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A load sharing problem involving the optimal load allocation
of divisible loads in a distributed computing system consisting
of N processors interconnected through a bus-oriented network
is investigated. For a divisible load, the workload is infinitely
divisible so that each fraction of the workload can be distributed
and independently computed on each processor. For the first time
in divisible load theory, an analysis is provided in the case when
the processor speed and the channel speed are time varying due
to background jobs submitted to the distributed system with
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proposed via a deterministic analysis. A stochastic analysis which
makes use of Markovian queueing theory is introduced for the
case when arrival and cleparture times of the background jobs are
not known.
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{. INTRODUCTION

Divisible loads are computing loads that can be
arbitrarily partitioned among a number of (possibly
physically distributed) processors so as to gain the
benefits of parallel processing to minimize solution
time. It is particularly well suited for a large family
of problems involving data parallelism in signal,
image, and data processing. Specific aerospace
applications include sensor networks, Kalman filtering
and matched filtering. There has previously been a
large amount of work on loads that are not divisible
[10, 20]. Since 1988 there has been an increasing
amount of theory on divisible loads [19].

Two aspects of divisible load theory, as it has
been developed to date, are particularly noteworthy.
One noteworthy aspect is its tractability. Simply
by working in a continuous time framework and
making relatively simple assumptions a linear model
results. Just as the basic linear models of electric
circuit theory and queueing theory lead to a rich set
of results in their respective fields, the linear modeling
of divisible loads also produces a broad and elegant
theory.

The second noteworthy aspect of divisible
load theory is that the model developed to date is
a completely deterministic one. No statistical or
probabilistic assumptions are made in a typical
divisible load analysis. This is significant as
probabilistic assumptions can often be the Achilles
heel of a performance evaluation of a parallel
processing system. Such probabilistic evaluations can
suffer from a lack of experimental data to support
them or too specific assumptions due to a specific
set of experimental measurements. Thus Section V
of this work is unusual in that it is the first attempt to
integrate divisible load theory and queueing theory.

The study of divisible load theory started from
the consideration of intelligent sensor networks by
Cheng and Robertazzi [11]. An intelligent sensor
is a single-processor-based unit which can make
measurements, compute, and communicate with other
intelligent sensors. The concept of the intelligent
sensor network can be extended to the case of a
multiple processor environment. The main problem
in this research is to determine the optimal schedule
of the workload distribution to the processors so as to
minimize the problem solution time.

In [11], recursive expressions for calculating
the optimal load allocation for linear daisy chains
of processors were presented. This is based on the
simplifying premise that for an optimal allocation
of load, all processors must stop processing at the
same time. Intuitively, this is because otherwise
some processors would be idle while others were
still busy. Analogous solutions have been developed
for tree networks [12] and bus networks [2, 3].
Asymptotic solutions for systems with large or even
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an infinite number of processors and limitations in
performance when adding processors appear in [4, 14].
Closed-form solutions were presented in [1] for
bus and tree architectures where processor and link
speeds are homogeneous. In [16], the concept of
an equivalent processor that behaves identically to
a collection of processors in the context of a linear
daisy chain of processors and a proof that, for a linear
daisy chain of processors load sharing a divisible load,
the optimal solution involves all processors stopping
at the same time are introduced. An analytic proof for
bus networks that for a minimal processing time all
processors must finish computing at the same time is
shown in [18]. Previous proofs were heuristic. In [17],
a more sophisticated load-sharing strategy is proposed
for bus networks that exploits the special structure
of divisible load theory to yield a smaller processing
time when a series of jobs are submitted to the
network. The equivalence of first distributing load
either to the left or to the right from a point in the
interior of a linear daisy chain is demonstrated in
[13]. Optimal sequences of load distribution in tree
networks are described in [6, 15]. Load distribution
strategies for tree networks [5], linear daisy
chains [7], 2D meshes [8], and hypercubes [9] have
appeared.

All the previous works investigated divisible
load theory under the assumption that a processor
can compute only a single job at a time. Under this
assumption, the next job can be served only after the
processor finishes the computation of the currently
running job. However, most practical time-sharing
computer systems can handle more than one job at
a time. It is therefore natural that a study of divisible
load theory in multiprogrammed and multiprocessor
environments is necessary. Another key difference
with respect to previous works is that the processor
speed and the channel speed will be considered to
vary with time while they remain constant in the
previous works. The processors, in this paper are
assumed to be multiprogrammed so that there are a
number of jobs running in the background in addition
to the divisible load of interest. These background
jobs consume processor and link resources so that
the divisible load of interest may see time-varying
processor and link speed. It is immaterial for the
purposes of this work whether the background jobs
are divisible or indivisible. The processor speed and
the channel speed depend on the number of jobs
which are currently served under a processor or
transmitted through a channel. When there are a large
number of jobs running in a processor, the processor
speed for a specific job of interest becomes slower
than when it has fewer jobs. The channel speed also
becomes slower when there are a large number of
background jobs related transmissions passing through
a link than when there are fewer transmissions using
the links.

The purpose of this work is to determine the
optimal fraction of the entire workload to be
distributed to each processor to achieve the minimal
processing time when the processor speed and
the channel speed are time-varying variables. To
determine the optimal fraction of the workload
deterministically, the processor speed and the
channel speed over the duration of the divisible
load computation must be known in advance before
the load originating processor starts distributing
the workload to each processor. If the exact arrival
time and departure time of the background jobs are
known, one can determine the exact time-varying
processor speed and the channel speed. This is
suitable for production jobs that are performed in a
system repeatedly for a known period. If the arrival
and the departure times of the background jobs are
not known, but the stochastic arrival process and
the stochastic departure process of the jobs can be
assumed to be Markovian, the optimal fraction of the
workload can still be found by a stochastic analysis
which makes use of well known Markovian queueing
theory. In this work an optimal load sharing algorithm
and a numerical method to find the optimal fraction
of the entire workload for the minimal processing
time is presented by deterministic analysis when the
arrival and departure times of the background jobs are
known and by stochastic analysis when the arrival and
departure times of the background jobs are not known.

