SWITCHING TECHNIQUES

- A generic router model
- Three layers in an interconnection network
- Routing layer: make routing decision at intermediate router and establish the path through the network.
- Switching layer:
use physical layer protocols to implement mechanisms for forwarding messages through the network.
- Physical layer:
transfer messages and manage the physical channels between adjacent routers.

Figure 2.1. Generic router model. ($\mathrm{LC}=$ Link controller.)

- Switching techniques determine

1. when and how internal switches are set to connect router inputs to outputs;
2. the time at which messages may be transfered along these paths.

- Assumptions:
- Consider L-bit message in the absence of any traffic
- Channel width: W bits
- Message size: $L+W$ bits (message+ header)
- Routing decision time: t_{r} sec.
- Physical channel bandwidth: $B W$ bits/sec.
- Propagation delay of one channel: $t_{w}=\frac{1}{B}$
- Switching delay (the delay inside the router): t_{s}
- Source and destination are D links apart

Figure 2.5. View of the network path for computing the no-load latency. ($\mathrm{R}=$ Router.)

Time Busy
Figure 2.6. Time-space diagram of a circuit-switched message.

Message Header

Figure 2.8. Time-space diagram of a packet-switched message.

Figure 2.11. Time-space diagram of a wormhole-switched message.

Figure 2.10. Time-space diagram of a virtual cut-through switched message. ($t_{\text {blocking }}=$ Waiting lime for a free output link.)

- Basic switching techniques
- Circuit switching:

A physical path from the source to the destination is established and the switches on the path remain in their specified states until the path is released.

How it works:

* Establish the path by a routing probe * Destination sends an acknowledgement * Transmit data
* Release the path by destination or last few bits of the message

Latency:

$$
\begin{gathered}
t_{\text {circuit }}=t_{\text {setup }}+t_{\text {data }} \\
t_{\text {setup }}=D\left[t_{r}+2\left(t_{s}+t_{w}\right)\right] \\
t_{\text {data }}=\frac{1}{B}\left\lceil\frac{L}{W}\right\rceil
\end{gathered}
$$

Suitable for infrequent, long messages.

- Packet switching:

A packet (a group of bits of fixed length) moves from node to node, releasing links and switches immediately after using them. Also called store and forward switching. How it works: * Message is divided into fixed-length packets

* Each packet contains routing information (in its header) and is routed individually. * A packet is completely buffered at each intermediate node.
* Latency is proportional to the distance between source and destination.

Latency:

$$
\left.t_{\text {packet }}=D\left[t_{r}+\left(t_{s}+t_{w}\right) \left\lvert\, \frac{L+W}{W}\right.\right]\right]
$$

Suitable for frequent, short messages.

- Worm-hole switching:

Pipelined (hardware) packet switching. A compromise between packet switching and circuit switching.

How it works:

* Divide a packet into flits.
* Only header flit contains the routing information and all flits in a packet follows the same path.
* Only buffer a few flits at each router (not the entire packet).
* In the case of blocking, message blocked in place.

Latency:

$$
t_{\text {wormhole }}=D\left(t_{r}+t_{s}+t_{w}\right)+\max \left(t_{s}, t_{w}\right)\left\lceil\frac{L}{W}\right\rceil
$$

- Virtual cut-through:

Similar to worm-hole switching, but if the channel is blocked, the complete message is buffered at the node. At high network load, it behaves like packet switching. Latency:

$$
t_{v c t}=D\left(t_{r}+t_{s}+t_{w}\right)+\max \left(t_{s}, t_{w}\right)\left\lceil\frac{L}{W}\right\rceil
$$

INTERCONNECTION NETWORKS

- A major component of a parallel computer, providing connections among processors and/or memory modules.
- Static networks (or direct networks): dedicated links between nodes (point-to-point connections).
- Dynamic networks (or indirect networks): network links can form different physical paths from sources to destinations (end-to-end connections).

