATAPE: $O(n+\log n)$

Two Methods for Constructing a Latin Square

- A set of basic permutations $\phi_{i}(1 \leq i \leq m)$

- Definition:

$$
\begin{aligned}
& p_{m-1} p_{m-2} \cdots p_{i} p_{i-1} p_{i-2} \cdots p_{1} p_{0} \xrightarrow{\phi_{i}} \\
& p_{m-1} p_{m-2} \cdots p_{i} \bar{p}_{i-1} p_{i-2} \cdots p_{1} p_{0}
\end{aligned}
$$

- Properties:

* $\phi_{i} \phi_{j}=\phi_{j} \phi_{i}$, for $1 \leq i, j \leq m$ * $\phi_{i} \phi_{i}=I$, for $1 \leq i \leq m$
- Example: Basic permutations for an 8×8 mapping. Each arc represents a mapping between two numbers

$$
\begin{aligned}
& \phi_{3}: \begin{array}{llllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6
\end{array}
\end{aligned}
$$

- The first construction of a Latin square
- Given m basic permutations $\phi_{1}, \phi_{2}, \ldots, \phi_{m}$, construct $\Psi=\left\{\phi_{i_{1}} \phi_{i_{2}} \cdots \phi_{i_{k}} \mid m \geq i_{1}>i_{2}>\cdots>\right.$ $i_{k} \geq 1$ and $\left.1 \leq k \leq m\right\}$
- Note that $|\Psi|=n-1$.
- Let $\rho_{1}, \rho_{2}, \ldots, \rho_{n-1}$ be the $n-1$ permutations in Ψ, and $a_{0}, a_{1}, \ldots, a_{n-1}$ be a list of numbers such that $\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\}=\{0,1, \ldots, n-1\}$. Then the following matrix is a Latin square.

$$
\left[\begin{array}{ccccc}
a_{0} & a_{1} & a_{2} & \cdots & a_{n-1} \\
\rho_{1}\left(a_{0}\right) & \rho_{1}\left(a_{1}\right) & \rho_{1}\left(a_{2}\right) & \cdots & \rho_{1}\left(a_{n-1}\right) \\
\rho_{2}\left(a_{0}\right) & \rho_{2}\left(a_{1}\right) & \rho_{2}\left(a_{2}\right) & \cdots & \rho_{2}\left(a_{n-1}\right) \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\rho_{n-1}\left(a_{0}\right) & \rho_{n-1}\left(a_{1}\right) & \rho_{n-1}\left(a_{2}\right) & \cdots & \rho_{n-1}\left(a_{n-1}\right)
\end{array}\right]
$$

- The second construction of a Latin square
- An algorithm to build the Latin square row by row in an iterative fashion
- Minimum complexity $O\left(n^{2}\right)$
- The algorithm description

Algorithm LatinSquare (List $\left.\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\}\right) /{ }^{*}$ main*/ begin
List $B L \leftarrow$ List $\}$;
BuildBasicList(m); /* $m=\log n$ */
BuildLatinSquare($B L,\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\}$);
end;
Function BuildBasicList(int k)
begin
if ($k==1$)
BL.append $\left(\phi_{1}\right)$;
return;
end if
BuildBasicList $(k-1)$;
BL.append $\left(\phi_{k}\right)$;
BuildBasicList $(k-1)$;
end;
Function BuildLatinSquare(List $\left\{\phi_{k_{1}}, \phi_{k_{2}}, \ldots, \phi_{k_{n-1}}\right\}$,
List $\left.\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\}\right)$
begin
for $j=0$ to $n-1$ do

- The matrix generated by the second construction is a Latin square
- An example of the second construction
(a) The 3-bit Gray code sequence generated by applying the basic permutation list to number 0 .
(b) An 8×8 Latin square generated by the algorithm

(a)

- The Latin squares generated by the two constructions are equivalent.

Generating Permutations for All-to-All Personalized Exchange in Banyan Networks

- Generate admissible permutations to form the Latin square needed in algorithm ATAPE
- Method: simply let each stage permutation $\sigma_{i}=\phi_{1}$ or I.
- Proof sketch:

Let $\quad \tau=\tau_{m-2} \tau_{m-3} \ldots \tau_{1} \tau_{0}$

Apply $\quad\left(\tau_{m-2} \tau_{m-3} \cdots \tau_{m-i-1}\right) \phi_{1}=$

$$
\phi_{m-i+1}\left(\tau_{m-2} \tau_{m-3} \cdots \tau_{m-i-1}\right)
$$

All such admissible permutations form a Latin square as that in the first construction method.

- By the equivalence of the two constructions, the Latin square can be constructed by simply using the second algorithm LatinSquare(List $\{\tau(0), \tau(1), \ldots, \tau(n-1)\})$
- An example of 8×8 banyan network
- The generated Latin square

$$
\left[\begin{array}{llllllll}
0 & 2 & 4 & 6 & 1 & 3 & 5 & 7 \\
1 & 3 & 5 & 7 & 0 & 2 & 4 & 6 \\
3 & 1 & 7 & 5 & 2 & 0 & 6 & 4 \\
2 & 0 & 6 & 4 & 3 & 1 & 7 & 5 \\
6 & 4 & 2 & 0 & 7 & 5 & 3 & 1 \\
7 & 5 & 3 & 1 & 6 & 4 & 2 & 0 \\
5 & 7 & 1 & 3 & 4 & 6 & 0 & 2 \\
4 & 6 & 0 & 2 & 5 & 7 & 1 & 3
\end{array}\right]
$$

- All possible switch settings, in which each stage is set to either ϕ_{1} or I.

Time Complexity and Comparisons

Network type	Node degree	Diameter/ No. stages	Comm. delay
Hypercube 1-port model	$\log n$	$\log n$	$O(n \log n)$
Hypercube all-port model	$\log n$	$\log n$	$O(n)$
2D mesh/torus	$\mathbf{4}$	$O\left(n^{\frac{1}{2}}\right)$	$O\left(n^{\frac{3}{2}}\right)$
3D mesh/torus	$\mathbf{6}$	$O\left(n^{\frac{1}{3}}\right)$	$O\left(n^{\frac{4}{3}}\right)$
Banyan	$\mathbf{1}$	$\log n$	$O(n)$

Summary

- An optimal all-to-all personalized exchange algorithm for banyan networks is presented.
- The new algorithm is based on a special Latin square, which corresponds to a set of admissible permutations of a banyan network.
- The off-line Latin square construction algorithm needs to be run only once at the time a network is built.
- The all-to-all personalized exchange implemented in banyan networks is favorably compared with other type of networks in terms of the number of I / O ports per processor and the communication delay.
- The proposed approach can be similarly applied to other unique-path, self-routing multistage networks.

