< 15 =

with the value one. This will be referred to as the consisercy cordition. Obviously, the
consistency condition is redundant for some dosed paths. The minirmum set of pro-
ducts needed to verify the consistency condition is investigated {rom a topological
point of view in [18]. Note that the consistency condition for the queueing system of
Fig. Sa is verified.

An important dess of M arkovian queueing networks is reversible [11]. For this
dass we can prove the following:
Corollry 1. For rewersible Markovan quewetrg metuorks the comsistercy condifion
atumgs rerified
Poof: The detailed balance equations hold for reversible m arkovian queueing net-
works. Hence, the consistency condition is equivalent with Kolmogorov's criterion for
reversibility [11]. =

W e have seen that if the consistency condition is verified the product of the path
between any two nodes of the consistency graph is an invariant. For reversible queue-
ing networks this reflects the property that the equilibrium probabilities of M arkovian
queueing networks are potentials [ 10;. This property is further explored in [19].

IV. Geometric Replication

The consistency condition developed in the previous section for a M arkovian
queueing network with # nodes and an arbitrary number of packets does not expli-
atly give a constructive method to find the set of pertial balance equations. In this
section a method for finding this set with epplications to M arkovian queueing networks
arising in practice is given. This method generalizes the results derived in section 1.

The generalized traffic flow equations for the Markovian queueing network
defined above are given by:

Mo w2 Mt S e nh (@)

for all (k.ka - - Jhy)tEXExx - - - xEy end all 4, 1= j< M, where r=(nf{{, . ) is the
set of state dependent routing probabilities for all nodes 1.j, 1<1,J< M. As in the
lower dimensional case, the generic M -dimensional cell is spedfied by the graph asso-
dated with the M arkovian queueing network with only one packet The corresponding
greph translated to node (k, k5 - - - .ky) is shown in Fig. 6. The equilibrium probabil-
ity that a packet is visiting queue !, 1<!< M, if only one packel is in the network
amounts to:

8 o
Poo -1 --0=W o 0 (28)

foralj, 1sj< M.

Recall that the state transiion diagramn of a single M /M /1 queue consists of 1-
dimensional cells between each peir of adjacent nodes. These cells together with the
two dimensional cells can also be used to construct a wide variety of state transition
diagrams in two dimensions. Similarly, the one, two and three dimensional cells can
be used to construct state trensition diegrams in three dimensions. [t is easy to see
that for an M -dimensional state, transition diagrems can be constructed based on
1, 2, ... , M dimensional cells. (For M =2 an example is given in Fig 7). Altema
tively, in an M -dimensional state transition diagram the l-cells, 1= i< M, can be inter
preted as degenerate M -cells (M -cells with some of the transitions equal to zero).



(k

Bovgo s sk #1)

12

Fig. € M-dimensional

w16 w

k_ +
(Kl l,kg,...

cell

‘}(“M)




Fig. 7T

State trarsition

diagram consisting of one and two-

dimensional cells.




- I8 =

Defirtion 2. The constructive process of aggregating M -dimensional cells into a cormr
plex is referred to as geometric replication.

This process is not necessarily the mere replication of M -dimensional cells having
the same trensitions. Rather, cells can be added to the state trensition diagram that
have different trensition rates. The flows in these cells can be implemented using state
dependent routing [35].

The result below proves that the process of geometric replicetion preserves the
product form solution for networks with blocking and state dependent routing if an
explidt consistency condition is satisfled. This condition requires that
(cc) the M arkovian queueing net.. ... consisting of M parellel queues with arrival and

departure rates (-&({lt ...’.;.LHL. —ay) for all (kykg - kyleE\xEpx - - - xEy

and all 5, 1< j< M, is reversible.

The inverse problem of determining a structure which provides desired probabili-
ties is also of interest [1]. This problem can be cest into the framework of realization
theory and is not dealt with in this peper.

Let us assume that the M arkovian queueing network defined in the previous sec
tion has a state transition diagram constructed by geometric replication. A ssume also
that uffl, &, >0, if k>0, foreach f, 1< s M.

