
MODERN OPERATING SYSTEMS

Third Edition

ANDREW S. TANENBAUM

Chapter 6

Deadlocks

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Preemptable and Nonpreemptable

Resources

• Non-sharable resource: the resource can be used by

only one process at a time

• A process may use a resource in only the following

sequence:

 1. Request: If the resource cannot be granted, the

requesting process must wait until it can acquire the

resource.

2. Use: The process can operate on the resource.

3. Release: The process releases the resource.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 6-1. Using a semaphore to protect resources.

(a) One resource. (b) Two resources.

Resource Acquisition (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 6-2. (a)

Deadlock-free

code.

Resource Acquisition (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 6-2. (b) Code with a

potential deadlock.

Resource Acquisition (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Introduction To Deadlocks

Deadlock can be defined formally as follows:

A set of processes is deadlocked if each

process in the set is waiting for an event

that only another process in the set can

cause.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Conditions for Resource Deadlocks

Necessary conditions for a deadlock to occur

 1. Mutual exclusion: The resource is non-sharable.

 2. Hold and wait: A process that is holding resources

can request new resources.

 3. No preemption: A resource can be released only by

the process holding it.

 4. Circular wait: There is a circular chain of two or

more processes, each of which is waiting for a

resource held by the next member of the chain.

 5. All four conditions must simultaneously hold.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 6-3. Resource allocation graphs. (a) Holding a resource.

(b) Requesting a resource. (c) Deadlock.

Deadlock Modeling (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Resource graph: a directed graph with two types of

nodes:

Processes (circles) and resources (squares)

Use resource graph to detect deadlocks

An example:

_ Three processes A, B, and C

_ Three resources R, S and T

_ Round robin scheduling

Using resource graph, we can see if a given

request/release sequence leads to deadlock:

Carry out the request and release step by step, check if

there is any circle after each step.

Deadlock Modeling

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 6-4. An example of how deadlock occurs

and how it can be avoided.

Deadlock Modeling (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 6-4. An example of how deadlock occurs

and how it can be avoided.

Deadlock Modeling (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 6-4. An example of how deadlock occurs

and how it can be avoided.

Deadlock Modeling (4)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Deadlock Modeling (5)

Strategies for dealing with deadlocks:

1. Just ignore the problem.

2. Detection and recovery. Let deadlocks

occur, detect them, take action.

3. Dynamic avoidance by careful resource

allocation.

4. Prevention, by structurally negating one

of the four required conditions.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Ignoring Deadlocks

The Ostrich algorithm:

• Stick your head in the sand and pretend that

deadlocks never occur.

• Used by most operating systems, including UNIX.

• Tradeoff between convenience and correctness

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

An Example in Unix

 An example of deadlock in UNIX:

• Process table has 100 slots

• 10 processes are running

• Each process needs to fork 12 subprocesses

• After each forks 9 subprocesses, the table is full

• Each original process sits in the endless loop: fork and

fail

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Deadlock Detection

• In a system where a deadlock may occur, the system

must provide:

• An algorithm than exams the state of the system to

determine whether a deadlock has occurred

• An algorithm to recover from the deadlock

Detection

• Every time a resource is requested or released, check

resource graph to see if any cycles exist.

• How to detect cycles in a directed graph?

• Depth-first search from each node. See if any

repeated node. O(N) algorithm.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 6-5. (a) A resource graph. (b) A cycle extracted from (a).

Deadlock Detection with

One Resource of Each Type (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Deadlock Detection with

One Resource of Each Type (2)

Algorithm for detecting deadlock:

1. For each node, N in the graph, perform the

following five steps with N as the starting node.

2. Initialize L to the empty list, designate all arcs

as unmarked.

3. Add current node to end of L, check to see if

node now appears in L two times. If it does,

graph contains a cycle (listed in L), algorithm

terminates.

…

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Deadlock Detection with

One Resource of Each Type (3)

4. From given node, see if any unmarked

outgoing arcs. If so, go to step 5; if not, go to

step 6.

