SWITCHING TECHNIQUES

- A generic router model
- Three layers in an interconnection network
 - Routing layer:
 make routing decision at intermediate router
 and establish the path through the network.
 - Switching layer:
 use physical layer protocols to implement
 mechanisms for forwarding messages through
 the network.
 - Physical layer:

transfer messages and manage the physical channels between adjacent routers.

Figure 2.1. Generic router model. (LC = Link controller.)

.

• Switching techniques determine

- 1. when and how internal switches are set to connect router inputs to outputs;
- 2. the time at which messages may be transfered along these paths.
- Assumptions:
 - Consider *L*-bit message in the absence of any traffic
 - Channel width: W bits
 - Message size: L+W bits (message+ header)
 - Routing decision time: t_r sec.
 - Physical channel bandwidth: BW bits/sec.
 - Propagation delay of one channel: $t_w = \frac{1}{B}$
 - Switching delay (the delay inside the router): t_s
 - Source and destination are D links apart

Figure 2.5. View of the network path for computing the no-load latency. (R = Router.)

Time Busy

Figure 2.6. Time-space diagram of a circuit-switched message.

Figure 2.8. Time-space diagram of a packet-switched message.

فصحفان والعام الخصائة فتعطوهم

Time Busy

Figure 2.11. Time-space diagram of a wormhole-switched message.

Time Busy

Figure 2.10. Time-space diagram of a virtual cut-through switched message. $(t_{blocking} = Waiting time for a free output link.)$

• Basic switching techniques

– Circuit switching:

A physical path from the source to the destination is established and the switches on the path remain in their specified states until the path is released.

How it works:

- * Establish the path by a routing probe
- * Destination sends an acknowledgement
- * Transmit data
- * Release the path by destination or last few bits of the message

Latency:

$$t_{circuit} = t_{setup} + t_{data}$$

$$t_{setup} = D[t_r + 2(t_s + t_w)]$$
$$t_{data} = \frac{1}{B} \left[\frac{L}{W}\right]$$

Suitable for infrequent, long messages.

– Packet switching:

A packet (a group of bits of fixed length) moves from node to node, releasing links and switches immediately after using them. Also called store and forward switching.

- How it works:
- * Message is divided into fixed-length packets
- * Each packet contains routing information (in its header) and is routed individually.
- * A packet is completely buffered at each intermediate node.
- * Latency is proportional to the distance between source and destination.

Latency:

$$t_{packet} = D\left[t_r + (t_s + t_w)\left[\frac{L + W}{W}\right]\right]$$

Suitable for frequent, short messages.

– Worm-hole switching:

Pipelined (hardware) packet switching. A compromise between packet switching and circuit switching.

How it works:

- * Divide a packet into flits.
- * Only header flit contains the routing information and all flits in a packet follows the same path.
- * Only buffer a few flits at each router (not the entire packet).
- * In the case of blocking, message blocked in place.

Latency:

$$t_{wormhole} = D(t_r + t_s + t_w) + \max(t_s, t_w) \left[\frac{L}{W}\right]$$

- Virtual cut-through:

Similar to worm-hole switching, but if the channel is blocked, the complete message is buffered at the node. At high network load, it behaves like packet switching.

Latency:

$$t_{vct} = D(t_r + t_s + t_w) + \max(t_s, t_w) \left[\frac{L}{W}\right]$$

INTERCONNECTION NETWORKS

- A major component of a parallel computer, providing connections among processors and/or memory modules.
- Static networks (or direct networks): dedicated links between nodes (point-to-point connections).
- Dynamic networks (or indirect networks): network links can form different physical paths from sources to destinations (end-to-end connections).

Interconnection Networks

Figure 1.2. Classification of interconnection networks. (1-D = one-dimensional; 2-D = two-dimensional; 3-D = three-dimensional; CMU = Carnegie Mellon University; DASH = Directory Architecture for Shared-Memory: DEC = Digital Equipment Corp.; FDDI = Fiber Distributed Data Interface; HP = Hewlett-Packard; KSR = Kendall Square Research; MIN = Multistage Interconnection Network; MIT = Massachusetts Institute of Technology; SGI = Silicon Graphics Inc. TMC = Thinking Machines Corp.)

• Network control:

Generate the necessary control setting on the switches to ensure reliable data routing from source to destination.

- Control strategies:
 - Centralized control:

A single network controller takes requests from each input (source) and establishes paths. Easy to use global information to obtain optimal path settings.