Interconnection Networks

Other Topologies: Trees, Cube-Connected Cycles, de Bruijn Network. Star Graphs. etc. Indirect Networks (Switch-Based Networks)

- Regular Topologies
-Crossbar (Cray X/Y-MP. DEC GIGAswitch. Myrinet)
- Multistage Interconnection Networks
——Blocking Networks
——unidirectional MIN (NEC Cenju-3. IBMRP3)
——Bidirectional MIN (IBM SP. TMC CM-5, Meiko CS-2)
—_ Nonblocking Networks: Clos Network
——Ireguiar Topologies (DEC Autonet, Myrinet, ServerNiet)
Hybrid Networks
——Multiple-Backplane Buses (Sun XDBus)
——Hierarchical Networks (Bridged LANs, KSR)
L_Cluster-Based Networks (Stanford DASH. HP'Convex Exemplar)
Other Hypergraph Topologies: Hyperbuses. Hypermeshes, etc.
Figure 1.2. Classification of interconnection networks. (1-D $=$ one-dimensional; 2-D $=$ two dimensional; 3-D $=$ three-dimensional; $\mathrm{CML}=$ Carnegie Mellon University; $\mathrm{DASH}=$ Directory Architecture for Shared-Memory: $\mathrm{DEC}=$ Digital Equipment Corp.; FDDI $=$ Fiber Distributec Data Interface; HP = Hewlett-Packard; $\mathrm{KSR}=$ Kendall Square Research; MIN = Multistage Inte: connection Network; MII = Massachusetts Institute of Iechnology; SGI = Silicon Graphics Inc. TMC = Thinking Machines Corp.)
- Network control:

Generate the necessary control setting on the switches to ensure reliable data routing from source to destination.

- Control strategies:
- Centralized control:

A single network controller takes requests from each input (source) and establishes paths. Easy to use global information to obtain optimal path settings.

- Distributed control:

Control circuit is associated to each switch/node.
Each switch/node uses local information and a routing tag stored in packets.

- Network design factors:
* Network size:

The number of nodes in the network. * Message latency (or network latency):

The time elapsed between the time a message is generated at its source node and the time is delivered at its destination node.

* Network throughput:

The maximum amount of information delivered by the network per time unit. * Scalability:

As the network size increases, the network bandwidth should increase proportionally. * Node degree:

The number of links incident on a node, denoted as d.

* Network diameter:

The maximum of the shortest path between any two nodes, proportional to network latency.

* Expandability:

The ability to add a node, depending on the number of components and connections required for adding a node.

* Redundancy (Reliability):

The number of different paths between a source and a destination.

* Bisection width:

Cut the network into two halves. The minimum number of links along the cut, denoted as b. It indicates the maximum communication bandwidth.

* Routing algorithm complexity:

Fast or slow. Affects network latency.

- Routing functions (or interconnection functions)
- Rotation: $+1 \bmod N$
- Shifting: $+i \bmod N$
- Mesh function (for an $n \times n$ mesh)

$$
\begin{aligned}
& M_{+1}(x)=(x+1) \bmod N \\
& M_{-1}(x)=(x-1) \bmod N \\
& M_{+n}(x)=(x+n) \bmod N \\
& M_{-n}(x)=(x-n) \bmod N
\end{aligned}
$$

- Shuffle-exchange:

Let $m=\log N$ and represent a node in binary $b_{m-1} b_{m-2} \ldots b_{1} b_{0}$. Shuffle function

$$
S\left(b_{m-1} b_{m-2} \ldots b_{1} b_{0}\right)=b_{m-2} b_{m-3} \ldots b_{0} b_{m-1}
$$

Exchange function

$$
E\left(b_{m-1} b_{m-2} \ldots b_{1} b_{0}\right)=b_{m-1} b_{m-2} \ldots b_{1} \overline{b_{0}}
$$

$\log N$ passes of shuffle-exchange function can implement all permutations.

- Cube function

$$
C_{i}\left(b_{m-1} b_{m-2} \ldots b_{1} b_{0}\right)=b_{m-1} b_{m-2} \ldots \bar{b}_{i} \ldots b_{1} b_{0}
$$

for $0 \leq i<m$.

- Plus minus 2^{i} (PM2I) function

$$
\begin{aligned}
& P M 2_{+i}(x)=\left(x+2^{i}\right) \bmod N \\
& P M 2_{-i}(x)=\left(x-2^{i}\right) \bmod N
\end{aligned}
$$

for $0 \leq i<m$.

