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PERMUTATIONS

� Basic de�nitions

{ Permutation:

Consider an n � n multistage interconnec-

tion network with n inputs and n outputs

where n = 2m. A permutation is a full one-to-

one mapping between the network inputs

and outputs. For an n�n network, suppose

input xi is mapped to output yi, where xi = i

and yi 2 f0; 1; : : : ; n� 1g for i = 0; 1; : : : ; n� 1.

This permutation is denoted as
0
BBBBB@
x0 x1 : : : xn�1

y0 y1 : : : yn�1

1
CCCCCA :

{ Partial permutation:

A one-to-one mapping between n0 network

inputs and n0 network outputs (n0 < n) is

called a partial permutation.
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{ Semi-permutation:

A partial permutation
0
BBBBB@
x0 x1 : : : xn

2
�1

y0 y1 : : : yn
2
�1

1
CCCCCA

of an n-element set f0; 1; : : : ; n � 1g, where

n is an even integer, xi; yi 2 f0; 1; : : : ; n � 1g

and x0 < x1 < � � � < xn

2
�1, is referred to as a

semi-permutation of the n-element set, if
8<
:
6664x0

2

7775 ;
6664x1

2

7775 ; : : : ;
6664x

n

2
�1

2

7775
9=
; =

8<
:0; 1; : : : ;

n

2
� 1

9=
; ;

and
8<
:
6664y0
2

7775 ;
6664y1
2

7775 ; : : : ;
6664y

n

2
�1

2

7775
9=
; =

8<
:0; 1; : : : ;

n

2
� 1

9=
; :
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{ Example:

For n = 8, partial permutation
0
BBBBB@
0 3 4 6

1 5 3 7

1
CCCCCA

is a semi-permutation, since we have
8><
>:

66664
0

2

77775 ;
66664
3

2

77775 ;
66664
4

2

77775 ;
66664
6

2

77775
9>=
>; = f0; 1; 2; 3g ;

and
8><
>:

66664
1

2

77775 ;
66664
5

2

77775 ;
66664
3

2

77775 ;
66664
7

2

77775
9>=
>; = f0; 2; 1; 3g = f0; 1; 2; 3g :

{ Any permutation can be decomposed into

two semi-permutations.

Proved by using Hall's theorem.
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� Rearrangeable network: the Benes network

{ Construction:

Consists of two back-to-back baseline net-

works:

Stage 6Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
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Or let m = n = 2 in a Clos network and per-

form a recursive decomposition.

BenesX
2
n

2
n

BenesX
2
n

2

n

n

n
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{ Connecting capability:

A rearrangeable network for arbitrary per-

mutations.

Proof. From the Clos network.

{ Edge-disjoint paths in a Benes network (re-

alizing a permutation)

{ Routing algorithm (called looping algorithm)

{ Node-disjoint paths in a Benes network (re-

alizing a semi-permutation)

{ There exist node-disjoint paths for any semi-

permutation in a Benes network.
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�Wide-sense nonblocking network: the Clos net-

work

{ Wide-sense nonblocking capability: a compro-

mise between strictly nonblocking capabil-

ity and rearrangeability.

For a wide-sense nonblocking network, an

\intelligent" routing control strategy must

be employed to govern the process of path

routing. Through carefully selecting the

paths used to satisfy the current connection

request, the nonblocking capability for fu-

ture connection requests can be maintained,

and at the same time lower network cost

can be achieved.
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{ A commonly used routing control strategy

for wide-sense nonblocking Clos networks:

packing strategy.

Under packing strategy, a connection is re-

alized on a path found by trying the most

used part of the network �rst and the least

used part last.

For a Clos network, when choosing a mid-

dle stage switch for satisfying a connection

request, an empty middle stage switch is

not used unless there is not any partially

�lled middle stage switch that can satisfy

this connection request.
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{ For r = 2, when m �
�
3

2
n
�
, the Clos network

is wide-sense nonblocking for permutations

under packing strategy.

� Let x be a state of middle switches which

is reachable from zero state (empty net-

work).

� S(x) = number of middle switches in use

in state x.

� 7 possible states of a middle switch

(b)

(e) (g)

(d)

(f)

(a) (c)
NONE (1,1) (2,2)

(1,2) (1,1)(2,2) (1,2)(2,1)

(2,1)

� A state can be represented by 7 integers:

a(x); b(x); c(x); d(x); e(x); f(x) and g(x):
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a(x) =number of middle switches of type

a when network is in state x.

...

g(x) =number of middle switches of type

g when network is in state x.

� For any state x,

a(x) + b(x) + � � � + g(x) = 2n� 1;

b(x) + c(x) + � � � + g(x) = S(x)

� Let p denote the rule: Do not use an

empty middle switch unless necessary. Let

x be a state reachable under rule p. Then

for n � 2,

S(x) �

66664
3

2
n

77775 ; (1)

b(x) + c(x) + f(x) � n;

d(x) + e(x) + g(x) � n: (2)

� Proof. By induction on k (steps from

zero state).
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Assume at step k, network is in state y

and (1) and (2) hold.

At step k + 1, the network is in state x.

For a new connection, there are two pos-

sible types

Type 1:

a(y)! a(y)� 1

and one of

(1; 1) : b(y)! b(y) + 1 with c(y) = 0;

(2; 2) : c(y)! c(y) + 1 with b(y) = 0;

(2; 1) : d(y)! d(y) + 1 with e(y) = 0;

(1; 2) : e(y)! e(y) + 1 with d(y) = 0;

Type 2:

a(y) remains �xed and one of

(1; 1) : f(y)! f(y)+1; c(y)! c(y)�1 with c(y) > 0

(2; 2) : f(y)! f(y)+1; b(y)! b(y)�1 with b(y) > 0
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(2; 1) : g(y)! g(y)+1; e(y)! e(y)�1 with e(y) > 0

(1; 2) : g(y)! g(y)+1; d(y)! d(y)�1 with d(y) > 0

Any state satis�es:

b(y) + e(y) + f(y) + g(y) � n

c(y) + d(y) + f(y) + g(y) � n

b(y) + d(y) + f(y) + g(y) � n

c(y) + e(y) + f(y) + g(y) � n

If the connection is type 2, the result

holds in stage x.

If the connection is type 1, WLOG, let

the new connection be (1; 1). Then

c(y) = 0
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Also, since a (1; 1) connection is possible

in state y, we must have

b(y) + d(y) + f(y) + g(y) � n� 1

b(y) + e(y) + f(y) + g(y) � n� 1

From the induction hypothesis

d(y) + e(y) + g(y) � n

Hence,

2(b(y) + d(y) + e(y) + f(y) + g(y)) � 3n� 2

Notice that c(y) = 0,

S(y) �
3n

2
� 1

Since S(x) = S(y) + 1,

S(x) �

66664
3

2
n

77775

To show (2) holds in state x, consider

b(y) + e(y) + f(y) + g(y) � n� 1 and c(y) = 0
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It follows that

b(y) + c(y) + f(y) � n� 1:

Since x is obtained from y by putting up

a (1; 1) connection of type 1, we have

b(x) = b(y) + 1; e(x) = e(y);

c(x) = c(y) = 0; f(x) = f(y);

d(x) = d(y); g(x) = g(y):

Thus, (2) holds for x.

� For a general r, the condition becomes

m �

666664

0
BB@2�

1

F2r�1

1
CCAn

777775

where F2r�1 is the Fibonacci number.

The Fibonacci numbers are de�ned by

the recurrence

F0 = 0; F1 = 1; and Fk = Fk�1+Fk�2; for k � 2.

Proof: By a systematic approach based

on linear programming.