Distributed control:
Control circuit is associated to each switch/node.
Each switch/node uses local information and
a routing tag stored in packets.

- Network design factors:
 - * Network size:

The number of nodes in the network.

- * Message latency (or network latency): The time elapsed between the time a message is generated at its source node and the time is delivered at its destination node.
- * Network throughput:

The maximum amount of information de-

livered by the network per time unit.

* Scalability:

As the network size increases, the network bandwidth should increase proportionally.

* Node degree:

The number of links incident on a node, denoted as d.

* Network diameter:

The maximum of the shortest path between any two nodes, proportional to network latency.

* Expandability:

The ability to add a node, depending on the number of components and connections required for adding a node.

- * Redundancy (Reliability): The number of different paths between a source and a destination.
- * Bisection width:

Cut the network into two halves. The minimum number of links along the cut, denoted as b. It indicates the maximum communication bandwidth.

* Routing algorithm complexity: Fast or slow. Affects network latency.

• Routing functions (or interconnection functions)

- Rotation: +1 mod N
- Shifting: $+i \mod N$
- Mesh function (for an $n \times n$ mesh)

$$M_{+1}(x) = (x + 1) \mod N$$

 $M_{-1}(x) = (x - 1) \mod N$
 $M_{+n}(x) = (x + n) \mod N$
 $M_{-n}(x) = (x - n) \mod N$

- Shuffle-exchange:

Let $m = \log N$ and represent a node in binary $b_{m-1}b_{m-2} \dots b_1 b_0$. Shuffle function

$$S(b_{m-1}b_{m-2}\dots b_1b_0) = b_{m-2}b_{m-3}\dots b_0b_{m-1}$$

Exchange function

$$E(b_{m-1}b_{m-2}\ldots b_1b_0)=b_{m-1}b_{m-2}\ldots b_1\overline{b_0}$$

$\log N$ passes of shuffle-exchange function can implement all permutations.

– Cube function

$$C_i(b_{m-1}b_{m-2}\ldots b_1b_0)=b_{m-1}b_{m-2}\ldots \overline{b_i}\ldots b_1b_0$$

for $0 \leq i < m$.

– Plus minus 2^i (PM2I) function

$$PM2_{+i}(x) = (x + 2^{i}) \mod N$$

 $PM2_{-i}(x) = (x - 2^{i}) \mod N$

for $0 \le i < m$.

(a) A 3-cube with nodes denoted as $C_2C_1C_0$ in binary

 $000 \leftrightarrow 001$ $010 \leftrightarrow 011$ $100 \leftrightarrow 101$ $110 \leftrightarrow 111$ (b) Routing by least significant bit, C_0

(d) Routing by most significant bit, C_2

ı

•

Figure 3.16. PM21 network for N = 8 (PM2_, connections have arrows in the opposite directions).

.

•• ·

• Network performance measures

– Data routing capability:

blocking, nonblocking, permutation, multicast, etc.

- Hardware cost:
 the number of links, number of switches
- Network Latency
- Bandwidth (data rate)
- Scalability:

performance increases as the network size increases

• Typical interconnection networks

– Static networks

Fixed links between nodes, suitable to the applications with communication patterns match the structure of the network.

* Ring based networks

Linear array
Degree d = 2
Diameter D = N - 1
Bisection b = 1
Different from a bus.

• Ring Degree d = 2Diameter $D = \lfloor \frac{N}{2} \rfloor$ Bisection b = 2

· Chordal ring

N: number of nodes, even W: chordal length, odd Every odd-numbered node p (p = 1, 3, ..., N-1) is connected to $(p+W) \mod N$ (an even-numbered node). **Degree** d = 3**Diameter** $D = O(\sqrt{N})$ **Bisection** b = 6Basic routing algorithm: Follow ring edge and chordal alternating path to the nearby area, then follow edges within a chordal distance.

• Further generalization: two chordals.

ESE536/CSE636 Switching and Routing in Parallel and Distributed Systems

A 16 node chordal ring

• Completely connected

Degree d = N - 1

Diameter D = 1.

• Barrel shifter

 $N = 2^n$

Node *i* is connected to node *j* if |j - i| =

$$2^r$$
 for $r = 0, 1, \dots, n-1$.