This paper is organized as follows. The
load-sharing algorithm for the determination of the
optimal load allocation for three types of time-varying
cases (time-varying processor speed while the
channel speed remains constant, time-varying channel
speed while the processor speed is constant, and
time-varying processor speed and channel speed) are
presented in Sections II, III, and IV, respectively. In
Section V, a different load-sharing algorithm to find
the optimal fraction of the workload via a stochastic
analysis when the arrival and departure times of
the background jobs are not known is proposed.
Performance evaluation results appear in Section VI.
Finally, this paper concludes with Section VIL.

II.  TIME-VARYING PROCESSOR SPEED

The distributed computing system to be considered
here consists of a control processor for distributing
the workload and N processors attached to a linear
bus as in Fig. 1. New arriving measurement data are
distributed to each processor under the supervision of
the control processor. The control processor distributes
the workload among the N processors interconnected
through a bus-type communication medium in order
to obtain the benefits of parallel processing. Note
that the control processor is a network processor
which does no processing itself and only distributes
the workload. Each processor is a multiprogrammed
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Fig. 1. Bus network with load origination at control processor.

processor that can simultaneously process multiple
jobs. Thus the processor speed varies with time and
it depends on the amount of workload. The processor
speed and the channel speed vary under the following
processor sharing rule: the processor (the channel)
devotes all its computational power (transmission
power) evenly to each job. That is, if there are m
jobs running under a certain processor, each job
receives 1/m of the full computational power of the
processor. This behavior is similar to a fair resource
scheduling policy as used in UNIX systems. It is
assumed here that there is no limitation of the number
of jobs to be simultaneously processed in a single
processor, even though the processor speed for one
particular job will be very slow if there are a large
number of jobs running simultaneously under the
processor. We assume that background jobs start and
terminate simultaneously across all processors and that
negligible bus communication is needed to support
their running. The main problem in this work is to
find the optimal fraction of a divisible load which is
distributed to each of N processors to minimize the
processing finish time when the communication delay
is nonnegligible.

The following notations are used throughout this
paper.

a, The fraction of the entire processing load that
is assigned to the nth processor (B,).

w, Inverse of maximum computing speed of F,.

w,(t) Inverse of computing speed of P, applied to

divisible load of interest when computing
speed is tirne varying.
Zz Inverse of maximum channel speed of bus.

Z()  Inverse of channel speed of bus applied to
divisible load of interest when channel speed
is time varying.

Tcp Computational load in time, i.e., time it takes
for F, to process entire load when w, = 1.

T Communication load in time, i.e., time it takes

to transmit entire set of data over channel
when Z = 1.
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Fig. 2. Timing diagram for bus network with time-varying
processor speed.

N

Time for P, to complete reception of
corresponding fraction of load from
distributing processor.

T, Processing finish time of entire processing
load, assuming load is delivered to origination
processor at time zero.

The timing diagram for the bus network with load
origination at a control processor is depicted in Fig. 2.
In this timing diagram, communication time appears
above the axis and computation time appears below
the axis. In this section, the channel speed is assumed
to be a constant while the computing speed of each
processor is assumed to be time varying. The channel
speed is time varying in later sections.

At any time, the processor effort available for
the divisible loads of interest varies because of
background jobs which consume processor effort.
These background jobs can arrive at or terminate on
the processors at any time during the computation
of the divisible load that the control processor is
going to distribute. The arrival and departure times
of the background jobs over the interval during which
the divisible load is processed, however, should be
exactly known. This is the reason that this section and
Sections III and IV represent deterministic models
of the load-sharing problem. When the arrival and
departure times are unknown and the statistics of the
arrival and departure process of the jobs are known to
be Markovian, then this load-sharing problem can be
stochastically analyzed as in Section V.

At time ¢ = 0, the originating processor (the control
processor in this case) transmits the first fraction
of the workload to A in time «,ZT,,,. The control
processor then transmits the second fraction of the
workload to P, in time «,ZT,,,, and so on. After P,
completes receiving its workload from the control
processor (an amount of «, of the entire load), P, can
start computing immediately and it will take a time
of T; —T; to finish. Here T} = o,ZT,,,. The second
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processor P, also completes receiving the workload
from the control processor at time T, = (a; + a,)ZT,,
and it will start computing for a duration of 7, — T,
of time. This procedure continues until the last
processor. For optimality, all the processors must
finish computing at the same time. Intuitively, this

is because otherwise the processing time could

be improved by transferring the load from busy
processors to idle ones. An analytical proof of this
appears in [18].

