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I. Introduction

M aerkovian queueing networks are cormmonly used to model computer cormmunication
networks and computer . The mathematical foundation of these networks is
besed on the theory of Markov population processes [13]. These processes describe
t(.heI stai.is)tic:al movemnent of packets (itemns) among sets of integral number of nodes
ooloriies).

M any problems involving M arkovien structures entail the determination of the
equilibrium probabilities. Typical exammples are the determination of the aversge
throughput and aversge time delay for optimal flow control of computer comrmunice-
tion networks [18], [30]. The determination of the equilibrium probabilities involves
E.he’solution of a set of linesr equations known &s the global balance equations [14],
Xz

A nalytical methods to find the equilibrium probabilities abound in the literature
[22]. Good discussions of their relative merits are given in [31] and [28]. In order to
find dosed form solutions certain simplifying assumptions are ususlly made. Jackson
[7] showed that if the M arkovian queueing network is assumed to have an infinite
number of buffers at each node, the joint probability distribution of the number of
packets in the systern has the form of a product of marginal distributions. Jadkson [8]
and Gordon and Newell [5] showed that for closed M arkovian networks similar pro-
duct form solutions can be obtained (If product form solutions are possible, a nor
malizing constant must be celculated in a numericelly accurate manner, as in Buzen's
algorithm [3].) A question naturelly arises regarding the significance of the product
form What is the cormmon structure which closed queueing networks share with
open networks that leads to product form solutions?

Product formn solutions have, in the past, been attributed to a titative
behavior of the state transitions. The methodology introduced by W hittle [37], [38],
proved to be very useful in finding the equilibrium probabilities for many dasses of
M arkovian queueing networks [2], [11], [29]. Basket et al. [2! have noted, however,
that W hittle’s partial balance method does not always lead to a solution. For a given
queueing model one has no assurance a prion that the set of partial balance equations
are consistent. Note thet if product form solutions do not exist, finding the solution
to the global balance equations becomes practically unfeesible as the number of the
states increases.

One area where the absence of product form solutions hes produced difficulties is
the studv of tandem queueing systermns with finite buffers. The inherent blocking
introduces an interdependence between queues which complicates analysis. It has
been observed, however, that for certain state transition diagrams (protocols) the pro-
duct form solution applies even for the blocking case. Such solutions have mostly
been derived for a two tandemn queueing systern with protocols that have applications
in computer systems modeling. Variations of this system heve been extiensively
analyzed in the literature (Neuts [26]). An excellent discussion of the frustration and




-2-

difficulties encountered in dealing with this ‘“‘simple’’ network of two queues in tan-

dern appears in [27]. Limited examples of queueing networks with blocking having

dud. form equilibrium probabilities were also treated by Lam [15], Fittel (28], Kelly
11], and Hordijk and Van Dijk [8].

A gain the question arises over the existence and nature of the commmon structure
thet characterizes these networks end the networks previously studied by Jackson,
Gordon and Newell and others. W hy do some queueing networks with blocking have
a product form solution while others do not? W hat is the besic underlying structure
that leads to product form solution? Cen the dess of M arkovian queueing networks
with product form solutions be completely chare~~~~>d? These are the type of ques-
tions exarmined in this peper.

The issues raised above have been studied in the pest by meny investigators.
Lam [15] reported results that extended the clessical BCM P networks by using the
method of local balance. Chandy et al. [4] atternpted a complete characterization of
queueing networks with product form solutions and related this property to the notion
of ‘‘station balance'’. The fruitful study of reversibility [11], a quantitative property of
the state transition diagram first analyzed by Kolmogorov, seemed to point to an alge-
braic solution. Kelly [12] has considered the # => M property previously introduced
by M untz [24] and the resulting product form solution in a more general context of an
interconnected network of quasireversible nodes. W alrand [36] presented a detailed
analysis and proposed probabilistic arguments to explain the product form, the output
theorems, the distribution at the jumps, end the Poisson character of the flows in
order to provide a more intuitive justification of those properties.