Thearem 2. [f the stnfe trunsition diogram. of a M arkovian queuetng retuork oblained by
@mw E. !- !- ﬁ m (w) - : !-!- h .Eat . pUE !-!.!. m

gren by

A gercoy
B, ok = Pw -0 - (29)
o (S

for all (k ko - - Jhy) eExExx -+ - X Ey.
Poof: Using an inverse process to geometric replication, the state trensition diagram
cen be decomposed into M -dimensional cells. The global balance equations of these
cells considered in isolation are given by:

XD o g B v g ¥ é'&‘?.---.’umn‘, R ety Ry aet by T

obl

(1-24) .. g 1l etk Peager ok (30)

at node (k,kp < - ky+1, - ky)eExEpx - - xEy, forallf, 1< j< M, and

M
’z_:ﬁglt kg Pk kg T

M M
Z_:(I -une s SO ) SR | S T (31)

i=1 I=1
at node (k,ka - - ey )eE\xEpX - - - X Ey.
By summing the above global balance equations of the M -dimensional cells taken
in isolaton on obtains the global balance equations of the original state trensition

disgram This can be shown by meking the substitution k- k—1 in (30), for all
j. 1= j< M, and summing the resulting equations together with equation (31). The



result, as one can easily see, is the global balance equation specified by (24). Hence,
the set of equations specified by (30) and (31) represents a set of mrtial balance eque
ttons for the original state trensition diagrern

The pertial balance equations at each node of the M -dimensional cells (see the
set of equations (30)) have a simple product form solution besed on an arbitrary refer-
ence probability that belongs to each cell. W e have:

4, o,
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for all (k, kg, - - ky) eExEpx - -~ xEy and all 4, 1< < M. The algebraic values of
the consistency greph essociated with the partial balance equations (30) can be
obtained from Lhe set of equations (32) above. It can be essily seen that the set of
equations (32) is consistent iff the (&) condition is satisfled. In other words, the con-
sistency condition of the pertial balance equations is equivalent mth Kolmogorov's
reversibility criterion [11] for the M akovian network consisting of # perallel queues
with arrival and deperture rates (%}, ., ufl, ). 1=j< M [19]. Therefore, pro-
vided that the consistency condition 1s sansﬂed. the partial balance equations are
equivalent to the global balance equations. Furthermore, the equilibriurmn probabilities
cen be recursively computed using the assodated consistency greph or the set of eque-
tions (32). The reference probability py, .o can be found using in addition to the set
of equations (32) the law of conservation of probabilities. =

A wide variety of protocols with product form solution can be constructed by an
incremental M -dimensional cell additions {geometric replications). The state transition
diagramn of reversible M arkovien queueing networks can be obtained by geometrically
replicating one-dimensional cells such that Kolmogorov's ariterion remains valid The
result derived below shows that the networks stuched by Jackson, Gordon and Newell
have the sarmne invariant probability measure [38]. W hile these results are known, the
derivation below is new. The proof reflects the inherent geometric properties of the
state transition disgrams. These can be obtained by geometric replication.

Corllary 2 The equabibrasmn probability of @ guen siofe i a dosed Jocksordon retuork
with N pockets & the sore as the equikbrasn probatnkity of that state in the open netunrk
gien that # contnins exaclly N packets. /n addition both probabitities hme o product prm

Proof: The stale transition diagram for both the open and dosed M arkovian queue-
ing network can be obtained by geometric replication. In the general case, the state
trensition diagram of the open network is a complex composed of M -dimensional
cells. The state transition diagram of the closed network consists of one-dimensional
cells situated on a hypeg:lane. Consequently, the equilibriumn probabilities have a pro-
duct form and are equal. The above equality implies thet the equilibriurn probability
of the closed network is the same as the trace probability induced by the conditional
probability of the open network (see [25], section 1.4.4.). e

For large dasses of state transition diagrams of practicel interest the consistency
condition is automnatically satisfied. In particular, this is the cese if the state transition
disgrem is composed of the same type of cells with the same transitions. The con-
sistency conditions also holds for trees since such graphs do not have any dosed paths.
Transition diagrams consisting of identical replications of M -dimensional cells can be
interconnected to forrmn ‘‘supertrees’’. This construct guarsnties that homogeneous
superarcs consisting of an amalgamation of cells of the sarme type can only be uniquely
reached from other nodes of the same graph.