Now let us represent those intervals of the
computation time Tf -1 ,Tf -T,... ,Tf — Ty, carefully.
The interval T, — T, for F, to compute the nth fraction
of the entire load can be expressed as

T, —T,=a,w,0, n=12..,N (1)

where W, (¢) is defined as the inverse of the time
average of the applied computing speed of F, in

the interval (7,,,7). Since w,(¢) is defined as the
inverse of the computing speed, to calculate the time
average of w,(¢) one must invert w,(¢) first to make it
proportional to the actual computing speed and take
the time average, and then invert it again. That is,

| -1
= __Zi;];'_ 2)

7 1
T w, ()

The diagrams for the computing speed of P, are
depicted in Fig. 3(a), (b) and (c). Consider Fig. 3(a),
(b), and (c) in reverse order. Fig. 3(c) shows the
process which is proportional to the computing speed
of P,. When the processor is idle in the interval
(to,t,), the load that is delivered from the control
processor will receive the full computational power
of P,. Therefore, the computing speed of F, in
the interval (¢y,1,) for the load from the control
processor is 1/w, where w, is the inverse of the
maximum computational power of P,. When there
is one background job running in the processor
in the interval (¢,,#,) due to the arrival of one
background job at time ¢ = ¢, the computational
power of P, is equally divided by two so that each
job, one background job, and the divisible load from
the control processor, can receive half of the full
computational power of F,. That is, the computing
speed of P, in the interval (¢,,,) for each job is
%1 /w,. Likewise, when there are two background
jobs running in the processor in the interval (¢,,f;)
due to the additional arrival of a background job at
time ¢ = t,, the computational power of P, is equally
divided by three so that each job, two background
jobs, and the divisible load from the control processot,
can receive one-third of the full computational power
of P,. The computing speed of F, in the interval (z,,¢;)
for each job is %1 /w,. When the processor finishes

Wn (t)
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Fig. 3. (a) Derivative of timing process which is inversely
proportional to computing speed. (b) Timing process which is
inversely proportional to computing speed. (c) Timing process

which is proportional to computing speed.

the computation of one of the background jobs at time
t = t,, the computing speed of the P, for each job (at
this time, there are two jobs running in the processor,
one a background job and the other a divisible load
fragment from the control processor) speeds up back
to 21/w,.

Fig. 3(b) shows the process which is inversely
proportional to the computing speed of F,. In other
words, Fig. 3(b) is just the inverse of Fig. 3(c).

Fig. 3(a) is the derivative of Fig. 3(b). This represents
the arrival and departure time of the background
jobs. The upright impulses (ry,7;,7,,75,7) Tepresent
the arrival of each background job and the upside
down impulses (r5,74,77) represent the departure or
service completion of each background job. What

is deterministic in this section is that the time of

each arrival and departure of the background jobs is
deterministically known. That is, the time #,,;,%,,...,
etc. should be all known at time ¢ = 0. This condition
can be true of a production system repetitively
running the same jobs. The height of each impulse is
+w, for the ones which correspond to the arrivals and
—w, for the ones which corresponds to the departure
of the background job. This is because one arrival

of a background job causes the computing speed to
change from (1/m)1/w, to (1/m + 1)1/w, in Fig. 3(c)
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so the inverse speed changes from mw, to (m + l)w,
in Fig. 3(b) for any integer m. The same explanation
can be applied to the departure of background jobs.

Let us now find the expressions for Fig. 3(a), (b),
and (c). The expression for Fig. 3(a) is

dt n(t) Zrk 6(t tk)w (3)
where )
{ +1, for arrival
1, = .
¢ -1, for departure

The following equation represents Fig. 3(b)

W) =D rut —t)w,. )

k=0

Here u(¢) is the unit step function. A little thought
yields an expression for Fig. 3(c):

-1
o0 k . 1
3 (3] e
n k=0 \ j=0 ’

&)

The next step is to find the time average of w,(¢) in
the interval (7,7, f). To find W, (), it is necessary to

find [, 1/w,(t)dt from (2)

T T,
/ Lar=—1

- i ( ! - ! >t. 6)
k=xy+1 w, ) W) "

See Appendix A for details. Therefore,

T,
w,(T,)

— Tf B 7;!
(7}) - w, 7;1 k-x"+l wn(tk) wn(tk—l) *
(7)
From (1), one can also find the expression for «,,
Iy ~T,
Tf = Ol”Wn(t) a”TCP.Tf——' (8)

([T” ) (t)dt

il ( 1 1 )
- 7:7) |:W"(T}) a ‘WH(T;I) - ; wn(tk) Wn(tk——]) tk '

®)

Here (6), (7), and (9) are functions of 7, and Tf.
That is, if 7, and T, are known, the fraction of the
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workload for P, as well as the integral of the applied
computing speed of the nth processor and the inverse
of the average applied computing speed of P, in the
interval (I;,,]}) can be found. This problem can be
solved by a simple recursive method that can express
every a, as a function of T;. Let us introduce an
algorithm to find the optimal fraction of workload
that the control processor must calculate before
distributing the load to each processor.

1) Express a, as a function of T, from

1 /Tf 1 p
Oy = — —dt

=ZT,

Since Ty = (o) +ay + - -~

known.
2) Express ayy_; as a function of Ty from

1 /Tf L,
An_1 = 7 t.
Nt T;p T WN—I(t)

Since Ty_, = (1 —ay)ZT,,,
and is also a function of 7.
3) Express ay_, as a function of T, from

/T 2 WN- z(t)

Since Ty_, = (1 —ay —ay_)ZT,,, Ty_, is a function
of ay and ay_;, and is also a function of 7.

4) This procedure can be continued up to «;.
Then, one can express every o, as a function of 7.
Finally, by usmg the norma11zat10n equation wh1ch
states that 3°0_ «, = 1, all of the a,,, as well as the
actual Tf, can be found.

+ay)ZT,, Ty is

Ty_, is a function of ay

Note that the algorithm, like the ones to follow,
starts from time O when the initial processor speeds
are known as they are a function of past arrivals and
departures.

