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INTRODUCTION

� A simple example:

– Job: put on socks and shoes

– Processor: a pair of hands

– Sequential algorithm:

put on right sock, right shoe,

put on left sock, left shoe.

Need 4 time units

– Parallel algorithm:

Two processors:

one for left foot and another for right foot.

Need 2 time units.

Question: Can we use four processors to further

speed up to, say, 1 time unit?



ESE536/CSE636 Switching and Routing in Parallel and Distributed Systems 2

� Parallel computer models

– Physical architecture models

� Multiprocessors

� Uniform memory access (UMA), a single shared

memory space.

� Nonuniform memory access (NUMA), distributed

shared-memory multiprocessors (DSM).

� Multicomputers (distributed memory)

� Hypercube architecture

� Mesh connected architecture

� Networks of workstations (NOW)

An inexpensive way to build parallel comput-

ers.
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– Theoretical models

Used to estimate the performance bounds on al-

gorithms.

� Review of time and space complexity

� Time complexity: a function of the problem

size

� Big O notation (worst case complexity):

a time complexity g(n) is said to beO(f(n))

if there exist positive constantsc and n0 so

that g(n) � cf(n) for all nonnegative values

of n > n0.

� Sequential complexity: the complexity of se-

quential algorithm

� Parallel complexity: the complexity of paral-

lel algorithm
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� NP-problems

� An algorithm has time complexity O(f(n))

wheren is the problem size.

� P-class (polynomial):f(n) is a polynomial.

� NP-class (nondeterministic polynomial): poly-

nomial verifiable for a guessed solution, but

f(n) is exponential.

� Examples:

P-class: search max in a list:O(n)

NP-class: Traveling salesman problem

(travel all cities with minimum cost): O(n22n).
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� Parallel complexity

� Sequential complexityO(w(n))

� Parallel complexity of ap-processor machine

O(w(n)p
):

the algorithm is scalable.

� Not every problem can achieve this due to

data dependence

� An example:

putting on socks and shoes
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� Parallel random access machine (PRAM).

Consists of

� p processorsP1; : : : ; Pp

� Processors are connected to a large shared,

random access memoryM .

� Processors have a private or local memory

for their own computation, but all communi-

cation among them takes place via the shared

memory

� Each time step has three phases: read phase,

computation phase and write phase.

� Processors synchronized (write at the same

time)
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� Four subclasses, depending on how concurrent

read/write is handled:

� EREW-PRAM: exclusive read exclusive write.

Allow only one processor to read or write a

memory location

� CREW-PRAM: concurrent read exclusive write.

Allow multiple processors to read the same

memory location, but not allow concurrent

write.

� ERCW-PRAM: exclusive read concurrent write.

� CRCW-PRAM: concurrent read current write.
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� How to resolve the write conflicts

� Common: all simultaneous writes store the

same value to that memory location

� Arbitrary: choose one value ignore others

� Minimum: store the value of the processor

with the minimum index

� Priority: some combination of all values, such

as summation or maximum

� In PRAM model, synchronization and memory

access overhead are ignored.
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� Example:

An algorithm on a PRAM:

Multiplication of two n�n matrices inO(log n)

time on a PRAM (CREW) with n3= log n pro-

cessors.

A�B = C

A(i; k); B(k; j); C(i; j; k); 0 � i; j; k � n� 1

First assumen3 processors:

PE(i; j; k); 0 � i; j; k � n� 1

Standard algorithm:

C(i; j) =
n�1X

k=0
A(i; k)�B(k; j)

We put the final results inC(i; j; 0) for 0 � i; j �
n� 1.
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Step 1:

C(i; j; k) = A(i; k)�B(k; j)

Step 2:

C(i; j; 0) =
n�1X

k=0
C(i; j; k)

Now look at n3= log n processors.

C(i; j; k); 0 � i; j;� n�1; 0 � k � n

log n
�1

Step 1:

C(i; j; 0) =
logn�1X

k=0
A(i; k)�B(k; j)

C(i; j; 1) =
2 logn�1X

k=logn
A(i; k)�B(k; j)

...

C(i; j; n= log n� 1) = � � �

Step 2:

C(i; j; 0) =
n= logn�1X

k=0
C(i; j; k)

Modify the code: l n to l n= log n
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� VLSI complexity model (AT 2 model)

� Set limits on memory, I/O and communica-

tion, for implementing parallel algorithms with

VLSI chips.

� A: chip area (chip complexity)

� T: time for completing a given computation

� s: problem size

� There exists a lower boundf(s) such that

A� T 2 � O(f(s))

� Memory requirement sets a lower bound on

chip area A

� Information flows through the chip for a pe-

riod of time T.
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� AT: the amount of information flowing through

the chip during time T. The number of input

bits cannot exceed the volume AT.

� Bisection
p
AT (usually useAT 2): maximum

information exchange between the two halves

of the chip during time T.
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� Example:

Matrix multiplication.

n� n matrices,C = A�B

2-D mesh architecture,n2 PE’s

broadcast bus for inter-PE communication

chip area complexity:A = O(n2)

time complexity T = O(n)

AT 2 = O(n2) � (O(n))2 = O(n4)
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�� How to solve a typical computation task sorting us-

ing different types of computation models.

– Problem description:

A sequence

S = fs1; s2; : : : ; sng

A linear order < is defined onS.

Find a new sequence

S 0 = fs01; s02; : : : ; s0ng

such that s0i < s0i+1 for i = 1; 2; : : : ; n� 1.
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– Sequential algorithm.

� Lower bound: 
(n log n)

� Mergesort (optimal)

Time T (n) = O(n log n)
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– Parallel algorithm on CRCW model.

� Write conflict: storing the sum of all values be-

ing written.