The approach adopted in this paper is primarily of a geometric nature. The study
of simple queueing systems consisting of one or two queues reveals that the topologi-
cal structure of the state trensition diagram is intimately connected with the product
formm solution of the equilibriurn probabilities (see section 1I). Consequently, a
geometric interpretation of the state trensition diagram and its assodated globel bal-
ance equations in higher dimensions is pursued. The state trensition disgram of an
arbitrary M arkovian queueing network can be decomposed along certain basic
geometric shapes (building blocks). Taking these blocks in isolation a set of simple
global balance equations can be written. These equations represent, for the original
systermn, a possible set of pertial balance equations Geometrically, the original state
transition diagrarmn can be reconstructed by pesting the building blocks together. A lge-
braically, this procedure corresponds to a surmmation of the partial balance equations
resulting in the set of global balance equations. There is no guaranty, however, that
by following the spproach delineated above the partial balance equations are con-
sistent, ie., have a solution. The necessary and sufficient condition for consistency is
found. Using this condition in some particular ceses of interest, the topology of the
state transition diggramn cen be qualitatively and quantitatively modified so thal product
forrn soluuons result Quantitative behavior on the boundary of the state transition
diagram can, for exarple, lead to product form

This paper is organized as follows. In section II, starting with simple exarrples of
queueing systems consisting of one or two queues, it is shown that the product form is
a result of the geometry of certain lattice structures within the state transition diagram
Replication of the same basic cell structure leads to the product form solution of the
equilibrium probabilities. 1f the cell structure is repeated while assigning different
transitions to the arcs, the consistency of the resulting systemn of partial balance equa-
tions is no longer assured. The necessary and sufficient consistency condition for this
is given in section 1l (Theorem 1). For simplidty, this condition is defined using a
consistency graph. In section IV a constructive process of geometric replication is intro-
duced. This topological construction permnits the design of a very genereal dass of pro-
toools (see section IV). A systematic methodology to find stale transition disgrams
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with product form equilibrium probabilities is given in Theorem 2. Using this frame-
work it is shown how to find the invariant equilibrium probabilities for a large dlass of
networks used in practice. In section V the explidt evaluation algorithm for the equili-
briumn probabilities is discussed. [t is also shown how state transition diagrams can be
changed so &s to give rise to protocols with product form equilibrium probabilities of
the type investigated in section IV. Finally, a deadlock prevention mechanism is also

presented.

I1. The Geometric Structure of the Stale Transition Diegram

In whet follows, the geometric structure of the state trensition diagram for M ar
kovian queueing networks with an arbitrary number of nodes and packets will be stu-
died. Our analysis begins with a queueing network with only one node. Using an
inductive geomnetric approach the equilibrium probabilities for the systemn with N pack-
ets is found. Subsequenily the analysis is extended to a queueing network with 2
nodes. The general results for networks with # nodes and an arbitrery number of
peckets are formmulated in sections I1] and IV.

Consider a queueing systern consisting of one queue with an exponential server
and non-homogeneous Poisson arrivals as shown in Fig. ta The above queueing sys-
temn is completely described by a M arkov process @=(&;).teR,, with arrival and depar-
ture retes A=(A.) and u=(u, ), where k, takes vaelues in a state space E, with
E=§1,2 -+ Ni, N being the maximum bufler size. The corresponding state transition
diagram for this systemn containing 1, 2 and N packets is given in Fig. 1b, 1c and le,
respectively.

If only one packet is permitted into the network the product form solution natur-
ally applies. For, if ¥=1 the balance equation at node {1} (see Fig. 1b) can be written:

1Py = AgPo (1)

and therefore, using the conservation law of probabilities, py + p, = 1, the equilibrium
probabilities p, and py are eesily obtained.

Let us add a new state {2! to the state trensition diagram as in Fig. 1c This
corresponds to the case where the buffer is of size 2 (¥=2). By abuse of notation, the
balance equation at node {2{ is given by

HzP2 = \iPy (2)

Therefore, the global balance equation at node {1{ (see Fig. 1c)

AdPotpaPz = (A +y)Py (3)
cen be decomposed into two pertial balance equations
AgPe = p1P) (4)

and (2). Frorn equations (2) and (4) the equilibriumn probabilities p, and p, can be
essily found as a function of pp. Finally, the normalization factor py can be derived

fromn the conservation law of probabilities, }:p, 1. Note that equation (1) represent-

2=0
ing the giobal balance equation at node {1} for the system with only one buffer is
equivalent to the prtinl balance equation (4) for the system with two buffers at the
same node. Therefore, when compered with the systern with buffer size N=1, the
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overall effect of introducing the additional state {2{ (Fig. ic) on p, is merely the
change of the scaling factor py,.

