INTRODUCTION

- A simple example:
- Job: put on socks and shoes
- Processor: a pair of hands
- Sequential algorithm:
put on right sock, right shoe,
put on left sock, left shoe.
Need 4 time units
- Parallel algorithm:

Two processors:
one for left foot and another for right foot.
Need 2 time units.
Question: Can we use four processors to further speed up to, say, 1 time unit?

- Parallel computer models
- Physical architecture models
* Multiprocessors
- Uniform memory access (UMA), a single shared memory space.
- Nonuniform memory access (NUMA), distributed shared-memory multiprocessors (DSM).
* Multicomputers (distributed memory)
- Hypercube architecture
- Mesh connected architecture
* Networks of workstations (NOW) An inexpensive way to build parallel computers.

A multicomputer
A UMA shared-memory multiprocessor

NUMA model for multiprocessor system

A message passing multicomputer

- Theoretical models

Used to estimate the performance bounds on algorithms.

* Review of time and space complexity
- Time complexity: a function of the problem size
- Big 0 notation (worst case complexity):
a time complexity $g(n)$ is said to be $O(f(n))$ if there exist positive constants c and n_{0} so that $g(n) \leq c f(n)$ for all nonnegative values of $n>n_{0}$.
- Sequential complexity: the complexity of sequential algorithm
- Parallel complexity: the complexity of parallel algorithm
* NP-problems
- An algorithm has time complexity $O(f(n))$ where n is the problem size.
- P-class (polynomial): $f(n)$ is a polynomial.
- NP-class (nondeterministic polynomial): polynomial verifiable for a guessed solution, but $f(n)$ is exponential.
* Examples:

P-class: search max in a list: $O(n)$
NP-class: Traveling salesman problem
(travel all cities with minimum cost): $O\left(n^{2} 2^{n}\right)$.

* Parallel complexity
- Sequential complexity $O(w(n))$
- Parallel complexity of a p-processor machine $O\left(\frac{w(n)}{p}\right)$:
the algorithm is scalable.
- Not every problem can achieve this due to data dependence
- An example: putting on socks and shoes
* Parallel random access machine (PRAM). Consists of
- p processors P_{1}, \ldots, P_{p}
- Processors are connected to a large shared, random access memory M.
- Processors have a private or local memory for their own computation, but all communication among them takes place via the shared memory
- Each time step has three phases: read phase, computation phase and write phase.
- Processors synchronized (write at the same time)
* Four subclasses, depending on how concurrent read/write is handled:
- EREW-PRAM: exclusive read exclusive write. Allow only one processor to read or write a memory location
- CREW-PRAM: concurrent read exclusive write.

Allow multiple processors to read the same memory location, but not allow concurrent write.

- ERCW-PRAM: exclusive read concurrent write.
- CRCW-PRAM: concurrent read current write.
* How to resolve the write conflicts
- Common: all simultaneous writes store the same value to that memory location
- Arbitrary: choose one value ignore others
- Minimum: store the value of the processor with the minimum index
- Priority: some combination of all values, such as summation or maximum
* In PRAM model, synchronization and memory access overhead are ignored.

* Example:

An algorithm on a PRAM:
Multiplication of two $n \times n$ matrices in $O(\log n)$ time on a PRAM (CREW) with $n^{3} / \log n$ processors.

$$
\begin{gathered}
A \times B=C \\
A(i, k), B(k, j), C(i, j, k), \quad 0 \leq i, j, k \leq n-1
\end{gathered}
$$

First assume n^{3} processors:

$$
P E(i, j, k), \quad 0 \leq i, j, k \leq n-1
$$

Standard algorithm:

$$
C(i, j)=\sum_{k=0}^{n-1} A(i, k) \times B(k, j)
$$

We put the final results in $C(i, j, 0)$ for $0 \leq i, j \leq$ $n-1$.

