INTRODUCTION

- A simple example:
 - Job: put on socks and shoes
 - Processor: a pair of hands
 - Sequential algorithm:
 put on right sock, right shoe,
 put on left sock, left shoe.
 Need 4 time units
 - Parallel algorithm:
 - **Two processors:**
 - one for left foot and another for right foot.
 - Need 2 time units.
 - Question: Can we use four processors to further speed up to, say, 1 time unit?

• Parallel computer models

- Physical architecture models
 - * Multiprocessors
 - Uniform memory access (UMA), a single shared memory space.
 - Nonuniform memory access (NUMA), distributed shared-memory multiprocessors (DSM).
 - * Multicomputers (distributed memory)
 - Hypercube architecture
 - Mesh connected architecture
 - * Networks of workstations (NOW)
 - An inexpensive way to build parallel computers.

A multicomputer

A UMA shared-memory multiprocessor

NUMA model for multiprocessor system

A message passing multicomputer

– Theoretical models

Used to estimate the performance bounds on algorithms.

- * Review of time and space complexity
 - Time complexity: a function of the problem size
 - **Big O notation (worst case complexity):**
 - a time complexity g(n) is said to be O(f(n))if there exist positive constants c and n_0 so that $g(n) \leq cf(n)$ for all nonnegative values of $n > n_0$.
 - Sequential complexity: the complexity of sequential algorithm
 - Parallel complexity: the complexity of parallel algorithm

* NP-problems

- · An algorithm has time complexity O(f(n))where n is the problem size.
- \cdot P-class (polynomial): f(n) is a polynomial.
- NP-class (nondeterministic polynomial): polynomial verifiable for a guessed solution, but f(n) is exponential.

*** Examples:**

P-class: search max in a list: O(n)

NP-class: Traveling salesman problem

(travel all cities with minimum cost): $O(n^2 2^n)$.

- * Parallel complexity
 - · Sequential complexity O(w(n))
 - Parallel complexity of a *p*-processor machine $O(\frac{w(n)}{n})$:

the algorithm is scalable.

• Not every problem can achieve this due to data dependence

· An example:

putting on socks and shoes

* Parallel random access machine (PRAM). Consists of

- · p processors P_1, \ldots, P_p
- · Processors are connected to a large shared, random access memory M.
- Processors have a private or local memory for their own computation, but all communication among them takes place via the shared memory
- Each time step has three phases: read phase, computation phase and write phase.
- Processors synchronized (write at the same time)

- * Four subclasses, depending on how concurrent read/write is handled:
 - EREW-PRAM: exclusive read exclusive write. Allow only one processor to read or write a memory location
 - CREW-PRAM: concurrent read exclusive write.
 Allow multiple processors to read the same memory location, but not allow concurrent write.
 - · ERCW-PRAM: exclusive read concurrent write.
 - · CRCW-PRAM: concurrent read current write.

***** How to resolve the write conflicts

- Common: all simultaneous writes store the same value to that memory location
- · Arbitrary: choose one value ignore others
- Minimum: store the value of the processor with the minimum index
- Priority: some combination of all values, such as summation or maximum
- * In PRAM model, synchronization and memory access overhead are ignored.

*** Example:**

An algorithm on a PRAM: Multiplication of two $n \times n$ matrices in $O(\log n)$ time on a PRAM (CREW) with $n^3/\log n$ processors.

 $A \times B = C$

 $A(i,k), B(k,j), C(i,j,k), \qquad 0 \leq i,j,k \leq n-1$

First assume n^3 processors:

$$PE(i, j, k), \quad 0 \le i, j, k \le n - 1$$

Standard algorithm:

$$C(i,j) = \sum_{k=0}^{n-1} A(i,k) \times B(k,j)$$

We put the final results in C(i, j, 0) for $0 \le i, j \le n - 1$.

Step 1:

$$C(i,j,k) = A(i,k) \times B(k,j)$$

Step 2:

$$C(i, j, 0) = \sum_{k=0}^{n-1} C(i, j, k)$$

Now look at $n^3/\log n$ processors.

$$C(i, j, k), \quad 0 \le i, j, \le n - 1, \quad 0 \le k \le \frac{n}{\log n} - 1$$

Step 1:

$$C(i, j, 0) = \sum_{\substack{k=0\\ 2\log n-1\\ \sum}}^{\log n-1} A(i, k) \times B(k, j)$$
$$C(i, j, 1) = \sum_{\substack{k=\log n\\ k=\log n}}^{2\log n-1} A(i, k) \times B(k, j)$$
$$\mathbf{i}$$

Step 2:

$$C(i, j, 0) = \sum_{k=0}^{n/\log n-1} C(i, j, k)$$

Modify the code: $l \leftarrow n$ to $l \leftarrow n / \log n$

Algorithm Step 1: Read A(i, k) 1. 2. Read B(k, j) 3. Compute $A(i, k) \times B(k, j)$ Store in C(i, j, k) **4**. Step 2: 1. $l \leftarrow n$ 2. Repeat $l \leftarrow l/2$ if $(k \leq \ell)$ then begin Read C(i, j, k) **Read** $C(i, j, k + \ell)$ Compute $C(i, j, k) + C(i, j, k + \ell)$ Store in C(i, j, k)end until $(\ell = 1)$

P-37

- * VLSI complexity model (AT^2 model)
 - Set limits on memory, I/O and communication, for implementing parallel algorithms with VLSI chips.
 - · A: chip area (chip complexity)
 - T: time for completing a given computation
 - · s: problem size
 - \cdot There exists a lower bound f(s) such that

 $A \times T^2 \ge O(f(s))$

- Memory requirement sets a lower bound on chip area A
- Information flows through the chip for a period of time T.