5. Pick an unmarked outgoing arc at random and

mark it. Then follow it to the new current node

and go to step 3.

6. If this is initial node, graph does not contain any

cycles, algorithm terminates. Otherwise, dead

end. Remove it, go back to previous node,

make that one current node, go to step 3.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 6-6. The four data structures needed

by the deadlock detection algorithm.

Deadlock Detection with Multiple

Resources of Each Type (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Deadlock Detection with Multiple

Resources of Each Type (2)

Deadlock detection algorithm:

1. Look for an unmarked process, Pi , for which

the i-th row of R is less than or equal to A.

2. If such a process is found, add the i-th row of C

to A, mark the process, and go back to step 1.

3. If no such process exists, the algorithm

terminates.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 6-7. An example for the deadlock detection algorithm.

Deadlock Detection with Multiple

Resources of Each Type (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Recovery from Deadlock

Recovery

• Abort one process at a time until the deadlock cycle is

eliminated.

• A simpler way (used in large main frame computers):

• Do not maintain a resource graph. Only periodically

check to see if there are any processes that have been

blocked for a certain amount of time, say, 1 hour. Then

kill such processes.

• To recover the killed processes, need to restore any

modified files. Keep different versions of the file.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Recovery from Deadlock

• Recovery through preemption

• Recovery through rollback

• Recovery through killing processes

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Deadlock Avoidance

• Analyzing each resource request to see if it can be safely granted.

• Resource trajectories: A model for two processes and two resources

• An example:

• Process A and B

• Resources: printer and plotter

• A needs printer from I1 to I3

• A needs plotter from I2 to I4

• B needs plotter from I5 to I7

• B needs printer from I6 to I8

• Each point in the diagram is a joint state of A & B

• Can only go vertical or horizontal (one CPU)

• Start at point p, run A to point q, run B to point r, run A to point s, granted

printer, run B to point t, request plotter, can only run A to completion.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 6-8. Two process resource trajectories.

Deadlock Avoidance

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Deadlock Avoidance

• Find a general algorithm that can always avoid deadlock by

making right decisions.

• Banker's algorithm for a single resource:

• A small town banker deals with a group of customers with

granted credit lines.

• The analogy:

• Customers: processes

• Units: copies of the resource

• Banker: O.S.

• State of the system: showing the money loaned and the

maximum credit available

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Deadlock Avoidance

• Safe state:

• There exists a sequence of other states that lead to all customers

getting loans up to their credit lines.

• Algorithm:

• For each request, see if granting it leads to a safe state. If it does, the

request is granted. Otherwise, it is postponed until later.

• Check a safe state:

• (1) See if available resources can satisfy the customer closest to his

maximum. If so, these loans are assumed to be repaid.

• (2) Then check the customer now closet to his maximum, and so on.

• (3) If all loans can be eventually paid, the current state is safe.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 6-9. Demonstration that the state in (a) is safe.

Safe and Unsafe States (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 6-10. Demonstration that the state in (b) is not safe.

Safe and Unsafe States (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 6-11. Three resource allocation states:

(a) Safe. (b) Safe. (c) Unsafe.

The Banker’s Algorithm

for a Single Resource

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Banker’s Algorithm

for Multiple Resources

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Processes must state their total resource needs before

executing

n processes and m types of resources

Two matrices:

Current allocation matrix

Request matrix

Three vectors:

Existing resource: E = (E1, E2, …, Em)

Possessed resource: P = (P1, P2, …, Pm)

Available resource: A = (A1, A2, …, Am)

A = E - P

Figure 6-12. The banker’s algorithm with multiple resources.

The Banker’s Algorithm

for Multiple Resources

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Banker’s Algorithm

for Multiple Resources

Algorithm for checking to see if a state is safe:

1. Look for row, R, whose unmet resource needs all

≤ A. If no such row exists, system will eventually

deadlock since no process can run to completion

2. Assume process of row chosen requests all resources

it needs and finishes. Mark process as terminated, add

all its resources to the A vector.