.  TIME-VARYING CHANNEL SPEED

This section considers the opposite situation to that
of the previous section. That is, the channel speed
is now time varying while the processor speed is
constant. This is the case when the channel is shared
with other networks. When the channel is idle, the
control processor can transmit the measurement
data to each processor with the full channel speed.
When there is a transmission in the channel from
another network, the measurement data transmitted
by the control processor will share this channel
and it will receive half the speed of the maximum
channel capacity. Thus, the channel speed in this
section is time varying by the number of transmissions
through this channel in a channel (processor-like)
sharing manner. Each processor is assumed not to

911



1

CP a Zo(t)/Tem | 0223 (1) em | @ Zp_ (1) em HN7:NV-:(‘)Tcm| Comm
h ' T ‘T LTy T

! . alw‘chp Comp
E N : T

& agw Ty I Comp
P E : T

" awn Tep Comp
)

Py anwnT, Cormp

Fig. 4. Timing diagram for bus network with time-varying
channel speed.

be multiprogrammed. That is, a processor can handle
only a single job at a time.

Fig. 4 shows the timing diagram for the case of
the time-varying channel speed. At the time origin,
the channel may or may not be idle depending on
the other networks using the channel. At time 7 = 0,
the control processor starts transmitting the first
fraction of the workload to P, in time 7;. Next the
control processor continues to transmit the second
fraction of the workload to P, and it takes a time
T, — T, and so on. Then after P, completes receiving
its workload from the control processor at time 7,

P, can start computing immediately and it will take a
time of 7, —7; to finish. The second processor P, also
completes receiving the workload from the control
processor at time 7, and it will start computing for a
duration of T, — T, of time. This procedure continues
until the last processor. Again, all the processors must
finish computing simultaneously to produce a solution
in an optimal amount of time.

The expressions for the computing time for
each processor which are the intervals Tf — Tl,Tf —
T,,...,T; — Ty, are more tractable than in the previous
section since the computing speed of each processor is
not time varying now. One has

T - T, = a,w,1

ntep

n=12,...,N. (10

On the other hand, the expressions for the
transmission time during which the control processor
distributes each fraction of workload to each processor
is not as simple since the channel speed is time
varying. The transmitting time for each processor
from the control processor is
T-T_,=a,2, OT, n=12,...,N (11)
where Z,_,(¢) is defined as the inverse of the time
average of the applied channel speed in the interval
(T,_;,T,). Again, since Z(¢) is defined as the inverse of
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Fig. 5. (a) Derivative of timing process which is inversely
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is proportional to channel speed.

the channel speed, to calculate the “time average” of
Z(r) one must invert Z(z) first, to make it proportional
to the actual channel speed and take the time average,
and then invert it again. That is,

=n 1 -1
710 (Flzrm))
- __7_"4:_5;1_ (12)

=t
f?:,_1 %dt

The diagrams for the channel speed are depicted
in Fig. 5(a), (b), and (c). A similar explanation as in
Fig. 3 can be applied to Fig. 5. The expression for
Fig. 5(a) is

d s}
Z(0) = ;sk 6(t—1)Z (13)

+1,
Sk=
-1,

where
for arrival

for departure .
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The following equations represent Fig. 5(b) and (c)

ZO =) sut—1)Z

(14)
k=0
-1
1 A& 1
75" 3 Zsj [t — 1) — ult = 1, )]
k=0 Jj=0
(15)
Then, the area of the channel speed in the interval
(T,-1. 1) is
/'T" g T
Jr,_, Z(®) Z(T)  Z(T,_p)
*Z" ( 1 1 >t
— —— |1
k=x,,_l+1 Z(tk) Z(tk“l)
(16)
See Appendix B for details. Therefore,
Z" (t) _ 7;1 - T;l—l
S A VA ! Y
20y " 720, e\ 2 T 26 )"
a7)
From (11), one can also find the expression for a,,
T, =Ty = 0,2, O,
T -T
= anTcm_"__ni_ (18)
5 L
5 Z0
Thus,
IS
“=T, / Zo"
= 1 7:1 [l'l~l _ S 1 _ 1
= i; ZT) Z(T,_) k=;+1 (Z(tk) z(tk_'“l)>tk
19)
Also,
n 1 N T T
;= + +oe =—dt
Z}" T, [ o g /T 0 ]
Ta
= ._1_./ _l_d[
Lo 2@
1 rn & ( 1 1 )
= S — —— 5.
T, [Z<T,,) ,; Z@t) Z(_,) k}
(20)

Note that (16), (17), and (19) are functions of 7,,_,
and 7,,. That is, if 7,_, and 7, are known, the fraction
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of the workload for P, as well as the integral of the
applied communication speed and the inverse of

the average applied communication speed of Z(z)

in the interval (7;,7}) can be found. Similar to the
previous section, this problem can be solved by a
simple recursive method that can express every a,

as a function of ay. Let us introduce an algorithm to
find the optimal fraction of workload that the control
processor must calculate before distributing the load to
each processor.

1) Find T, from
N T
1 vl
i2=1 a; = 1= T— —Z—ZBd[

cm JO

2) Express Ty _, as a function of «, from

N-t 1 T
o=l-ay= ———/ ——dt.
iz=1: N Tcm 0 Z(t)

3) Express ay_, as a function of oy from
Iy—Ty, = aN—le—chp - aNWNTcp

since T,y was found in step 1 and 7,_, is also a
function of ay.
4) Express T _, as a function of ay from

N-2 1 T 1
Zaz:l—aN”aN—l:T—o 20}

i=1

dt

since oy _; is a function of ay.
5) Express ay_, as a function of ay from

Ty 1 —Iyo =ay oWy o1, —ay_ywy_ Iy

since Ty_;, Ty_,, and ayy_; are functions of ay.