The pertial balance equations (2) and (4) can be also obtained by geometrically
pertitioning the trensition diagramn across the network state {2]. The procedure is
dermmonstrated in Fig. 1d. The resulting building blocks of the state trensition diagram
are, then, simmple arcs. In what follows these arcs will be referred to as one-
dimensional cells ( 1-cells). By writing the global balance equalions for this geometrical
shapes in isolation, one obtains the equations (1) and (2}, the partaal balance
equations (2) and (4) for the systemn of Fig. 1c A summﬁuon of the latter leads to
the global balance equation of the original system (3).

In view of the above analysis, the state transition diagram of the queueing systemn
with N packets (Fig. le) can be decomposed into one-dimensional cells (see Fig. 1f).
The global balance equations for these cells are:

Ae-tfk-1 = Ml (5)
for all k, 1< k< N. The set of equations (5) also represents a set of partial balance
equations of the original state trensition diegrem (Fig. te). The intuitive meaning of
these equations is that the flow into a state due to an arrival is equal to the flow out of
that state due to a departure.

W hen pesting these cells together one obtains the original state trensition

i A lgebraically, this corresponds to a surmmation of the partial balance eque-

tions (5) resulting in the global balance equations of the original system For example
by adding the corresponding pertial balance equations at an interior node { one has:

Mo + et = (N +)n (6)

for all {, 1<I< N-1. Although we have shown that by sumrming ithe peartial balance
equations we obtain the global balance equations that by no means guarantees that the
systern (5) is consistent, that is, it hes a solution.

In the simple cese studied above, the consistency of the system (5) of linear
equations can be directly verified. The partial balance equations are in product form
and:

(7)

]
[
F|>

for all k, 1< k< N. Finally, the normalization constant py can be obtained from the
conservation law of probabilities, ie., ), A =1
k=0

Remark.  The geometric method introduced above represents a reinterpretation of
some well known results for the M /M /1 queue. A discussion of the above dassical
results and its connection to reversibility can be found in Kelly [11]. The key to the
analysis above is the decomposition of the state trensition disgram into its building
blocks. The algebraic generalization of the previous proof for general queueing net-
works, although streightforward in its outline, is more difficult to gresp without the
geometnce interpretation.

W e are now ready to generalize these observations to a more generic network of
two queues. Our malym= will again be very detailed For sirmplidty the queueing net-
work is represented m F:g 2a below. The M arkovian process @ =(@V. &), tcr,,

Lmﬁ ing system in Fig. Bahasmwalmddeparturemtes
A= (J\,,'L J and [J’--(#t“l 4£3)  and state dependent routing probabilities
r= (n}‘f) 1._1.}“2 (k, kz)zE;ng with £=§1.2 -, N}, where N, is the maxmum
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buffer size at queue 1, i=1,2. In what follows our attention will be focussed on the
essential cell (or building block) that leads to product form for two dimensional state
trensition diagrams.

Consider first a state trensition diagram consisting of a triangle in isolation with
the nodes at (0,0), (1,0) and (0,1). This geometric shape will be referred to as a two-
dimensional cell or simply a 2-cell (see Fig. 2b). Note that the choice of the geomnetry
of the 2-cell is very natural since it comes with a simple queueing theoretical interpre-
tation. It corresponds to a protoool eccepting et most one pecket into the network.
The expressions for the equilibrium probabilities at (1,0) end (0,1) are straightf orward
to derive. These are:

6t uéPpor + AM¥po = (118" )ufdlpro . (8)
and
ri? ufd'pro + AP = (18P JudPpoy (9)
and finally at node {0,0{ we have
(1=rdf" —réP ) udPpo, + (1—r8" =l )ufdpio = (A + AP (10)

where r=(n{{)), 1s 1,72 is the set of state dependent routing probebilities. This
leads to

)

Pro = m;'?m . (11)
Poy = fé‘,‘?m : (12)
where
3 = A + ~{4V 8P+ £ 5P (13)
and
8D = A + 7o) + nfP R (14)

respectively. Equations (13) and (14) will be called in the sequel gererakized traffic flow
equations. For the case of the Jacksonian network, ¥=(9%J),), 1< j< M, (k k) tE X Ey,
represents the average available load on each of its queues [22]. The renormalization
constant py can be computed using the equations (11), (12} and the law of conserve-
tion of probabilities.