(a) Perlect shuffle

(b) Inverse perfect shuffe

$$
2: a+2-14
$$

(a) A 3-cube with nodes denoted as $C_{2} C_{1} C_{0}$ in binary

(b) Routing by least significant bit, C_{0}

(c) Routing by middle bit, C_{1}

(d) Routing by most significant bit, C_{2}

$$
F i g 2 \cdot 15
$$

(b)

Figure 3.16. PM21 network for $N=8$ (PM2 -, conncctions have arrows in the opposite directions).

- Network performance measures
- Data routing capability:
blocking, nonblocking, permutation, multicast, etc.
- Hardware cost: the number of links, number of switches
- Network Latency
- Bandwidth (data rate)
- Scalability: performance increases as the network size increases
- Typical interconnection networks
- Static networks

Fixed links between nodes, suitable to the applications with communication patterns match the structure of the network. * Ring based networks

- Linear array

Degree $d=2$
Diameter $D=N-1$
Bisection $b=1$
Different from a bus.

- Ring

Degree $d=2$
Diameter $D=\left\lfloor\frac{N}{2}\right\rfloor$
Bisection $b=2$

- Chordal ring
N : number of nodes, even
W : chordal length, odd
Every odd-numbered node p ($p=1,3, \ldots, N-$

1) is connected to $(p+W) \bmod N($ an even-numbered node).

Degree $d=3$
Diameter $D=O(\sqrt{N})$
Bisection $b=6$
Basic routing algorithm:
Follow ring edge and chordal alternating path to the nearby area, then follow edges within a chordal distance.

- Further generalization: two chordals.

A 16 node chordal ring

- Completely connected

Degree $d=N-1$
Diameter $D=1$.

- Barrel shifter

$N=2^{n}$
Node i is connected to node j if $|j-i|=$
2^{r} for $r=0,1, \ldots, n-1$.
Degree $d=2 n-1$
Diameter $D=n / 2$

- Tree based networks
* Star

Degree $d=N-1$
Diameter $D=2$

* Tree

Binary tree: $N=2^{k}-1$ nodes
Degree $d=3$
Diameter $D=2(k-1), O(\log N)$
Constant degree, but heavy traffic at root node.

* Fat tree

Thinking machines Connection machine CM-5 uses this network.

Basic idea: wider channels towards the root to release the bottleneck but not constant degree any more.

- Mesh based networks
- k-dimensional mesh
$N=n^{k}$ nodes, n nodes in each dimension and each node has two neighbors in each dimension

Degree $d=2 k$
Diameter $D=k(n-1)$

- Illiac IV network

Two dimensions, 64 nodes, $D=n-1$

- Torus

Similar to mesh, but symmetric
$D=2\left\lfloor\frac{n}{2}\right\rfloor$.
In general, for k-dimensional,
$D=K\left\lfloor\frac{n}{2}\right\rfloor$.

- Systolic arrays

Pipelined array architecture for implementing fixed algorithm. Two dimension, but algorithm.

- Cube based networks
- Hypercube n-cube architecture with $N=2^{n}$ nodes. * Geometrical definition: N nodes on the corner of n "cube" in n-space * Recursive definition: Form a hypercube of dimension n by taking two hypercubes of dimension $n-1$ and directly connecting corresponding nodes. * Interconnection function:

Cube function, connect the nodes iff they have only one-bit difference.

- Degree $d=\log N$

Diameter $D=\log N$

- Easy routing: only need to look at bit i of the destination node at step i.
- Drawback: variable degree, poor expandability.
- Cube-connected cycles (CCCs)

A hierarchical network.
Replace each node in an n-cube with a small ring with n-nodes.
$N=2^{n} \times n$ nodes
Constant degree for any n : $d=3$
Slightly shorter diameter $D=2 n-1+\left\lfloor\frac{n}{2}\right\rfloor=$ $O(\log N)$.

- Even poorer expandability
- k-ary n-cube networks

Radix k ($k=2$: binary hypercube)
Each node represented as $a_{n-1} a_{n-2} \ldots a_{0}$ with $0 \leq a_{i} \leq k-1$ for $i=0,1, \ldots, n-1$.
n dimensions, each dimension has k nodes, connected as a cycle.