Step 1:

$$
C(i, j, k)=A(i, k) \times B(k, j)
$$

Step 2:

$$
C(i, j, 0)=\sum_{k=0}^{n-1} C(i, j, k)
$$

Now look at $n^{3} / \log n$ processors.

$$
C(i, j, k), \quad 0 \leq i, j, \leq n-1, \quad 0 \leq k \leq \frac{n}{\log n}-1
$$

Step 1:

$$
\begin{aligned}
& C(i, j, 0)=\sum_{k=0}^{\log n-1} A(i, k) \times B(k, j) \\
& C(i, j, 1)=\sum_{k=\log n}^{2 \log n-1} A(i, k) \times B(k, j) \\
& \vdots \\
& C(i, j, n / \log n-1)=\cdots
\end{aligned}
$$

Step 2:

$$
C(i, j, 0)=\sum_{k=0}^{n / \log n-1} C(i, j, k)
$$

Modify the code: $l \leftarrow n$ to $l \leftarrow n / \log n$

Algorithm-:

Step 1:

1. Read $A(i, k)$
2. Read $B(\mathbf{k}, \mathbf{j})$
3. Compute $\mathbf{A}(\mathbf{i}, \mathbf{k}) \times \mathrm{B}(\mathrm{k}, \mathrm{j})$
4. Store in $C(i, j, k)$

Step 2:

1. $\ell \leftarrow n$
2. Repeat
$\ell \leftarrow \ell / 2$
if $(k \leq \ell)$ them
begin
Read $C(i, j, k)$
Read $C(i, j, k+\ell)$
Compute Ce,, k$)+\mathrm{C}(\mathrm{i}, \mathrm{j}, \mathrm{k}+\ell)$
Store in $\mathbf{C}(\mathbf{i}, \mathrm{j}, \mathrm{k})$
end
until ($\ell=1$)
P. 37

* VLSI complexity model ($A T^{2}$ model)
- Set limits on memory, I/O and communication, for implementing parallel algorithms with VLSI chips.
- A: chip area (chip complexity)
- T: time for completing a given computation
- s: problem size
- There exists a lower bound $f(s)$ such that

$$
A \times T^{2} \geq O(f(s))
$$

- Memory requirement sets a lower bound on chip area A
- Information flows through the chip for a period of time T.
- AT: the amount of information flowing through the chip during time T. The number of input bits cannot exceed the volume AT.
- Bisection $\sqrt{A} T$ (usually use $A T^{2}$): maximum information exchange between the two halves of the chip during time T.

(a) Memory-limited bound on chip area A and I/O-limited bound on chip history represented by the volume $A T$

(b) Communication-limited bound on the bisection $\sqrt{A} T$

Figure 1.15 The AT ${ }^{2}$ complexity model of two-dimensional VLSI chips.

- Example:

Matrix multiplication.
$n \times n$ matrices, $C=A \times B$
2-D mesh architecture, n^{2} PE's
broadcast bus for inter-PE communication chip area complexity: $A=O\left(n^{2}\right)$ time complexity $T=O(n)$

$$
A T^{2}=O\left(n^{2}\right) \cdot(O(n))^{2}=O\left(n^{4}\right)
$$

Figure 1.16 A 4×4 mesh of processing elements (PEs) with broadcast bu each row and on each column. (Courtesy of Prasanna Kumar and Ray dra; reprinted from Journal of Parallel and Distributed Computing, Apri:

Do 50 for $0 \leq k \leq n-1$
Deal 20 for $0 \leq i \leq n-1$
PE($i, k)$ broadcasts $A(i, k)$ along its row bus
Dial 30 for $0 \leq j \leq n-1$ PE($k, j)$ broadcasts $B(k, j)$ along its column bus
$/ P E(i, j)$ now has $A(i, k)$ and $B(k, j), 0 \leq i, j \leq n-1 /$
Deal 40 for $0 \leq i, j \leq n-1$
$\quad P E(i, j)$ computes $C(i, j) \leftarrow C(i, j)+A(i, k) \times B(k, j)$
40
50
0 Continue

$$
P .41
$$

- How to solve a typical computation task sorting using different types of computation models.
- Problem description:

A sequence

$$
S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}
$$

A linear order $<$ is defined on S.

Find a new sequence

$$
S^{\prime}=\left\{s_{1}^{\prime}, s_{2}^{\prime}, \ldots, s_{n}^{\prime}\right\}
$$

such that $s_{i}^{\prime}<s_{i+1}^{\prime}$ for $i=1,2, \ldots, n-1$.

- Sequential algorithm.

* Lower bound: $\Omega(n \log n)$ * Mergesort (optimal)

Time $T(n)=O(n \log n)$

- Parallel algorithm on CRCW model.
* Write conflict: storing the sum of all values being written.
* Sorting by enumeration:
n^{2} processors.
Two lists in shared memory:
S stores $s_{1}, s_{2}, \ldots, s_{n}$ and C stores $c_{1}, c_{2}, \ldots, c_{n}$
c_{i} is the number of of elements in S smaller than
s_{i}.
If $s_{i}=s_{j}$ and $i>j$ then $s_{i}>s_{j}$ in the sorted list.
* Each $p(i, j)$ compares s_{i} and s_{j} and stores s_{i} in position $1+c_{i}$ of S.
* Time $T(n)=O(1)$
* Processors: $P(n)=n^{2}$
* Cost: $C(n)=T(n) P(n)=O\left(n^{2}\right)$
* This algorithm is not optimal.