AT: the amount of information flowing through the chip during time T. The number of input bits cannot exceed the volume AT.
Bisection √AT (usually use AT²): maximum information exchange between the two halves of the chip during time T.

(a) Memory-limited bound on chip area A and I/O-limited bound on chip history represented by the volume AT

(b) Communication-limited bound on the bisection \sqrt{AT}

Figure 1.15 The AT² complexity model of two-dimensional VLSI chips.

• Example:

Matrix multiplication.

 $n \times n$ matrices, $C = A \times B$ 2-D mesh architecture, n^2 PE's broadcast bus for inter-PE communication chip area complexity: $A = O(n^2)$ time complexity T = O(n)

$$AT^2 = O(n^2) \cdot (O(n))^2 = O(n^4)$$

1

Figure 1.16 A 4 × 4 mesh of processing elements (PEs) with broadcast bu each row and on each column. (Courtesy of Prasanna Kumar and Ray dra; reprinted from Journal of Parallel and Distributed Computing, April

Do 50 for
$$0 \le k \le n-1$$

Doall 20 for $0 \le i \le n-1$
20 PE(i,k) broadcasts A(i,k) along its row bus
Doall 30 for $0 \le j \le n-1$
30 PE(k,j) broadcasts B(k,j) along its column bus
/PE(i,j) now has A(i,k) and B(k,j), $0 \le i, j \le n-1/$
Doall 40 for $0 \le i, j \le n-1$
40 PE(i,j) computes C(i,j) \leftarrow C(i,j) + A(i,k) \times B(k,j)
50 Continue

•

ي ب

P.41

• How to solve a typical computation task sorting using different types of computation models.

- Problem description:

A sequence

$$S = \{s_1, s_2, \dots, s_n\}$$

A linear order < is defined on S. Find a new sequence

$$S' = \{s'_1, s'_2, \dots, s'_n\}$$

such that $s'_i < s'_{i+1}$ for i = 1, 2, ..., n-1.

- Sequential algorithm.

* Lower bound: $\Omega(n \log n)$

* Mergesort (optimal)

Time
$$T(n) = O(n \log n)$$

- Parallel algorithm on CRCW model.

* Write conflict: storing the sum of all values being written.

* Sorting by enumeration:

 n^2 processors.

Two lists in shared memory:

S stores s_1, s_2, \ldots, s_n and C stores c_1, c_2, \ldots, c_n

 c_i is the number of of elements in S smaller than s_i .

If $s_i = s_j$ and i > j then $s_i > s_j$ in the sorted list.

- * Each p(i, j) compares s_i and s_j and stores s_i in position $1 + c_i$ of S.
- * **Time** T(n) = O(1)
- * **Processors:** $P(n) = n^2$
- * Cost: $C(n) = T(n)P(n) = O(n^2)$
- * This algorithm is not optimal. If $c(n) = O(n \log n)$ optimal.

Procedure CRCW sort(S)

Step 1: for i = 1 to n doall for j = 1 to n doall if $(s_i > s_j)$ or $(s_i = s_j \text{ and } i > j)$ then p(i, j) writes 1 in c_i else p(i, j) writes 0 in c_i end if end for end for Step 2: for i = 1 to n doall P(i, 1) stores s_i in position $1 + c_i$ of S

end for

Parallel algorithm on CREW model. Divide S into p subsets and one processor sorts a subset.

$$S = S_1 \cup S_2 \cup \dots \cup S_p$$
$$T(n) = O(\log^2 n)$$
$$P(n) = O(n / \log n)$$
$$C(n) = O(n \log n)$$

Optimal algorithm.

A special purpose parallel architecture designed for sorting (hardware sorter)

Specialized processors + custom-designed interconnection networks Odd-even sorting network

Very simple processor: 2×2 comparator

Basic idea: merge sort

(n, n) merging network: merges two length-*n* sorted lists into one length 2n sorted list.

* (1, 1) merging network = 2×2 comparator * (2, 2) merging network

 $a_1 \leq a_2, \ b_1 \leq b_2$

 $\min\{a_1, b_1\} = \min\{a_1, a_2, b_1, b_2\} = c_1$ $\max\{a_2, b_2\} = \max\{a_1, a_2, b_1, b_2\} = c_4$

One more comparator to compare c_2 and c_3 .

* (n, n) merging network(n is a power of 2): Recursive construction using two (n/2, n/2) merging networks

 $a_1, a_3, \ldots, a_{n-1}, b_1, b_3, \ldots, b_{n-1}$ connected to the

first merger

 $a_2, a_4, \ldots, a_n, b_2, b_4, \ldots, b_n$ connected to the sec-

ond merger

Additional n-1 comparators

Proof of correctness.