3. Repeat steps 1 and 2 until either all processes marked

terminated (initial state was safe) or no process left

whose resource needs can be met (there is a

deadlock).

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Banker’s Algorithm

for Multiple Resources

• An example:

• Row D <= A, then A = A + (1101) = (2121)

• Row A <= A, then A = A + (3011) = (5132)

• Row B <= A, then A = A + (0100) = (5232)

• Row C <= A, then A = A + (1110) = (6342)

• Row E <= A, then A = A+(0000) = (6342) = E

• So, the current state is safe.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Banker’s Algorithm

for Multiple Resources

• Suppose process B requests a printer

• Now A = (1010)

• Row D <= A, then A = A + (1101) = (2111)

• Row A <= A, then A = A + (3011) = (5122)

• Row B <= A, then A = A + (0110) = (5232)

• Row C <= A, then A = A + (1110) = (6342)

• Row E <= A, then A = A+(0000) = (6342) = E

• So, the request is still safe.

• If E requests the last printer.

• A = (1000)

• No row <= A, will lead to a deadlock.

• So E's request should be deferred.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Deadlock Prevention

• Use a protocol to ensure that the system

will never enter a deadlock state.

• Negating one of the four necessary

conditions.

• 1. Mutual exclusion

• 2. Hold and wait

• 3. No preemption

• 4. Circular wait

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Attacking Mutual Exclusion

Condiiton

• Mutual exclusion

• Ensure that no resource is assigned exclusively to a

single process. Spooling everything.

• Drawback: not all resources can be spooled (such as

process table)

• Competition for disk space for spooling itself may lead

to deadlock.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Attacking Hold and Wait Condition

• Process requires all its resources before starting

• Problem: processes may not know how many

resources needed in advance; not an optimal

approach using resources (low utilization)

• A variant: a process requesting a resource first

temporarily releases all the resources it holds. Once

the request is granted, it gets all resource back.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Attacking No Preemption Condition

• Forcibly take away the resource. Not realistic.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Attacking the

Circular Wait Condition

• Solution 1: A process is entitled only a single resource

at any time.

• Solution 2: Global numbering all resources:

• Give a unique number to each resource. All requests

must be made in a numerical order

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Attacking the

Circular Wait Condition
• An example: two processes and five devices. Number the resources

as follows:

• (a) Card reader

• (b) Printer

• (c) Plotter

• (d) Tape drive

• (e) Card punch

• Assume process A holds i and process B holds j (i \= j).

• If i > j, A is not allowed to request j.

• If i < j, B is not allowed to request i.

• Suitable to multiple processes. At any time, there must be a assigned

resource with the highest number. This process will not request other

assigned resources, only requests higher numbered resource and

finishes. Then releases all resources.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 6-13. (a) Numerically ordered resources.

(b) A resource graph.

Attacking the

Circular Wait Condition

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 6-14. Summary of approaches to deadlock prevention.

Approaches to Deadlock Prevention

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Approaches to Deadlock Prevention

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Problems:

(1) Process don't know the maximum resources they need in

advance

(2) The number of processes is not fixed

(3) Available resources may suddenly break

In summary,

Prevention: too overly restrictive

Avoidance: required information may not be available

Still no good general solution yet.

Figure 6-15. A resource deadlock in a network.

Communication Deadlocks

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Security

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Some common security problems

Abuse of valid privileges

e.g. on Unix, a super user can do anything.

Trojan Horse

Modify a normal program to do nasty things in addition to its normal

function.

e.g. leave a program lying around that looks like the login process when

people type passwords, remember them.

Spoiler

Use up all resources and make system crash.

e.g. grab all disk space or create thousands of processes.

Worm or virus

A Trojan Horse that is also capable of spreading itself from machine to

machine.

Security

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Famous historical security flaws

Unix utility lpr

Print a file with an option to remove the file after printing.

May delete password file this way.