Each dimension connected to "plus minus 1" nodes
e.g. $k=4, n=3$

$$
N=k^{n} \text { nodes, } k=N^{1 / n}, n=\log _{k} N .
$$

Degree $d=2 n$
Diameter $D=n\left\lfloor\frac{k}{2}\right\rfloor$.

- Summary of static networks

(a) Linear array

(c) Chordal ring of degree 3

(c) Burred shither

(b) Ring

(d) Chordal ring of degree 4 (same as Illiae mesh)

(f) Completely connected

Figure 2.16 Linear array, ring, chordal rings of degrees 3 and 4, barrel shifter, and completely connected network.

(a) Binary tree

(c) Binary fat trce

Figure 2.17 Tree, star; and Int tree.

Figure 2.18 Mesh, Illiac mesh, torus, and systolic array.

(a) 3-cube

(c) 3-cube-connected cycles

(b) A 4-cube formed by interconnecting: two 3-cubes

(d) Replacing each node of a k-cube by a ring (cycle) of k nodes to form the k-cube-connected cycles

Figure 2.19 Hypercubes and cube-connected cycles.

Figure 2.20 The k-ary n-cube network shown with $k=4$ and $n=3$; hidden node or connections are not shown.

Table 2.2 Summary of Static Network Characteristics

Network type	$\begin{array}{c\|} \hline \text { Node } \\ \text { degree, } \\ d \\ \hline \end{array}$	Netwark diameter, D	Na \quad f linke, l	$\begin{gathered} \text { Fextion } \\ \text { midith } \\ B \end{gathered}$		
$\begin{aligned} & \text { Lidear } \\ & \text { Array } \\ & \hline \end{aligned}$	2	N-1	N-1	1	No	N nodes
Ring	2	[N/2]	N	2	Yes	N nodes
Compinely Comsected	$N-1$	1	$N(N-1){ }^{2}$	$(\text { (} / 72)^{2}$	Yes	N node
Bimary Tree	3	$2(h-1)$	$\boldsymbol{N}-\mathrm{I}$	1	No	$\begin{aligned} & \text { Treetreyn } \\ & h=\text { fotan } N \end{aligned}$
Star	$N-1$	2	$N-1$	[$\mathrm{N} / 2 \mathrm{~L}$]	No	N noders
2D-Meah	4	$2(r-1)$	$2 N-2 T$	r	No	$r \times r$ mesh where $=\sqrt{N}$
$\begin{array}{\|l\|} \hline \text { Illiac } \\ \text { Mesh } \end{array}$	4	$r-1$	$2 N$	$2 r$	No	Equivaleñt to a chordal ring of $r=\sqrt{N}$
2D-Torus	4	2【r/2	$2 N$	$2 T$	Yes	$r \times r$ torus where $r=\sqrt{N}$
Hypercube	n	n	$n N / 2$	N/2	Yes	$\begin{aligned} & N \text { modes, } \\ & n=\log _{2} N \\ & \text { (dimension) } \end{aligned}$
CCC	3	$2 k-1+\lfloor k / 2\rfloor$	3N/2	$N /(2 k)$	Yes	$N=k \times 2^{2}$ nodes with a cycle length $k \geq 3$
k-ary n-cube	2π	$n\lfloor k / 2\rfloor$	nN	$2 k^{2-1}$	Yes	$N=k^{n}$ nodes

- Dynamic interconnection networks
- Implement all communication patterns, suitable to general purpose applications.
- Components: switches and sharable links
- Dynamically change the path settings
- Cost of dynamic network: switches and links, usually in terms of crosspoints.
- Performance measures: bandwidth, latency, communication patterns supported.
- Types of dynamic networks (in the increasing order of cost and performance):

Buses - multistage interconnection networks (MINs) - Crossbars

- Buses

Time sharing, low cost, very limited bandwidth.

One transaction at a time. Only one pair of nodes can use the bus. Not scalable, vulnerable to bus controller failures.

- Multistage network consists of switch modules and links

Switch module: $a \times b$ switch module with a input and b output.

Crosspoints: $a b$
One-to-one connection switch
One-to-many connection switch
Legitimate states

Group switches into stages. Connect stages by certain interconnection functions.