Note that subsequences $a_1, a_3, \ldots, a_{n-1}$ and $b_1, b_3, \ldots, b_{n-1}$ are sorted, and we have

$$d_1 \leq d_2 \leq \cdots \leq d_n$$

 $e_1 \leq e_2 \leq \cdots \leq e_n$

 d_1 is the min of all elements $\Rightarrow d_1 = c_1$ e_n is the max of all elements $\Rightarrow e_n = c_{2n}$

Now, we need to prove:

 $c_{2i} = \min\{d_{i+1}, e_i\}$

$$c_{2i+1} = \max\{d_{i+1}, e_i\}$$

Consider sequence $\{d_1, d_2, \ldots, d_{i+1}\}$:

 $\{d_1, d_2, \ldots, d_{i+1}\} \subseteq \{a_1, a_3, \ldots, a_{n-1}, b_1, b_3, \ldots, b_{n-1}\}$

Suppose k elements of $\{d_1, d_2, \ldots, d_{i+1}\}$ are in $\{a_1, a_3, \ldots, a_{n-1}\}$

They must be the first k elements

$$\{a_1,a_3,\ldots,a_{2k-1}\}$$

Then i + 1 - k elements in $\{b_1, b_3, \dots, b_{n-1}\}$. These elements must be the first (i + 1 - k) elements

$$\{b_1, b_3, \dots, b_{2(i+1-k)-1}\}$$

Look at the largest element d_{i+1} ,

$$d_{i+1} \ge \{a_1, a_3, \dots, a_{2k-1}\}$$

Plug in

$$\{a_2, a_4, \dots, a_{2k-2}\}$$

 d_{i+1} is greater than $2k - 1 a_i$'s Similarly, d_{i+1} is greater than $2(i + 1 - k) - 1 b_i$'s

$$2k - 1 + 2(i + 1 - k) - 1 = 2i$$

Then we have

$$d_{i+1} \ge c_{2i}$$

Similarly, consider
$$\{e_1, e_2, ..., e_i\}$$
.
 $k \text{ of } \{e_1, e_2, ..., e_i\}$ are in $\{a_2, a_4, ..., a_n\}$.
 $i - k \text{ of } \{e_1, e_2, ..., e_i\}$ are in $\{b_2, b_4, ..., b_n\}$.
 e_i is greater than $2k a_i$'s, and e_i is greater than $2(i-k)$
 b_i 's.
So

$$e_i \geq c_{2i}$$

We have

$$d_{i+1} \ge c_{2i}$$
$$e_i \ge c_{2i}$$

for $i = 1, 2, \ldots, n - 1$.

Now let i = n - 1, we have

$$d_n \geq c_{2n-2}$$
$$e_{n-1} \geq c_{2n-2}$$

Since $e_n = c_{2n}$,

 $\{d_n, e_{n-1}\} = \{c_{2n-2}, c_{2n-1}\}$

Then

$$c_{2n-2} = \min\{d_n, e_{n-1}\}$$

 $c_{2n-1} = \max\{d_n, e_{n-1}\}$

For i = n - 2,

$$egin{aligned} d_{n-1} &\geq c_{2n-4} \ e_{n-2} &\geq c_{2n-4} \ \{d_{n-1}, e_{n-2}\} &= \{c_{2n-4}, c_{2n-3}\} \end{aligned}$$

Then

$$c_{2n-4} = \min\{d_{n-1}, e_{n-2}\}$$

 $c_{2n-3} = \max\{d_{n-1}, e_{n-2}\}$

Analysis for merger:

– Time:

$$T(2) = 1, T(2n) = T(n) + 1$$

 $T(2n) = 1 + \log n$

- Processors:

$$\begin{split} P(2) &= 1 \\ P(2n) &= 2P(n) + (n-1) \\ P(2n) &= 1 + n \log n \text{.} \end{split}$$

- Cost:

$$C(2n) = P(2n) \times T(2n) = O(n \log^2 n)$$

Not optimal (O(n) is optimal).

Back to odd-even sorting network:

- Time: $T(n) = T(n/2) + (1 + \log(n/2)) = T(n/2) + \log n = O(\log^2 n)$

- Processors:

$$P(n) = 2P(n/2) + 1 + (n/2)\log(n/2) = O(n\log^2 n)$$

- Cost:

$$C(n) = P(n) \times T(n) = O(n \log^4 n)$$

Summary for sorting

– Odd-even sorting network

$$* T(n) = O(\log^2 n)$$

$$\ast \ P(n) = O(n \log^2 n)$$

$$\ast \ C(n) = O(n \log^4 n)$$

Not optimal, but a practical network.

- Sequential algorithm

$$* T(n) = O(n \log n)$$

$$* P(n) = O(1)$$

$$* C(n) = O(n \log n)$$

Optimal.

The best parallel algorithm: AKS sorting network (CREW model)

$$* T(n) = O(\log n)$$

$$P(n) = O(n)$$

$$* \ C(n) = O(n \log n)$$

Optimal, but very large hidden constant, complex.