If $c(n)=O(n \log n)$ optimal.

Procedure CRCW sort(S)

Step 1: for $i=1$ to n doall
for $j=1$ to n doall
if $\left(s_{i}>s_{j}\right)$ or $\left(s_{i}=s_{j}\right.$ and $\left.i>j\right)$
then $p(i, j)$ writes 1 in c_{i}
else $p(i, j)$ writes 0 in c_{i}
end if
end for
end for
Step 2: for $i=1$ to n doall
$P(i, 1)$ stores s_{i} in position $1+c_{i}$ of S end for

- Parallel algorithm on CREW model. Divide S into p subsets and one processor sorts a subset.

$$
\begin{gathered}
S=S_{1} \cup S_{2} \cup \cdots \cup S_{p} \\
T(n)=O\left(\log ^{2} n\right) \\
P(n)=O(n / \log n) \\
C(n)=O(n \log n)
\end{gathered}
$$

Optimal algorithm.

- A special purpose parallel architecture designed for sorting (hardware sorter)

Specialized processors + custom-designed interconnection networks

Odd-even sorting network

Very simple processor: 2×2 comparator

Basic idea: merge sort
(n, n) merging network: merges two length- n sorted lists into one length $2 n$ sorted list.
$*(1,1)$ merging network $=2 \times 2$ comparator * $(2,2)$ merging network

$$
a_{1} \leq a_{2}, \quad b_{1} \leq b_{2}
$$

$$
\begin{aligned}
& \min \left\{a_{1}, b_{1}\right\}=\min \left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}=c_{1} \\
& \max \left\{a_{2}, b_{2}\right\}=\max \left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}=c_{4}
\end{aligned}
$$

* (n, n) merging network (n is a power of 2): Recursive construction using two $(n / 2, n / 2)$ merging networks
$a_{1}, a_{3}, \ldots, a_{n-1}, b_{1}, b_{3}, \ldots, b_{n-1}$ connected to the first merger
$a_{2}, a_{4}, \ldots, a_{n}, b_{2}, b_{4}, \ldots, b_{n}$ connected to the second merger

Additional $n-1$ comparators

Proof of correctness.

Note that subsequences $a_{1}, a_{3}, \ldots, a_{n-1}$ and $b_{1}, b_{3}, \ldots, b_{n-1}$ are sorted, and we have

$$
\begin{aligned}
& d_{1} \leq d_{2} \leq \cdots \leq d_{n} \\
& e_{1} \leq e_{2} \leq \cdots \leq e_{n}
\end{aligned}
$$

d_{1} is the min of all elements $\Rightarrow d_{1}=c_{1}$
e_{n} is the max of all elements $\Rightarrow e_{n}=c_{2 n}$

Now, we need to prove:

$$
\begin{aligned}
c_{2 i} & =\min \left\{d_{i+1}, e_{i}\right\} \\
c_{2 i+1} & =\max \left\{d_{i+1}, e_{i}\right\}
\end{aligned}
$$

Consider sequence $\left\{d_{1}, d_{2}, \ldots, d_{i+1}\right\}$:

$$
\left\{d_{1}, d_{2}, \ldots, d_{i+1}\right\} \subseteq\left\{a_{1}, a_{3}, \ldots, a_{n-1}, b_{1}, b_{3}, \ldots, b_{n-1}\right\}
$$

Suppose k elements of $\left\{d_{1}, d_{2}, \ldots, d_{i+1}\right\}$ are in $\left\{a_{1}, a_{3}, \ldots, a_{n-1}\right\}$