* Crossbar

1 stage, the most powerful connecting capability, $O\left(N^{2}\right)$ switches

* Generalized cube network
$N \times N$ network
$N / 2$ switches in each stage
$n=\log N$ stages, numbered from $n-1$ to
0
Interconnection function c_{i} (cube) function for stage i

Setting switch to swap at stage i realizes c_{i} function

Routing algorithm (distributed)

Source $S=S_{n-1} S_{n-2} \ldots S_{1} S_{0}$
Destination $D=D_{n-1} D_{n-2} \ldots D_{1} D_{0}$
The switch at stage i in the path from S to D must be set to swap if $D_{i} \neq S_{i}$ and set to straight if $D_{i}=S_{i}$.

Unique path from S to D.
Routing example.

* Data manipulator network
$N \times N$ network
Each stage has N switching elements
Each switching element accepts one from three input links and outputs one from three output links (implemented by DEMUX and MUX)

Interconnection function of stage i :

- $P M 2_{+i}$
- $P M_{-i}$
- Straight connection

Control signals:

- S - straight
- U-up (-2^{i})
- D - down ($+2^{i}$)

Routing:
From source S to destination D. Compute
link sum $(D-S) \bmod N$ and decompose it into the sum of power of 2

* Omega network
$N / 22 \times 2$ switches at each stage
$\log N$ stages
Each stage has identical interconnection function: shuffle exchange
Routing:
Controlled by the address of the destination node

At stage i, if $D_{i}=0$ go to upper output of the switch, if $D_{i}=1$ go to lower output of the switch.

The number of permutations an $N \times N$ network can realize: $N^{N / 2}$.

* Baseline network (general structure of blocking network)

Figure 2.23 A generalized structure of a multistage interconnection network (MIN) built with a $\times b$ switch modules and interstage connection patterm ISC $_{1}$, ISC $_{2}, \ldots$, ISCn .

Table 2.3 Switch Modules and Legitimate States

Module Size	Legitimate States	Permutation Connections
2×2	4	2
4×4	256	24
8×8	$16,777,216$	40,320
$n \times n$	n^{n}	$n!$

(a) Straight

(c) Upper broadcast

(b) Crossover.

(d) Lower broadcast

Fitwe 3.17. Generalized Cube networt for $N=8$.

Figare 3.19. Path from source 3 to destination O in the Generalized Cube network for
$\boldsymbol{N}=\mathbf{8}$.

Figure 3.21. The Data Manipulator network for $\boldsymbol{N}=8$.

Fignre 3.23. Path (bold line) from source 3 to destination 0 in the Data Manipulator for $N=8$.

Ficure 3.25. Omega neiwork for $N=8$.

(a) Permutation $\pi_{1}=(0,7,6,4,2)(1,3)(5)$ implemented on an Omega network without blocking

(b) Permutation $\pi_{2}=(0,6,4,7,3)(1,5)(2)$ blocked at switches marked F, G and H

Figure 2.25 Recursive construction of a Saseline network. (Courtesy of Wu and Eeng; reprinted with permission from IEEE Trans. Computers, August 1980)

- Clos network (also called $v(m, n, r)$ network)
- Network structure

Three stages of switches
Input stage: $r n \times m$ switches
Middle stage: $m r \times r$ switches
Output stage: $r m \times n$ switches
$N=n r$ inputs/outputs

- Rearrangeable permutation network

Condition: $m \geq n$
Rearrangeable for permutation: can satisfy any new connection request from an idle input to an idle output, but sometimes it is necessary to interrupt and rearrange the existing connections in the network.

- Nonblocking permutation network

Condition: $m \geq 2 n-1$
Nonblocking for permutation: can satisfy any new connection request from an idle input to an idle output and the rearrangement is never required.

- Multicast network

Condition: $m=O\left(n \frac{\log r}{\log \log r}\right)$ for both nonblocking and rearrangeable multicast.