TENEX O.S. (Used on DEC-10 computers)

Can call a user function on each page fault

_ To access a file, a program had to present a password.

_ Can find a password by putting password crossing the page

boundary.

For password length n and 128 characters, at most 128n times

are needed to determine the password instead of 128^{n}

times.

Security

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Sendmail/finger worm (Internet worm)

_ Disabled thousands of computers in Nov. 1988.

_ Used two bugs in Berkeley Unix system.

_ Sendmail attack:

Worm can mail a copy of program, get it executed and set up

a Trojan Horse on machine.

_ Finger attack:

Give a carefully designed long name to finger which

overflows buffer, modifies stack, causing /bin/sh to be

executed.

Security

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

How to test a system's security

Make sure the system can withstand the following attacks

Request memory pages, disk space or tapes and just read them (to see if the

system erases the information before allocating it).

Try illegal system calls, or legal system calls with illegal parameters to confuse the

system.

Start login in and then hit DEL, or BREAK halfway through the login sequence.

May kill password checking program and login successfully without a password.

Try modifying complex operating system structures (security related) in user space.

Look for manual that says ``Do not do X." Try as many variations of X as possible.

Fool the user by writing a program that types ``login:" on the screen and go away

(record password).

Security

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Password:

a secret piece of information used to establish the identity of

a user.

Password file: a series of ASCII lines (encrypted password),

one line per user. When login, user types password. O.S.

encrypts the password and compares it with that in

password file.

In theory, for 7 char password length, randomly chosen from

95 printable ASCII char, there will be 95^{7} = 7x10^{13}

possibilities.

At 1000 encryptions per second, requires 2000 years to

build the list to check the password file.

Security

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

In practice, people use first names, last names, street names, city

names, some common words, car license plate numbers,...

Research shows 86% matched.

Solution: Concatenate an n-bit random number with each password.

Encrypted together and stored in password file.

For one password, has to encrypt 2^{n} string to match the password

file. Unix uses n = 12.

This way can only prevent someone guess your password off-line, but

cannot prevent someone try to login into your account on-line.

Tip: Choose password as random as possible.

Protection

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The objects need to be protected:

CPU, memory segments, terminals, files, semaphores,...

Each object has a name and a set of operations.

Example:

file: name, read/write; semaphore: name, up/down

Protection domain: a collection of (object, right) pairs.

Right: permission to perform one of the operations

 At any time, each process runs in some protection domain.

Protection

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Keep track of which object belongs to which domain

1. Protection matrix:

Rows are the domains and the columns are the

objects. Each matrix entry lists the rights.

Problem: The matrix is large and sparse.

Protection

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

2. Access control lists: store the matrix by

columns.

Associated with each file. Indicate which

users are allowed to perform which

operations.

General form: each file has a list of (user,

privilege) pairs.

Protection

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Example:

Four users A, B, C, and D, belong to groups: system, staff, and student.

File0: (A, *, RWX)

File1: (A, system, RWX)

File2: (A, *, RW-), (B, staff, R--), (D, *, R--)

File3: (*, student, R--)

File4: (C, *, ---), (*, student, R--)

File0 can be RWX by any process with uid=A, gid=any.

File1 can be RWX by uid=A, gid =system.

File2 can be RW by uid=A, gid=any.

File2 can be R by uid=B, gid=staff.

File2 can be R by uid=D, gid=any.

File3 can be R by uid=any, gid=student.

Processes with uid=C, gid=any have no access to file4, but all other

processes with uid=any, gid=student can read file4.

Protection

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Compressed form: users are grouped into classes.

e.g. in Unix, each file has 9 bits RWXRWXRWX for

self, group and other three classes.

Default: every one can access

Simple, used in most file systems

Protection

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

3. Capabilities: store the matrix by rows

Associated with each user. Indicate which file

may be accessed and in what ways.

Store a list of (object, privilege) pairs with each

user. Called capability list.

Default: no one can access.

Used in systems that need to be very secure.

Difficult to share information.