6) This procedure can be continued up to ¢;.
Then, one can express every «, as a function of ay.
Finally, by using the normalization equation, all of the
a, and T} can be found.

IV. TIME-VARYING PROCESSOR SPEED AND
CHANNEL SPEED

In the two previous sections, the recursive
algorithms to find the optimal fraction of workload
and the numerical method to calculate the integrals
of the computing speed and the channel speed were
introduced in the case of time-varying processor speed
and in the case of time-varying channel speed. It
is natural at this point to ask if both the computing
speed and the channel speed can be time varying.
Fig. 6 depicts the timing diagram for the bus network
with time-varying processor speed and channel speed.
In this case each processor is a multiprogrammed
processor that can handle more than one job at a
time and the channel is shared with other networks.
Alternately one may assume that background jobs
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i 3 Gy = / —_ar

; : T, Tcp Tv—2 WN @
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" [ Comp . .
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a, and T; can be found.

Fig. 6. Timing diagram for bus network with time-varying
processor speed and channel speed.

V. STOCHASTIC ANALYSIS OF TIME-VARYING

create communication demands that load the links. SYSTEMS

To solve the problem in the case of time-varying
processor speed and channel speed, the results in the
two previous sections are used. Those are

It seems that the deterministic analysis of the
previous sections are not as realistic as possible
because of the constraint that it is applicable only

1 (T 1 to the case where the exact arrival times and the

a, = ——=at departure times of the background jobs must be
Tc‘p T, Wn(t) . . .
known. It is therefore interesting to pursue a more
" T general analysis that is applicable to practical
Z . = _1_ " 1 d. multiprogrammed and multiprocessor computer
' Tnlo ZO) systems. A stochastic analysis introduced here will

make feasible the determination of the optimal
The numerical methods to calculate the above fraction of workload for each processor in more
two equations are the same as in Appendix A and general situations. The exact arrival and departure
Appendix B. The following is the recursive solution times of the background jobs submitted to the system
to find the optimal fraction of workload for each in this stochastic analysis are not known. The only
processor. It is shown that all the fractions (a,) can necessary knowledge concerning the jobs entering and
be expressed as a function of . leaving the network, is the stochastic arrival process

1) Find T}, from and the stochastic departure process in this analysis.
If the arrival process is Poisson distributed and the
N 1 [/ 1 departure process is exponentially distributed, one can
Zai =1= T mdi. adapt well known Markovian queueing theory to this
i=1 em 0 divisible load problem. We assume that job arrival
2) Express T as a function of a,, from times follow a Poisson process. This is a reasonable
first case assumption. The service times are assumed
1 (T 1 to be either negative exponentially distributed or to
ay = T:; /T . m t follow a general distribution. Thus in the following,
two cases of stochastic analysis involving time-varying
since Ty, was found in step 1. both the processor speed and the channel speed are
3) Express Tyy_; as a function of a) from presented, one with an M /M /1 queueing model and

N1 the other one with an M /G /1 queueing model.

S =1 ! / "L
oy =1—ay=-— ——dt.

2o YT, ZO

4) Express a,_; as a function of ay from

A. M/M /1 Queueing Model

This section starts with the determination of the

1 (¥ 1 average computing speed of P, and the average speed
ON-1= T /T mdt of the shared channel. As in typical queueing models,
ep v TN the arrival rate is defined as A\, and \,, and the
since Ty and Tj,_, are also functions of ay. service rate is defined as y,, and u, for F, and the

914 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 34, NO. 3 JULY 1998



shared channel, respectively. The service rate s, (j17)
is proportional to the computing speed of P, (channel
speed) since our server is a linear server. That is, one
can write

thw, = C :

”’Vl
w
n

21

1
pz =Cz 7 (22)
where C,, and C, are constants that are justified
in (27) and (28) below. Recall that u, and Z are
defined as the inverse speed of the maximum of P,
and channel, respectively. Let us define 77, and 71, as
the average number of background jobs in F, and the
average number of transmissions passing through the
shared channel, respectively. These are the same as the
average number of customers in the queueing system
with a single queue and is written as

= Pw,
A, = iﬁw, (23)
- Pz
A, = (24)
2 1-py
where p,, and p, are the utilization and are
)\W >\W wn
, = 2=l 25)
8 ! ’U/Wn Cwn
Ay A2
)y, = =2 ==, (26)
iz nz Gy
Note that since 0 <p,, <1land0<p, <1,C,,
and C, should be chosen to satisfy the following
inequalities
0, w, <C,, @7
0<XAZ <, (28)

Now, one can define the average computing speed
of B, and the average speed of the shared channel as
follows

W, () = @, + Lw,

Z(1t) = (7, + 1)Z.

(29)
(30)

One way of explaining these equations is as follows.
Suppose that there is no job present in a certain
processor at the time when a new divisible load

of interest enters the network and is going to be
distributed to the processors. Let’s consider F,.
Then, P, can give all its computational power to the
divisible load which has just arrived. That is, 77, =0
and w, (at that time) = (0 + 1)w,. Now, suppose a
new background job arrives while the job that was
distributed previously is still in progress in P,. Then,
this newly arrived job will receive half of the full
computational power in F,. That is, 7,, =1 and
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w, (at this time) = (1 + 1)w,. A similar explanation
can be applied to the case of the average speed of the
shared channel. Therefore, if one substitutes (23) and
(25) ((24) and (26)) into (29) ((30)), one can write

C,w
W)= —2 " 3D
" Cw,, - ’\w,,wn
= C,Z
Z@) = —Z—. 32)

Then, the optimal fraction of workload for each
processor that minimizes the processing time can be
calculated by just replacing the constant computing
speed of P, and the constant channel speed with the
above average speed, (31) and (32), into the solution
found in [18]. The longer the time interval considered,
the more accurate this solution will be.