Degree d = 2n - 1

Diameter D = n/2

59

– Tree based networks

* Star

Degree d = N - 1

Diameter D = 2

* Tree

Binary tree: $N = 2^k - 1$ nodes Degree d = 3Diameter D = 2(k - 1), $O(\log N)$ Constant degree, but heavy traffic at root node.

* Fat tree

Thinking machines Connection machine CM-5 uses this network.

Basic idea: wider channels towards the root to release the bottleneck but not constant degree any more.

• Mesh based networks

- k-dimensional mesh

 $N = n^k$ nodes, *n* nodes in each dimension and each node has two neighbors in each dimension

Degree d = 2k

Diameter D = k(n-1)

– Illiac IV network

Two dimensions, 64 nodes, D = n - 1

– Torus

Similar to mesh, but symmetric

$$D = 2\lfloor \frac{n}{2} \rfloor$$
.

In general, for k-dimensional,

 $D = K \lfloor \frac{n}{2} \rfloor.$

– Systolic arrays

Pipelined array architecture for implementing fixed algorithm. Two dimension, but

the degree is not necessarily 4, can be larger. Matches the communication pattern of the algorithm.

• Cube based networks

- Hypercube

- n-cube architecture with $N = 2^n$ nodes.
- * Geometrical definition: N nodes on the corner of n "cube" in n-space
- * Recursive definition: Form a hypercube of dimension n by taking two hypercubes of dimension n-1 and directly connecting corresponding nodes.
- * Interconnection function: Cube function, connect the nodes iff they have only one-bit difference.
- -**Degree** $d = \log N$

Diameter $D = \log N$

- Easy routing: only need to look at bit i of the destination node at step i.
- Drawback: variable degree, poor expandability.

• Cube-connected cycles (CCCs)

A hierarchical network.

Replace each node in an *n*-cube with a small ring with *n*-nodes.

 $N = 2^n \times n$ nodes

Constant degree for any n: d = 3Slightly shorter diameter $D = 2n - 1 + \lfloor \frac{n}{2} \rfloor =$

 $O(\log N)$.

- Even poorer expandability
- k-ary n-cube networks Radix k (k = 2: binary hypercube) Each node represented as $a_{n-1}a_{n-2} \dots a_0$ with $0 \le a_i \le k-1$ for $i = 0, 1, \dots, n-1$.

n dimensions, each dimension has k nodes, connected as a cycle.

Each dimension connected to "plus minus 1" nodes

e.g. k = 4, n = 3

ESE536/CSE636 Switching and Routing in Parallel and Distributed Systems

 $N = k^n$ nodes, $k = N^{1/n}$, $n = \log_k N$. Degree d = 2nDiameter $D = n \lfloor \frac{k}{2} \rfloor$.

• Summary of static networks

(c) Chordal ring of degree 3

(e) Barrel shifter

(b) Ring

(d) Chordal ring of degree 4 (same as Illiac mesh)

(f) Completely connected

Figure 2.16 Linear array, ring, chordal rings of degrees 3 and 4, barrel shifter, and completely connected network.

Figure 2.17 Tree, star, and fat tree.

.

(c) Torus

(d) Systolic array

Figure 2.18 Mesh, Illiac mesh, torus, and systolic array.

(a) 3-cube

(b) A 4-cube formed by interconnecting two 3-cubes

(c) 3-cube-connected cycles

(d) Replacing each node of a k-cube by a ring (cycle) of k nodes to form the k-cube-connected cycles

Figure 2.19 Hypercubes and cube-connected cycles.

.

Figure 2.20 The k-ary n-cube network shown with k = 4 and n = 3; hidden nodes or connections are not shown.

.

-

.

.

Network type	Node degree, d	Network diameter, D	No. of links, l	Bigection width, B	Symmetry	Remarks OR Referents
Linear Array	2	N - 1	N −1	1	No	N nodes
Ring	2	[N/2]	N	2	Yes	N nodes
Completely Connected	N - 1	1	N(N - 1)/2	$(N/2)^{2}$	Yes	N nodes
Binary Tree	3	2(h-1)	N – I	1	No	Tree height $h = \lceil \log_2 N \rceil$
Star	N-1	2	N − 1	[N/2]	No	Nnodes
2D-Mesh	4	2(r-1)	$2N - 2\tau$	r	No	$\tau \times \tau$ mesh where $\tau = \sqrt{N}$
llliac Mesh	4 、	7 − 1	2N	2τ	No	Equivalent to a chordal ring of $\tau = \sqrt{N}$
2D-Torus	4 .	2[r/2]	2 <i>N</i>	27	Yes	$\tau \times \tau$ torus where $\tau = \sqrt{N}$
Hypercube	n	n	nN/2	N/2	Yes	$N \mod s$, $n = \log_2 N$ (dimension)
CCC	3	$2k - 1 + \lfloor k/2 \rfloor$	3N/2	N/(2k)	Yes	$N = k \times 2^{k}$ nodes with a cycle length $k \ge 3$
k-ary n-cube	2n	n[k/2]	nN	2k ⁿ⁻¹	Yes	$N = k^n$ nodes