Other possibilities are illustrated below. Figure 7 shows the realization of an arbi-
trary state transition diegram using only the one and two dimensional cells A proto-
col with a minirmum and meaximum number of peckets is given in Fig 8 Fig 9
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provides a protocol where the number of items in the second queue is less then the
nurnber of itemns in the first queue plus one. In Fig. 10 an arbitrary construction of
two dimensional cells is presented. A grid of alternating rectangles is illustrated in Fig,
11. This example also suggests a different geometric replication using rectangles.
Note the symmetry of the product form solution about the checkerboard diagonal
This grid pattern corresponds to a protocol where the two queues alternately are
allowed to either receive arrivals or complete servicing. This can be seen by examin-
ing any interior node.

Let us now consider the three dimensionhal cese. If & third queue is placed in
perallel to the second queue in Fig. -, then the tetrahedral state transition diagram of
Fig. 12 follows. The addition of some ¢ transitions is necessary to produce a tetrahedral
strucdure. A two token model [30] for a three tandemn queueing network appears in
Fig. 13. The transitions are along the edges of a tetrahedron (3-cell). Therefore, the
tetrahedral constructions in a 3-space corresponds to the triangular grids of two dimen-
sons. Here, the connections between elementary tetrahedrons are at the nodes of
these tetrahedrons. The volume between the elements can be completely filled
(packed) by inverted tetrahedral and octahedral solids.

V. Evaluation d the Equilibrium Probahility Distributian

The consistency theorem (Theoremn 1) has several immediate applications. Some
of these will be presented in considerable detail in the sequel.

Consider the rectangular state trensition grid that is assodated with the case of
two finite tandem queues (see Figure 14). As has been previously mentioned, the
analysis of such blocking networks is difficult However, if the horizontal trensitions
on the upper boundary and the vertical transitions on the side boundary are deleted, a
triangular grid structure is discerned. The new structure can be constructed out of
tw0-d.1mensonal cells. Consequently, a product form solution results. Note that the
nodes still form a rectangular geometry since only certain boundary transitions have
been deleted The existence of local conditions on boundaries that might lead to pro-
duct form were alluded to by Newell ([27] page 391). See also Kaufman [9] and the
references therein.

How does this new Markovian structure effect the physical protocol? It
corresponds to a policy where, upon the blodking of a queue in the network, ordy that
queue is allowed to continue service. This effectively predudes the interacting
behavior of the usual blocking networks.

Consider a M arkovian structure with a product form solution as obtained above.
W ith an appropriate choice of transition retes, any two nodes may be connected by a
pair of transitions (directionally opposite to each other) without changing the numeri-
cal values of the solution. The transition rates are sirmply set to create a new drcule
tion around these two transitions which does not interact with other drculations. The
magnitude of this new droulation can be arbitrerily set. Such additions (or removals)
can also be made to structures without the type of product form solutions discussed in
this paper. A non-interacting drculation involving any finite number of nodes can also
be appended to (or removed from) a M arkovian structure without changing the equili-
brium values if the transition rates along the new drculation path are appropriately
chosen.

This has several important consequences. Consider, for example, the M arkovian
structure for two tandem finite queues (say a Nx N rectanguler lattice). [t wes noted
above that if the transitions along the two meaximal boundaries were removed, a pro-
duct form solution existed (see Fig. 14). Now insteed, suppose that these transitions
are left in place and a single new transition from (N.0) to (O.N) is added This
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completes a new circuit along the two maximal boundaries and back from (N,0) to
(O,N). The transition retes along this new drculation path can now be sel so that a
new drcular flow is established which does not involve adding or subtracting flow
from the rest of the strucdure. The product form solution still holds around the two
dimensional cells (triangles). M ovement along the new circular path involves a ratio
of adjacent transition retes. Physicelly, the new transition corresponds to a fllled first
queue sending all iterns to an empty second queue.

The concept of the addition or removal of non-interacting flows is intuitively sim-
ple. The equilibrium probabilities are akin to fixed potentials. If the transition rates
are appropriatelv chosen, a new drculation is meaied which does not invalve
modifications of existing network flows. Because the potentials are assumed to be
fixed, there is no limit to the flow magnitude. This cen be set by simple scaling.
Imtuitive analogies in terms of other familiar networks are zero internal resistance or
infirtte capacity.