B. M/G/1 Queueing Model

If the computational load of the submitted job
is not exponentially distributed and has a general
distribution, then the service rate will also be
generally distributed. The previous analysis used
in the M /M /1 queueing model should be modified
to that of an M /G /1 queueing model. The average
number of jobs in P, and the average number of
jobs passing through the shared channel when the
computation load is generally distributed can be
written as follows from M /G/1 queueing theory

2 2 .2
Py, + A0, 05

2T p,) 33)

ﬁw,, = Py, +

2
p5 + Mol

pz + 2T=py) 34)

Ny =
Here, af is the variance of the service time, and P,
and p, have the same definitions as in the case of
M /M /1 queueing model. Therefore, the average
computing speed of F, and the average speed of the
shared channel are now

2C2 — X2 (w2 —02C2)
2C, (C, — A W) "
(35)

W) = (i, + Dw, =

2C3 - N2>~ 07C))
2C,(C; — A Z)

Z() = (i, + DZ = Z. (36)

Then, the optimal fraction of workload for each
processor that minimizes the processing time can be
calculated by just replacing the constant computing
speed of B, and the constant channel speed with

the above average speed, i.e., (35) and (36), to the
solution found in [18]. To do this, let us write the
modified solution that the control processor must
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calculate before distributing the workload to each
processor in order to minimize the processing time
in the time-varying system

w01, .
ki(t) = = — 1<i<N-1
Z(t)Tcm + Wi+1(t)Tcp
@GN
N-1/ n -
a; = [1 +y <Hk,.(z)>] (38)
n=1 \i=1

n—1
a,=[Jk®- ey  2<n<N. (39)
i=1

Note that the longer the time interval of the
divisible load is, the more accurate this substitution
will be.

VI. PERFORMANCE EVALUATIONS

Based on the previous results, a number of
performance evaluation results were obtained. A
simulation was performed in the case where there are
three processors connected through the bus (N = 3).
The simulated run time is from ¢ = 0 to ¢t = 10. During
the 10 units of time, there are 40 randomly generated
background arrivals and departures combined. The 10
units of time are sliced into 1000 time slots for the
simulation so that each time slot is 1(1)—0 unit of time.
In the following subsections, the simulation results are
shown in the cases of time-varying processor speed,
time-varying channel speed, time-varying processor
and channel speed, and the queueing theory stochastic
analysis.

A. Time-Varying Processor Speed

In this subsection, the computing speeds of the
three processors are time varying while the channel
speed is constant. The computing speeds of the
processors are random variables due to randomly
generated job arrivals and departures. The channel
speed is set to one and the communication load of
the divisible job that will be distributed by the control
processor is also set to one, and the computational
load of the divisible job is set to four (Z =1, T, =
1, 7., = 4). Fig. 7 is obtained from the algorithm
in Section II. The bottom three curves in Fig. 7
represent «;, o, and a4, and the most upper curve
represents the sum of these as in the run time r = 0
to £ = 10. The true job finish time occurs when the
sum of these as is equal to one, by the normalization
equation, which is in this case between ¢ = 3.090 and
t = 3.100. Table I shows the results of the algorithm in
Section II.

These two results are the closest ones obtained
from the algorithm in Section II. One can choose
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Fig. 7. Job computing finish time for time-varying processor
speed.

TABLE I
Result of Algorithm When Processor Speed is Time Varying

3

2

L) —
0.9979

1.0033

T/ [e31 [+2] Qa3

3.090
3.100

0.3992
0.4023

0.4124
0.4135

0.1863
0.1875

TABLE II
Result of Exhaustive Search When Processor Speed is
Time-Varying

Grid density

T;

Qap

Qaz

as

100 x 100 x 100
200 x 200 x 200
500 x 500 x 500

3.150
3.130
3.106

0.400
0.400
0.402

0.410
0.415
0.412

0.190
0.185
0.186

either one as a solution and normalize it for
implementation. Then, the job computation will be
finished no later than 7, = 3.100. Alternatively, one
can average the two solutions. Note that the true job
finish time cannot occur before Ty, = ZT,, = 1. Thus,
there is no data between ¢ = 0 and ¢ = 1 in Fig. 7. The
iterative search procedure should start from 7 and
proceeds in the direction of increasing finish time
until the sum of the as equals one.

To check if this simulation and the algorithm
is accurate, two methods were used. The first one
is an exhaustive grid search in the solution space.
Table II shows the results of the exhaustive search.
The exhaustive search cannot find the better results
even with 500 grid intervals in terms of the job finish
time than the one from the algorithm.

The second method is a comparison with true
results: Create a set of data such that the processor
speed is constant at all times and run the algorithm
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TABLE III
Result of Time-Varying Processor Speed Algorithm with Constant
Processor Speed

3

2 o
n=]
0.9912
1.0008

2.04
2.05

0.4062
0.4102

0.3250
0.3281

0.2600
0.2625

TABLE IV
True Result of Time-Varying Processor Speed System According
to Non-Time-Varying System

[ Tf [+7) (223 Qg

0.262295

|2.049180 0.409836 | 0.327869

with this constant processor speed and compare

the result with the one from the solution of the
non-time-varying system found in [18]. Table III
shows the results from the algorithm when all of the
processor speed are one (w;(f) = w,(t) = w5(t) = 1)
in the time-varying system and Table IV shows the
true results according to the solution in [18]. All of
the true results (7, a;, a,, and ;) lie between the
two closest results from the algorithm in Table III. If
one chooses 7, = 2.05 in Table III as a solution of the
algorithm, the accuracy is

(1 2.05-2.049180

- WW) x 100% =~ 99.96%.