� Sorting by enumeration:

n2 processors.

Two lists in shared memory:

S storess1; s2; : : : ; sn andC storesc1; c2; : : : ; cn

ci is the number of of elements inS smaller than

si.

If si = sj and i > j then si > sj in the sorted

list.

� Each p(i; j) comparessi and sj and storessi in

position 1 + ci of S.

� Time T (n) = O(1)

� Processors:P (n) = n2

� Cost: C(n) = T (n)P (n) = O(n2)

� This algorithm is not optimal.

If c(n) = O(n log n) optimal.
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Procedure CRCW sort(S)

Step 1: for i = 1 to n doall

for j = 1 to n doall

if (si > sj) or (si = sj and i > j)

then p(i; j) writes 1 in ci

elsep(i; j) writes 0 in ci

end if

end for

end for

Step 2: for i = 1 to n doall

P (i; 1) storessi in position 1 + ci of S

end for
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– Parallel algorithm on CREW model.

Divide S into p subsets and one processor sorts a

subset.

S = S1 [ S2 [ � � � [ Sp

T (n) = O(log2 n)

P (n) = O(n= log n)

C(n) = O(n log n)

Optimal algorithm.
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– A special purpose parallel architecture designed

for sorting (hardware sorter)

Specialized processors+ custom-designed inter-

connection networks

Odd-even sorting network

Very simple processor:2� 2 comparator

Basic idea: merge sort
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(n; n)merging network: merges two length-n sorted

lists into one length2n sorted list.

� (1; 1) merging network = 2� 2 comparator

� (2; 2) merging network

A = fa1; a2g; B = fb1; b2g
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minfa1; b1g = minfa1; a2; b1; b2g = c1

maxfa2; b2g = maxfa1; a2; b1; b2g = c4

One more comparator to comparec2 and c3.
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� (n; n) merging network(n is a power of 2):

Recursive construction using two(n=2; n=2)merg-

ing networks

a1; a3; : : : ; an�1; b1; b3; : : : ; bn�1 connected to the

first merger

a2; a4; : : : ; an; b2; b4; : : : ; bn connected to the sec-

ond merger

Additional n� 1 comparators
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Proof of correctness.

Note that subsequencesa1; a3; : : : ; an�1 and b1; b3; : : : ; bn�1

are sorted, and we have

d1 � d2 � � � � � dn

e1 � e2 � � � � � en

d1 is the min of all elements) d1 = c1

en is the max of all elements) en = c2n

Now, we need to prove:

c2i = minfdi+1; eig

c2i+1 = maxfdi+1; eig
Consider sequencefd1; d2; : : : ; di+1g:

fd1; d2; : : : ; di+1g � fa1; a3; : : : ; an�1; b1; b3; : : : ; bn�1g

Supposek elements offd1; d2; : : : ; di+1g are in fa1; a3; : : : ; an�1g
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They must be the firstk elements

fa1; a3; : : : ; a2k�1g

Then i + 1 � k elements infb1; b3; : : : ; bn�1g. These

elements must be the first(i + 1� k) elements

fb1; b3; : : : ; b2(i+1�k)�1g

Look at the largest elementdi+1,

di+1 � fa1; a3; : : : ; a2k�1g

Plug in

fa2; a4; : : : ; a2k�2g
di+1 is greater than2k � 1 ai’s

Similarly, di+1 is greater than2(i + 1� k)� 1 bi’s

2k � 1 + 2(i + 1� k)� 1 = 2i

Then we have

di+1 � c2i
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Similarly, consider fe1; e2; : : : ; eig.
k of fe1; e2; : : : ; eig are in fa2; a4; : : : ; ang.
i� k of fe1; e2; : : : ; eig are in fb2; b4; : : : ; bng.
ei is greater than2k ai’s, andei is greater than2(i�k)
bi’s.

So

ei � c2i

We have

di+1 � c2i

ei � c2i

for i = 1; 2; : : : ; n� 1.

Now let i = n� 1, we have

dn � c2n�2

en�1 � c2n�2

Sinceen = c2n,

fdn; en�1g = fc2n�2; c2n�1g
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Then

c2n�2 = minfdn; en�1g
c2n�1 = maxfdn; en�1g

For i = n� 2,

dn�1 � c2n�4

en�2 � c2n�4

fdn�1; en�2g = fc2n�4; c2n�3g
Then

c2n�4 = minfdn�1; en�2g
c2n�3 = maxfdn�1; en�2g
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Analysis for merger:

– Time:

T (2) = 1, T (2n) = T (n) + 1

T (2n) = 1 + log n

– Processors:

P (2) = 1

P (2n) = 2P (n) + (n� 1)

P (2n) = 1 + n log n.

– Cost:

C(2n) = P (2n)� T (2n) = O(n log2 n)

Not optimal (O(n) is optimal).
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Back to odd-even sorting network:

– Time:

T (n) = T (n=2)+ (1+ log(n=2)) = T (n=2)+ log n =

O(log2 n)

– Processors:

P (n) = 2P (n=2)+ 1+ (n=2) log(n=2) = O(n log2 n)

– Cost:

C(n) = P (n)� T (n) = O(n log4 n)
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Summary for sorting

– Odd-even sorting network

� T (n) = O(log2 n)

� P (n) = O(n log2 n)

� C(n) = O(n log4 n)

Not optimal, but a practical network.

– Sequential algorithm

� T (n) = O(n log n)

� P (n) = O(1)

� C(n) = O(n log n)

Optimal.

– The best parallel algorithm: AKS sorting network

(CREW model)

� T (n) = O(log n)

� P (n) = O(n)

� C(n) = O(n log n)

Optimal, but very large hidden constant, com-

plex.
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