It should also be pointed out that even though the proposed structursl
modifications do not change the equilibrium probabilities, they do change the average
time spent in a perticular state. That is, there may be a faster movement between
states, even though the proportional time spent in any state is the same.

The usual product form solutions involve a scaling of the probability of all net-
work queues being empty. In the context of the previous model this is py o In con-
sidering the protocols described in section IV, however, it can be seen that some of
them lack such a singular probability. Thus, product form solutions must be besed on
a reference probability.

To celculate an arbitrary probability in terms of a reference probability, the shor-
test lattice path between the two probabilities must first be deterrmined. Then, either
an algebreic or a nummerical scaling can be recursively determined by moving along the
path. In the case of a numerical calculation, the order and storsge of intermediate
products and divisions will affect the accuracy of the ultimate result A ltematively,
logarithms ocould be used. In order to calculate all the equilibrium probabilities, the
shortest paths from each node to the reference node mmust be established. This cen be
accommplished by using a labeling shortest path algorithm on the consistency greph.

Deadlock [34] is one of the most serious problems that still defy mathematical
enalysis. One of the major difficulties is that queueing models for computer communi-
cation networks or computer systems with buffer size constraints cannot be used to
model the phenomena of direct or indirect deadlock. In practice, if two buffers are
filled and packets try to be exchanged between the two nodes direct deadlock occurs.
Since in a M arkovian queueing network simultaneous events occur with probability
zero such an effect cannot be captured directly. One of the common methods to avoid
deadlock is to prevent buffers from filling up at the same time. The basic protocol for
two interconnected queues, using the geometric replication introduced in Section 111,
satisfies this relationship (see also Fig. 14: assume, however, that each arc hes double
arrows attached to it). Indeed, if one buffer fills up none of the others is permitted to
serve unless the blocked queue reduces its size by one. In practice this requires the
transmission of an interrupt signal to the other queue in order to freeze its server. A
second disabling interrupt hes to follow as soon as the sending buffer has deared a
packet This protocol is easy to analyze since it has product form

Y1l. Condusian

The underlying geometry of the state trensition disgrarmn and a consistency condi-
tion have been identified as the conditions for recursive product form of the stationary
probabilities for M arkoviah queueing networks. This geometry represents the
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common structure of the queueing networks previously studied by Jackson. Gordon
end Newell and others Certain classes of networks with blocking also have this pro-
perty.

In a broader sense, this geometric formulation involves a graphic structure with
positive values assigned to the arcs and a set of positive nodal values which sum to
one. The rate of flow through an arc is the product of the arc value and the originating
nodal value. Geometric replication has been used to obtain, although indireclly, a
decornposition of the state transition diagram into its building blocks. A lgebraicelly,
this corresponds to a decormposition of the global balance equations into partial balance
equatioi.. The consistency of the latier equations can be verified using ‘. -unsistency
graph. The natural building block or cell has been shown to be topologically equivalent
to the state trensition diagram of the network accepting only one et This intui-
tively simple and pleasing construct is the basis for the product form of the equili-
briumn probabilities first established by Jackson [7].

Basic results obtained by other researchers in the pest such es Muntz's ¥ => &
property [24], the equilibrium distribution of the state seen by a packet when it jurnps
from one node to another [23!, [33] and the distribution of sojourn times [22° can
also be established within the framework of this paper. This requires, however, a
somewhat more formal presentation and will be published elsewhere }20]. Extensions
to M ultidass M arkovian queueing networks can also be developed [17].

On the prectical side this work complements existing work on queueing networks
with blocking and stale dependent routing. The geometrical method introduced is
extremely powerful and simple to use. A sirmple check of the state transition diagram
and of the consistency graph determines the existence, or lack thereof, of the product
form solution. In addition, it also suggests proctical ways for changing a protocol that
did not originally have a product form solution. In this way, blocking models based on
the usual queueing schematic representation may more closely model practical applica-
tions. It is hoped that a study of this dass of M arkovien structures may leed to
insights concerning other M arkovien structures not discussed here.
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