Now consider the addition of a second 2-cell at (1,0), (2,0), (1,1) or a (0,1).
(1,1), (0,2) to the previous 2-cell. The resulting state trensition diagrem when the
(1.0), (2.0), (1,1) cell is added, is shown in Fig. 2c. Both cells can be obtained by a
geometric translation of the cell located at (0.0). (1,0), (0,1).

W hen considered in isolation, the associated global balance equations with the
cell (ky.kz), (ki+1.k2), (ky.kz+1) are given by

T&?”Fé?ﬂl.kpl + A&.‘})R,Jz, = (1-rf? )#EOI)H,H.):I ' (15)




and

er#H)ﬂlu.z, + )\&mﬁ,;, = (1@ dPBe kg1 (16)
and finally at node (k. kp) we have
(1= =i ) PR ager + (10 (2 )ufdn 12, = O + M)A, (17)

The solution to the set of global balance equations above is given by
)

Peyerrg = w;-h ' (18)
and
P
Rhge1 = ;ngﬂm ‘ (19)

By pesting to the cell located at (0.0). (1,0) and (0,1) acell a (1,0), (2,0), (1,1)
the equilibrium probabilities given by the equations (18) and (19) remain valid (for
(k1.k2)=(10)). To see this, note that the global balance equations for the two cells at
the nodes (2,0}, (1,1) and (0,1), (0,0) are identical with the global balance equations
of the original state transition diagramn By summing the global balance equetions at
the node (1,1) for the two cells taken in isolation, one obtains the global balance equa-
tions of the original state trensition diagram. Therefore, the giobal balance equation of
the two cells in isolation represent a set of ptiol balence equations of the original
state transition diagram Using equations (11), (12), (18) and (19) with (k, k5)=(1.0),
the equilibrium probabilities of the appended 2-cell can be recursively calculated as a
function of pw. As before, is computed using the equations (11), (12), (18), (19)
and the conservation law ofm probabilities. This proves the consistency of the set of
pertial balance equations.

Let us add a third triangle to the previous state trensition disgram at (0,1), (1.1),
(0,2) as in Fig. 2e. In the cese of a network consisting solely of one queue we did not
have to consider the cese with three cells. The analysis of this case is necessary since
the state transition disgram is described by two states. pesting the building blocks
together, the global balance equations at the nodes (1,1) and (0,1) are obtained by
summing the global balance equations of the cells taken in isolation (Fig. 2f). The
equilibriumn probabilities of the appended 2-cell can be found using the equations (18)
and (19) with (k,.k2)=(0,1).

It is not difficult to show that if, in general, the state transition diagram is
obtained by translating the basic 2-cell (0,0), 5 1,0), (0,1), the global balance equations
cen be esasily decormposed into a consistent set of pertial balance equations. To derive
this note first that MR =S, wilix,=uld, and wf?:,,=pdP. for all pairs (ki.ko).
(k. k)eE xE, All other transitions are zero. Fig. 32 comresponds o the state transi-
tion diagram for the situation of Fig. 2 when the queue buffers are of arbitrary size
(N, and N, respectively). It should be noted that this diagram consists exdusively of
an aggregation of 2-cells. Such an aggregate is referred to &s a complex [21]. This
state transition diagrarn is a modified version of the one usually assodated with two
tandem queues with finite buffers. It differs in that upper and side transitions have
been rermoved. This aspect will be further discussed in section V (Fig. 14).