· - -

Table 2.2 Summary of Static Network Characteristics

- Dynamic interconnection networks
 - Implement all communication patterns, suitable to general purpose applications.
 - Components: switches and sharable links
 - Dynamically change the path settings
 - Cost of dynamic network: switches and links, usually in terms of crosspoints.
 - Performance measures: bandwidth, latency, communication patterns supported.

- Types of dynamic networks (in the increasing order of cost and performance):
 Buses – multistage interconnection networks (MINs) – Crossbars
 - Buses
 - Time sharing, low cost, very limited bandwidth.
 - One transaction at a time. Only one pair of nodes can use the bus. Not scalable, vulnerable to bus controller failures.
 - Multistage network consists of switch modules and links
 Switch module: a × b switch module with a input and b output.
 Crosspoints: ab
 One-to-one connection switch
 One-to-many connection switch
 Legitimate states

Group switches into stages. Connect stages by certain interconnection functions. * Crossbar

- 1 stage, the most powerful connecting capability, $O(N^2)$ switches
- * Generalized cube network

```
N \times N network

N/2 switches in each stage

n = \log N stages, numbered from n - 1 to

0

Interconnection function c_i (cube) func-

tion for stage i

Setting switch to swap at stage i realizes

c_i function

Routing algorithm (distributed)
```

Source $S = S_{n-1}S_{n-2} \dots S_1S_0$ Destination $D = D_{n-1}D_{n-2} \dots D_1D_0$ The switch at stage *i* in the path from *S* to *D* must be set to swap if $D_i \neq S_i$ and set to straight if $D_i = S_i$. Unique path from *S* to *D*. Routing example.

* Data manipulator network

 $N \times N$ network

Each stage has N switching elements Each switching element accepts one from three input links and outputs one from three output links (implemented by DE-MUX and MUX)

Interconnection function of stage *i*:

- $PM2_{+i}$
- $PM2_{-i}$

 \cdot Straight connection

Control signals:

- \cdot S straight
- U up (-2^i)
- · D down (+ 2^i)

Routing:

From source S to destination D. Compute link sum $(D - S) \mod N$ and decompose it into the sum of power of 2

* Omega network

N/2 2 × 2 switches at each stage
log N stages
Each stage has identical interconnection
function: shuffle exchange
Routing:
Controlled by the address of the destination node

At stage *i*, if $D_i = 0$ go to upper output of the switch, if $D_i = 1$ go to lower output of the switch. The number of permutations an $N \times N$

network can realize: $N^{N/2}$.

* Baseline network (general structure of blocking network)

Figure 2.23 A generalized structure of a multistage interconnection network (MIN) built with a × b switch modules and interstage connection patterms ISC₁, ISC₂,..., ISC_n.

Table 2.3 Switch Modules and Legitimate States

Module Size	Legitimate States	Permutation Connections		
<u> </u>	4	2~		
2 × 2	256	24		
4 × 4	16 777 216	40.320		
8 × 8	10,111,210	71		
$n \times n$	<u>n</u>	///		

.

-

Figure 3.19. Path from source 3 to destination 0 in the Generalized Cube network for N = 8.

Figure 3.23. Path (bold line) from source 3 to destination 0 in the Data Manipulator for N = 8.

.

.

٠

-

١

ŝ

•

•

(a) Recursive construction

(b) A 16×16 Baseline network

Figure 2.25 Recursive construction of a Baseline network. (Courtesy of Wu and Feng; reprinted with permission from IEEE Trans. Computers, August 1980)

- -.

رامجيافيا يتاسعهم مارا الرار

• • • •

· · · · ·

~

- . - . **- -** -

- Clos network (also called v(m, n, r) network)
 - Network structure Three stages of switches Input stage: $r \ n \times m$ switches Middle stage: $m \ r \times r$ switches Output stage: $r \ m \times n$ switches N = nr inputs/outputs

- Rearrangeable permutation network Condition: $m \ge n$

Rearrangeable for permutation: can satisfy any new connection request from an idle input to an idle output, but sometimes it is necessary to interrupt and rearrange the existing connections in the network.