B. Time-Varying Channel Speed

The simulation data set in this subsection is the
same as in the previous subsection except that the
channel speed is now a random variable due to the
randomly generated job transmission from other
networks and all the processor speeds are constant
which are equal toone (w; =wy, =w; =1,T, =1,
T., = 4). Fig. 8 is obtained from the algorithm in
Section III. Again the bottom three curves represent
oy, a,, and a3, and the upper curve represents the
sum of as during the run time ¢ = 0 to ¢ = 6. The true
job finish time occurs when the sum of as is equal
to one, which is between ¢ = 3.180 and ¢ = 3.184.

It cannot occur before Ty, which can be calculated
from
Ty 1

—dt =T
Jo Z(@) o

and is approximately 2.544 for the given data set
here. Table V shows the results from the algorithm
in Section III and Table VI shows the results from
an exhaustive grid search in the solution space.
Again, the results from the algorithm has the smaller

2 T T T ="
l’ 1 —_—
alpha_sum ----
/ aipha_i
,,' alpha_Z
/ alpka_} ---

2 /
H ! /;
L '/ !/.,a P

0.5F o 1

0 4 -
1 2 5 3
Finish Time
Fig. 8. Job computing finish time for time-varying channel
speed.
TABLE V

Result of Algorithm When Channel Speed is Time Varying

3
> e
n=1

0.9950
1.0005

Ty ay a, as

3.180
3.184

0.5500
0.5535

0.2850
0.2860

0.1600
0.1610

TABLE VI
Result of Exhaustive Search When Channel Speed is Time
Varying

Grid density Ty o a; a3

100 x 100 x 100
200 x 200 x 200
500 x 500 x 500

3.204
3.195
3.188

0.550
0.545
0.556

0.290
0.290
0.292

0.160
0.165
0.162

TABLE VII
Result of Time-Varying Channel Speed Algorithm With Constant
Channel Speed

3
2 e
n=1
0.9970
1.0040

2.044
2.050

0.4085
0.4125

0.3265
0.3285

0.2620
0.2630

job finish time (7, = 3.184) than the one from the
exhaustive search (T; = 3.188).

As in the previous subsection, a constant data
set was created such that the channel speed was
constant at all times (Z(¢) = 1), and the algorithm was
run with this constant channel speed. A comparison
was made between these results from the algorithm
and the one from [18]. Table VII shows the results
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Fig. 9. Job computing finish time for time-varying processor
speed and channel speed.

TABLE VIII
True Result of Time-Varying Channel Speed System According to
Non-Time-Varying System

Tj (03] Q2 a3
2.049180 | 0.409836 { 0.327869 | 0.262295
TABLE IX
Result of Algorithm When Processor and Channel Speed are Time
Varying
3
T/ ay a [+ %] Zan
n=]
3.228 | 0.6368 | 0.2347 | 0.1233 | 0.9948
3.234 | 0.6408 | 0.2387 | 0.1243 | 1.0038

from the algorithm with constant channel speed and
Table VIII shows the true results via [18]. All the
‘true results (Tf, oy, 0y, and o) lie between the two
closest results from the algorithm in Table VII. The
accuracy is the same as in the previous subsection and
is approximately 99.96%.

C. Time-Varying Processor and Channel Speed

This subsection briefly explains the results from a
simulation. Both the processor speed and the channel
speed are random variables here. It is simulated
when T,,, = 1 and T, = 2. Fig. 9 is obtained from the
algorithm in Section IV. Table IX shows the results
from the algorithm in Section IV and Table X shows
the results from the exhaustive search. The results
from the algorithm has the smaller job finish time
(Tf = 3.234) than the one from the exhaustive search
(T; = 3.238).
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TABLE X
Result of Exhaustive Search When Processor and Channel Speed
are Time Varying

Grid density Ty o a; ag

3.250 0.130
3.245 0.125
3.238 0.124

100 x 100 x 100
200 x 200 x 200
500 x 500 x 500

0.620
0.635
0.640

0.250
0.240
0.236

TABLE XI
Result of Time-Varying Processor and Channel Speed Algorithm
With Constant Processor and Channel Speed

3

2 o

n=1. .
0.996
1.008

Ty a az as

0.210
0.213

1.416
1.422

0.315
0.318

0.471
0.477

TABLE XII
True Result of Time-Varying Processor and Channel Speed
System According to Non-Time-Varying System

T/ oy Qy Qg ‘

0.210527 |

1.421053 | 0.473684 | 0.315789

Table XI shows the results from the algorithm
with constant processor speed and channel speed
(W (1) = w, (1) = w;(t) = Z(¢) = 1) and Table XII shows
the true results from [18]. All the results (Tf, ay, Oy,
and ;) lie between the two closest results from the
algorithm in Table XI. If one chooses T; = 1.422 in
Table XI as a solution of the algorithm, the accuracy
is approximately 99.93%.