At an interior node of Fig. 3a the transitions can be paired in the manner shown
in Fig. 3b. Equations (15). (16), and (17) apply for any 2-cell in isolation. That is, by
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summing up at an interior node of the state transition diagram the global balance
equations of the 2-cells adjacent to (k,, kp) inh isolation, one obtains the global balance
equation at node (k,kg). Sirmilar equations can be obtained at boundary points. This
proves that the geometrical decomnposition of the state transition disgram into its
building blocks corresponds to an algebraic decomposition of the global balance equa
tions into a set of partial balance equations

By direct computation one can eesily find that the solution to the set of pertial
balance equations (18), (19) is:

SO DR N
= A " 20
Ag, .1,1( L .1,1‘ ks (20)
for all (k. kp)eExEp. The renormalization constant py is computed from the equa
tions (20) end the conservation law of probabilities.
Rerarke To illustrate the generality of our results obtained thus far, consider now
two queues in tandem as depicted in Fig. 4a The M arkovian process @=(@(", @?),
teR,, representing the queueing above hes arrival end deperture rates
A=A A NG =0). u=(udh 1m0t afPh 1 =147), and routing matrix r=(nf{ =1
for i=1, j=2, and n.»,=0 for i=2 j= 1), (k. ko)eE,x Ep, with E=§1.2 - - - ,N{, where N,
is the maximum buffer size at queue i, i=1,2. All other transitions are zero. Thus the
queueing system is not reversible, since the "‘arrows’’ of the state transition diagram
point only in a single direction.

The intuitive meaning of the equations (8), (9) and (10) is illustrated in Figs. 4b,
4c and 4d. For instance, equation (8

#B’R,u_}:. = N.Q:)RIJ, . (21)

corresponds to Fig. 4b. In an interior state, the flow into the state due to an arrival at
the first queue equals the flow out of the state due to a depearture from the same
queue. Simmilarly, the second equation (8)

ufdpio = udPpy | (22)

describes the equality of the flow into an interior state due to an arrival at the second
queue and the flow out of that state due to a second queue departure (see Fig. 4c).
Finally, equation (10) (see Fig. 4d)

180p01 = AP (23)

describes the equality of the flow into an interior state due to a second queue depar
ture and the flow out of the state due to a first queue arrival. This last situation can
be visualized in terms of a third unseen queue whose input consists of second queue
departures (sink) and whose output serves as the first queues input (source). Note
that the equilibriurn probabilities have a product form although the equations (21},
(22) and (23) are mot detailed or local balance equations (as discussed in [11] or [317).
The latter require double transitions (or arrows) on each 1-dimensional cell.

In the previous analysis we have shown that if the some basic 2-cell is replicated
the equilibrium probabilities have a produd forrn W hat if the 2-cell structure is repli-
cated but the associated flows are changed? Will the product form solution again
apply? The answer is simply no es the following simple counterexarriple shows

Prorple 1. Consider a state transition diagram consisting of three 2-cells as shown in
Fig. 2e Assume that the trensitions of the two lower cells are the same The
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transitions of the cell located at (0,2), (0,1) and (1,1) are taken to be different from
the previous two. It is not difficult to see that the partial balance equations (15), (18),
and (17) (with (k,.kg)=(0.0). (1.0). (1.1); are not necessarily consistent Note, for
example, that the probability at node (1,1) can be computed as a function of the refer
ence probability py either using the path (1,1), (1.0), (0.0) or (1.1), (0.1), (0,0).

Since the arcs (1,1), (0,1) and (1,1), (1,0) belong to two different cells, different
results for the same probability can be obtained! A numerical exarrple to this effect
appears in [30]. The question of consistency, therefore, previously mentioned in (2],
hes to be stated and solved in a precise mathematiceal setting.

I11. The Consistency Graph

Recall that the approach adopted in the previous section cells for decomposing
the original state trensition diagram into its building blocks and {or solving the assoa-
ated pertial balance equations. In the two dimensional cese, when pesting the cells
together we have noted the existence of distinct paths connecting some arbitrary nodes
with the reference node. This property was not observed in the one dimensional case
since the state transition diagrarn is a tree and hence a unique path links any node to
the reference node.