- Nonblocking permutation network Condition: $m \ge 2n - 1$ Nonblocking for permutation: can satisfy any new connection request from an idle input to an idle output and the rearrangement is never required.
- Multicast network

Condition: $m = O\left(n \frac{\log r}{\log \log r}\right)$ for both nonblocking and rearrangeable multicast. - Proof of rearrangeable permutation condition $m \ge n$ Basic combinatorial theorem:

Hall's Theorem: Let A be any finite set, and let A_1, A_2, \ldots, A_r be any r subsets of A. A necessary and sufficient condition that there exist a set of distinct representatives a_1, a_2, \ldots, a_r of A_1, A_2, \ldots, A_r , i.e. elements a_1, a_2, \ldots, a_r of A such that

$$a_i \in A_i, i = 1, 2, \dots, r$$

 $a_i \neq a_j \text{ for } j \neq i$

is that for each k in the range $1 \le k \le r$ the union of any k of the sets A_1, A_2, \ldots, A_r have at least k elements. Proof. Suppose inputs are 1, 2, ..., Noutputs are 1, 2, ..., NInput switches are $I_1, I_2, ..., I_r$ Output switches are $O_1, O_2, ..., O_r$

Consider a permutation

$$\{i \to \pi(i), i = 1, 2, \dots, N\}$$

Let

$$K = \{1, 2, \dots, r\}$$

For any $K_i \subseteq K$,

$$K_i = \{j : \pi(l) \in O_j, l \in I_i\}$$

Consider any k input switches

$$I_{i(1)}, I_{i(2)}, \ldots, I_{i(k)}$$

corresponding to

$$K_{i(1)}, K_{i(2)}, \ldots, K_{i(k)}$$

$$K_{i(j)} \subseteq K, 1 \le j \le k$$

Consider

$$T = \bigcup_{j=1}^{k} K_{i(j)}$$

Let |T| = t.

Note that

$$|\cup_{j=1}^k I_{i(j)}| = k imes n$$

This is because that each $I_{i(j)}$ has *n* distinct inputs, and theses kn inputs are connected to *t* output switches with a total of tn outputs. Therefore,

$$tn \ge kn$$

Then we have $t \ge k$.

That is,

$$T = \bigcup_{j=1}^{k} K_{i(j)}$$

has at least k elements. Then by Hall's theorem, there exists a set of distinct representatives

$$k(i) \in K_i, i = 1, 2, \dots, r$$

 $k(i) \neq k(j)$

Thus we have a mapping from each input switch to a distinct output switch:

$$I_i \to K(i)$$

Since all these connections are from different input switches to different output switches, we can direct all connections to a single middle switch.

The remaining network becomes

a v(m-1, n-1, r) network.

Note that v(1, 1, r) is a permutation network. By induction on n, we know that a network with m = n can realize all permutations.

- Nonblocking permutation network

 $m \ge 2n - 1$.

Consider connecting an input from input switch i to an output of output switch j. Note that at most n - 1 inputs on input switch i can be busy and at most n - 1 outputs on output switch j can be busy. So we need one more middle switch to make the new connection. Thus, the number of middle switches needed for nonblocking is

$$(n-1) + (n-1) + 1 = 2n - 1.$$

$$#cp = 2n \times m \times r + r^2 \times m$$

When m = n = r, $\# cp = 3N^{3/2}$

- Generalization to 2k + 1 stage for any $k \ge 1$. Replacing each $r \times r$ middle switch by an $r \times r$ Clos network.

Crosspoints:

$$\#cp = O(N^{1+1/k})$$

for 2k + 1 stage network.

A special type of Clos network: Benes network. Set m = n = 2 in Clos network. Recursive construction until all switches become 2 × 2 switches.

 $2\log N - 1$ stages

$$\#cp = O(N \log N)$$

A $O(N \log N)$ permutation network.

• Summary of dynamic networks

– Buses

#cp = O(N)

- Multistage networks
 - * $\log N$ stage networks # $cp = O(N \log N)$

Most are blocking networks.

* Constant stage networks $\#cp = O(N \cdot N^{1/k})$

Rearrangeable networks

Nonblocking networks

- Crossbars

 $\# cp = N^2$