They must be the first k elements

$$
\left\{a_{1}, a_{3}, \ldots, a_{2 k-1}\right\}
$$

Then $i+1-k$ elements in $\left\{b_{1}, b_{3}, \ldots, b_{n-1}\right\}$. These elements must be the first $(i+1-k)$ elements

$$
\left\{b_{1}, b_{3}, \ldots, b_{2(i+1-k)-1}\right\}
$$

Look at the largest element d_{i+1},

$$
d_{i+1} \geq\left\{a_{1}, a_{3}, \ldots, a_{2 k-1}\right\}
$$

Plug in

$$
\left\{a_{2}, a_{4}, \ldots, a_{2 k-2}\right\}
$$

d_{i+1} is greater than $2 k-1 a_{i}$'s
Similarly, d_{i+1} is greater than $2(i+1-k)-1 b_{i}$'s

$$
2 k-1+2(i+1-k)-1=2 i
$$

Then we have

$$
d_{i+1} \geq c_{2 i}
$$

Similarly, consider $\left\{e_{1}, e_{2}, \ldots, e_{i}\right\}$.
k of $\left\{e_{1}, e_{2}, \ldots, e_{i}\right\}$ are in $\left\{a_{2}, a_{4}, \ldots, a_{n}\right\}$.
$i-k$ of $\left\{e_{1}, e_{2}, \ldots, e_{i}\right\}$ are in $\left\{b_{2}, b_{4}, \ldots, b_{n}\right\}$.
e_{i} is greater than $2 k a_{i}$'s, and e_{i} is greater than $2(i-k)$
b_{i} 's.
So

$$
e_{i} \geq c_{2 i}
$$

We have

$$
\begin{aligned}
d_{i+1} & \geq c_{2 i} \\
e_{i} & \geq c_{2 i}
\end{aligned}
$$

for $i=1,2, \ldots, n-1$.
Now let $i=n-1$, we have

$$
\begin{aligned}
d_{n} & \geq c_{2 n-2} \\
e_{n-1} & \geq c_{2 n-2}
\end{aligned}
$$

Since $e_{n}=c_{2 n}$,

$$
\left\{d_{n}, e_{n-1}\right\}=\left\{c_{2 n-2}, c_{2 n-1}\right\}
$$

Then

$$
\begin{aligned}
& c_{2 n-2}=\min \left\{d_{n}, e_{n-1}\right\} \\
& c_{2 n-1}=\max \left\{d_{n}, e_{n-1}\right\}
\end{aligned}
$$

For $i=n-2$,

$$
\begin{aligned}
d_{n-1} & \geq c_{2 n-4} \\
e_{n-2} & \geq c_{2 n-4} \\
\left\{d_{n-1}, e_{n-2}\right\} & =\left\{c_{2 n-4}, c_{2 n-3}\right\}
\end{aligned}
$$

Then

$$
\begin{aligned}
c_{2 n-4} & =\min \left\{d_{n-1}, e_{n-2}\right\} \\
c_{2 n-3} & =\max \left\{d_{n-1}, e_{n-2}\right\}
\end{aligned}
$$

Analysis for merger:

- Time:
$T(2)=1, T(2 n)=T(n)+1$
$T(2 n)=1+\log n$
- Processors:
$P(2)=1$
$P(2 n)=2 P(n)+(n-1)$
$P(2 n)=1+n \log n$.
- Cost:
$C(2 n)=P(2 n) \times T(2 n)=O\left(n \log ^{2} n\right)$
Not optimal $(O(n)$ is optimal).

Back to odd-even sorting network:

- Time:

$$
\begin{aligned}
& T(n)=T(n / 2)+(1+\log (n / 2))=T(n / 2)+\log n= \\
& O\left(\log ^{2} n\right)
\end{aligned}
$$

- Processors:

$$
P(n)=2 P(n / 2)+1+(n / 2) \log (n / 2)=O\left(n \log ^{2} n\right)
$$

- Cost:

$$
C(n)=P(n) \times T(n)=O\left(n \log ^{4} n\right)
$$

Summary for sorting

- Odd-even sorting network

$$
\begin{aligned}
& * T(n)=O\left(\log ^{2} n\right) \\
& * P(n)=O\left(n \log ^{2} n\right) \\
& * C(n)=O\left(n \log ^{4} n\right)
\end{aligned}
$$

Not optimal, but a practical network.

- Sequential algorithm

$$
\begin{gathered}
* T(n)=O(n \log n) \\
* P(n)=O(1) \\
* C(n)=O(n \log n) \\
\text { Optimal. }
\end{gathered}
$$

- The best parallel algorithm: AKS sorting network (CREW model)

$$
\begin{aligned}
& * T(n)=O(\log n) \\
& * P(n)=O(n) \\
& * C(n)=O(n \log n)
\end{aligned}
$$

Optimal, but very large hidden constant, complex.