Thus, the problem of consistency of the set of pertial belance equations arises as
a result of the existence of distinct paths from en arbitrary node to the reference node.
If, by teking altemate paths, the ‘‘equilibrium probabilities'* for the same node are
different, the set of partial balance equations is not consistent.

Consxder a M arkovian network consisting of # queues. In the general cese the
queu cess Q= (Om 9(2) oo, @M, teR,, hes the arrival and departure rates
'\=(K£:l ey ?\f‘l MK x,) end u= (ﬂill s ke L W, ¢
(k ks - ky)tE,szx . ng mth E={12, - Nd where N; is the maxdrmmum
buﬂ'ersizeforalli.. lsisM.

The equilibrium probabilities are the solution of the set of global balance equa-
tions:

ﬁ)\z"{l, ky Do, - 5(1—71(4’ ORI S - S

j:i ,:1

¥
E!M({l, B-1 ay Bk, A=t byt

EZ"(Y*": o £\ SR AU VRV WE SR RN P R

=1zt

o 3 k,)#t('{l, A By ko1 oy (24)

u[\’]h

forall (kka - ky)eExEx - - xEy.

A s in the lower dimensional cese, the set of global balance equations (24) will be
decomposed into a set of partial balance equations that can be solved in a straightfor-
ward manner. Such a decomposition is, however, not unique. In addition, it is not
dear whether the resulting set of partial balance equations is consistent (see Example



1, section II). If the partial balance equations are consistent, however, they are
equivalent with the global balance equations. This is because the latter has a unique
solution.

To derive the necessary and suffident conditions for the consistency of a set of

pertial balance equations, we define the following consistency graph [18].

Defimition 1. A consistency greph is an oriented graph topologically equivalent with
the original state trensition disgremn. In addition, it hes the property that the probabil-
ity at each node is equal to the probability of any edjacent node rmultiplied with the
value of the associated edge connecting the two nodes.

The dass of consistency graphs of interest to us very often derives the ageoraic

values assodated with the arcs directly from the set of partial balance equations.
Thus, the consistency greph can be seen as an ‘'easy to read’’ grephical representation
of the proposed sohdion {or the partial belance equations (see for example equation
(32), section V).
Exorgle 2. Consider the graph given in Fig. Sa It corresponds to a M arkovian
queueing systern with a processor sharing discipline having a server with a two stage
Erangian distribution. The exarple is taken from [31] pp. 67-70. The states are
defined by the peir (k, kg), where there are k, packets in the first stage and k, packets
in the second stage. A set of partial balance equations can be computed for each two
dimensional cell using equations (17), (18), and (19). These equations can be
extracted from the consistency greph shown in Fig. 5b. For example, the relationship
between the probabilities attached to nodes (1,1) and (2,1) is given by

P = ﬁ-lypu . (%)

Choose any path (open or dosed) on the consistency graph. A ssociated with it is
an algebraic value called the podit of the arcs or simply the product For example,
with the path (1,2), (1,1), (0,1) and (0,0) is assodated the product:

2,8 L) L@
a{12) 2 H12)

Note that reversing the orientation of an arc of the consistency graph with value a
[m-sults in an arc with value a™!. We cen now state the following consistency theorem
18].

Theaxrem 1. A sstern of portiol baolance equntiors s consistert iff @y dosed mbh of the
corststercy graph has the product equol to ore.

Proof: Assume thet there is a dosed path in the consistency graph such that its pro-
duct is not equal to one. Therefore, for at least one node belonging to this path, there
are two distinct arcs leading to the reference node which do not have the same pro-
duct Thus two different values for the probability associated with such a node can be
obtained. Hence, the partial balance equations are not consistent The sufficiency part
of the theoremn cen be shown by direct computation. The product of an arbitrary path
connecting node (k,kz, ' - - ,ky) with the reference node (0.0, - - - ,0) is an algebraic
invariant. This is because, by assumption the product of any closed path is equal to
one and reversing the orientation of any arc with value a results in an arc with velue
a~!. The probability at node (k, ks, - - - .ky) is, therefore, equal to the product of the
path connecting this node with the reference node times the probability of the refer
ence node s

Hence, to determine the consistency of the set of partial balance equations, the
product of any dosed path of the consistency graph has to be computed and compared

(26)
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