D. Stochastic Model

Two plots are obtained from the simulation in
the stochastic analysis, Figs. 10 and 11. Both the
processor speed and the channel speed are time
varying and there are 3 processors in the system, and
Z=1,w =T, wy=5w;=3,C =10,and C,, =10
for all n. The variance of the service time o7 is equal
to zero in the M /D/1 queueing model and equal to
one in the M /G /1 queueing model. In the two plots,
the optimal fraction of the workload (as) and the job
finish time (7;) are drawn against the job arrival rate.
The range of the job arrival rate (A; and A, ) are from
zero to one. In Figs. 10 and 11, the legend is ordered
in the order of the curves, i.e., the uppermost curve
represents o for M /M /1 and the second upper most
_curve represents o, for M /G/1 in Fig. 10. It is found
that the optimal fractions of the workload (as) are not
sensitive to the choice of queueing models, but they
are sensitive with respect to the arrival rates (Fig. 10).
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Fig. 10. Optimal fraction of workload (as) versus arrival rate in
stochastic analysis.
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15 F
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Arrival Rate

Fig. 11. Job computing finish time in stochastic analysis.

In Fig. 11, it is shown that the job finish time in the
M /M /1 queueing model takes longer than that in the
M /D/1 queueing model and shorter than that in the
M/G/1 queueing model.

VII.  CONCLUSIONS

In this paper a numerical method to calculate
the average processor speed and the average shared
channel speed when these speeds are time varying
was found. The algorithm to find the optimal fraction
of the workload to minimize the total job computing
finish time was also discussed in the deterministic
analysis. It was found that the results from the
algorithm are accurate. The accuracy was greater than
99.9%.

A simple stochastic analysis using Markovian
queueing theory that can handle a more general
situation in a time-varying multiprogrammed and
multiprocessor environment was introduced here.

Further areas for research would be an extension
of the stochastic analysis that can handle more
complicated situations, for instance, a job arrival rate
that is other than Poisson distributed, an analysis for
the service times that might be expressed in terms of
the computational load of the job (TCP), and networks
other than the bus network, e.g., tree network and
hypercube network, etc.
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APPENDIX A

One can calculate the area of the computing
speed of the nth processor in the interval (Z,,7%) as
follows:

1
o] k

f el

Ty
k=0 \ j=0

1
X L1t — 1) —ult ~ )] —d
-1

1 00 k
2;;2 P

ng=0 \ j=0
of rTr Ty
X [/ u(t*tk)dt—/ u(t—tk+1)dt] .
T T
(40)
But,
. T,~T, if §<T,
/ ult —t)dt = o Tp — 1, if T,<4(<T;
T .
0, otherwise
7 Ty -1, if 4, <T,
T, .
0, otherwise

Let us define new variables x, and x;.

DEFINITION 1
satisfies

The integer x, is the value of k which

<1, <t,,.

DEFINITION 2 The integer x, is the value of k£ which
satisfies

4 STy <ty
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For example, in Fig. 3(c), x, = 2 since t, < T, <t; and
Xp= 6 since 75 < Tf < t;. Then,

T
/ L
5 Wa@®

1 xp—1 k -1
—;v—[ (Zn) ;=1
" k=0 \ j=0
xp—1 k -1
+ rl @ t,m)}
k=xp Jj=0

f w
Jorj WZIOJ n

£ -6 |

Note that (w, Z g “oT)” ! is the computing speed of the
nth processor at tlme t =T;. That is,

W

1 _ 1 3 1
HZI =0 ] Wn(t) f=Tf Wn(]})

1 1 1
Wn ZJI"I—'O r:' W”l (t) t=T, Wn (T;;)

. T (R
W, lef:orj Wn(t) t=n Wn(tk)
1 1 _ 1
HZ] 0 j Wn(t) t=t_| wn(tk_l).
Therefore,
T T
/ ! dt = S _ T;z
. Wa(D) wo(Ty)  w,(T,)
B z%f_: ( e — )t
k=x,+1 W) W)/ "
“n
APPENDIX B

One can calculate the area of the channel speed in
the interval (T,,_;,T,) as follows:

T, k
——dt = / S,
okl AP P30
1
x [u(t —t,) —u(t— tkﬂ)]zdt
. -1
1 o0
= 72 Zsj
k=0 \ j=
Tn Ty
T Tt
(42)
But,
T
/ u(t —,)dt
STy
T,-T, if 4<T,,
= T—t, i Ty < <7,
0, otherwise

T,
T,

n—1

L=T1 i f STy
=0 L=t T <8 ST,
0, otherwise
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- Xn K-
ZY7es Zams
Xn k -1 -

DN I DI
k=x,_y+1 j=0 j=

Note that (Z}_7~,s;)"" is the channel speed at time

t =T, That is,

1
Zz, ()S
1
5D
1
———
Z3 =05
1
ZZ, ()S

_h
zZ

k1

t=h

=ty

S Za)

1

:quf

Therefore,

CER U A
b 20Tz " 20, )

il 1 1
2 (2<T<> i} zak_l)) L
(43)

APPENDIX C

Somewhat different parametrizations of the
stochastic models of this work eliminate the need for
C,,, and C;. For instance consider a processor F; with
Poisson arrival rate for background jobs of A; and a
(negative exponential) service rate of y;. Then, from
basic M /M /1 queueing theory, the average number of
background jobs, with no divisible job present, is

—_ Ai
Ki= =X

Under the fair resource scheduling policy if there
is a single divisible job present the service rate applied

to the background job is

K;
L — = ,
Hi X + e
where y; is now the overall service rate.
Thus: \
fi = E—i——“—.
i
= = A
Ki + 1:“’1 1

Solving for K, thru a quadratic equation, yields

K = A+ 1A

i Bi— N

Then, since there are K; background jobs and one
divisible job:

_ .+ BV
W, = &, + Dw, = (LL> W,
Bi — A

Note that the need for C,, and C; has been
eliminated.
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