- Proof of rearrangeable permutation condition $m \geq n$

Basic combinatorial theorem:

Hall's Theorem: Let A be any finite set, and let $A_{1}, A_{2}, \ldots, A_{r}$ be any r subsets of A. A necessary and sufficient condition that there exist a set of distinct representatives $a_{1}, a_{2}, \ldots, a_{r}$ of $A_{1}, A_{2}, \ldots, A_{r}$, i.e. elements $a_{1}, a_{2}, \ldots, a_{r}$ of A such that

$$
\begin{aligned}
& a_{i} \in A_{i}, \quad i=1,2, \ldots, r \\
& a_{i} \neq a_{j} \text { for } j \neq i
\end{aligned}
$$

is that for each k in the range $1 \leq k \leq r$ the union of any k of the sets $A_{1}, A_{2}, \ldots, A_{r}$ have at least k elements.

Proof.

Suppose
inputs are $1,2 \ldots, N$
outputs are $1,2, \ldots, N$
Input switches are $I_{1}, I_{2}, \ldots, I_{r}$
Output switches are $O_{1}, O_{2}, \ldots, O_{r}$

Consider a permutation

$$
\{i \rightarrow \pi(i), i=1,2, \ldots, N\}
$$

Let

$$
K=\{1,2, \ldots, r\}
$$

For any $K_{i} \subseteq K$,

$$
K_{i}=\left\{j: \pi(l) \in O_{j}, l \in I_{i}\right\}
$$

Consider any k input switches

$$
I_{i(1)}, I_{i(2)}, \ldots, I_{i(k)}
$$

corresponding to

$$
K_{i(1)}, K_{i(2)}, \ldots, K_{i(k)}
$$

$$
K_{i(j)} \subseteq K, 1 \leq j \leq k
$$

Consider

$$
T=\cup_{j=1}^{k} K_{i(j)}
$$

Let $|T|=t$.
Note that

$$
\left|\cup_{j=1}^{k} I_{i(j)}\right|=k \times n
$$

This is because that each $I_{i(j)}$ has n distinct inputs, and theses $k n$ inputs are connected to t output switches with a total of $t n$ outputs. Therefore,

$$
t n \geq k n
$$

Then we have $t \geq k$.
That is,

$$
T=\cup_{j=1}^{k} K_{i(j)}
$$

has at least k elements. Then by Hall's theorem, there exists a set of distinct represen-
tatives

$$
\begin{gathered}
k(i) \in K_{i}, i=1,2, \ldots, r \\
k(i) \neq k(j)
\end{gathered}
$$

Thus we have a mapping from each input switch to a distinct output switch:

$$
I_{i} \rightarrow K(i)
$$

Since all these connections are from different input switches to different output switches, we can direct all connections to a single middle switch.

The remaining network becomes
a $v(m-1, n-1, r)$ network.
Note that $v(1,1, r)$ is a permutation network. By induction on n, we know that a network with $m=n$ can realize all permutations.

- Nonblocking permutation network $m \geq 2 n-1$.

Consider connecting an input from input switch i to an output of output switch j. Note that at most $n-1$ inputs on input switch i can be busy and at most $n-1$ outputs on output switch j can be busy. So we need one more middle switch to make the new connection. Thus, the number of middle switches needed for nonblocking is

$$
(n-1)+(n-1)+1=2 n-1 .
$$

- Number of crosspoints

$$
\# c p=2 n \times m \times r+r^{2} \times m
$$

When $m=n=r, \# c p=3 N^{3 / 2}$

- Generalization to $2 k+1$ stage for any $k \geq 1$. Replacing each $r \times r$ middle switch by an $r \times r$ Clos network.

Crosspoints:

$$
\# c p=O\left(N^{1+1 / k}\right)
$$

for $2 k+1$ stage network.

- A special type of Clos network: Benes network. Set $m=n=2$ in Clos network. Recursive construction until all switches become 2×2 switches.
$2 \log N-1$ stages
$\# c p=O(N \log N)$
A $O(N \log N)$ permutation network.
- Summary of dynamic networks
- Buses

$$
\# c p=O(N)
$$

- Multistage networks
* $\log N$ stage networks
$\# c p=O(N \log N)$
Most are blocking networks.
* Constant stage networks
$\# c p=O\left(N \cdot N^{1 / k}\right)$
Rearrangeable networks
Nonblocking networks
- Crossbars
$\# c p=N^{2}$

