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Abstract

Diwvisible load theory is a methodology involving the linear and contin-
uous modeling of partitionable computation and communication loads for
parallel processing. It adequately represents an important class of prob-
lems with applications in parallel and distributed system scheduling, vari-
ous types of data processing, scientific and engineering computation, and
sensor networks. Solutions are surprisingly tractable. Research in this
area over the past decade is described.

1 Introduction

The interest in network-based computing has grown considerably in recent times. In this envi-
ronment, a number of workstations or computers are linked through a communication network to
form a large loosely coupled distributed computing system. One of the major attributes of such a
distributed system, apart from its role in storing information in a distributed manner and allowing
the use of shared resources, is the capability that it offers to a user at any single node to exploit
the considerable power of the complete network or a subset of it by partitioning and transferring

its own processing load to the other processors in the network.

This paradigm of load distribution is basically concerned with a single large load which orig-
inates or arrives at one of the nodes in the network. The load is massive and requires an enormous
amount of time to process given the computing capability of the node. The processor partitions
the load into many fractions, keeps one of the fractions for itself to process and sends the rest
to its neighbors (or other nodes in the network) for processing. An important problem here is to
decide how to achieve a balance in the load distribution between processors so that the computa-
tion is completed in the shortest possible time. This balancing can be done at the beginning or
dynamically as the computation progresses and the computational requirements become clearer.
This framework of computing is suitable for applications that permit the partitioning of the pro-
cessing load into smaller fractions to be processed independently so that the partial solutions can
be consolidated to construct the complete solution to the problem. Obviously not all processing
loads satisfy this requirement. But there are a large class of applications that not only permit this

kind of processing, but for which it is essential to do so in order to complete the task in time.

By and large, scheduling problems discussed in the literature do not attempt to formulate
scheduling policies based on the type of loads submitted by an user, except perhaps where resource
constraints are involved. Usually, the stress has been on designing efficient parallel algorithms in
place of conventional sequential algorithms, which requires exploitation of function parallelism in

the algorithm. However, there is another kind of parallelism that occurs in the data and is called
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Figure 1: Classification of processing loads

data parallelism. Such loads can be split and assigned to many processors. But, the manner in
which this partitioning (or load division) can be done depends on its divisibility property, that is,
the property which determines whether a load can be decomposed into a set of smaller loads or

not (see Figure 1).

Accordingly, loads may be indivisible in which case they are independent, of different sizes,
and cannot be further subdivided. Thus, they have to be processed in their entirety in a single pro-
cessor. These loads do not have any precedence relations and, in the context of static/deterministic
scheduling, they give rise to bin-packing problems that are known to be NP-complete and hence
amenable only to heuristic algorithms that yield sub-optimal solutions. In the context of dy-
namic/stochastic scheduling, these loads arrive at random time instants and have to be assigned

to processing nodes based on the state of the system.

Alternatively, a load may be modularly divisible in which case it is a priori subdivided into
smaller modules based on some characteristics of the load or the system. The processing of a load
is complete when all its modules are processed. Further, the processing of these modules may
be subject to precedence relations. Usually such loads are represented as task interaction graphs
whose vertices correspond to the modules, and whose edges represent interaction between these

modules and perhaps also the precedence relationships.



Finally, a load may be arbitrarily divisible which has the property that all elements in the
load demand an identical type of processing. These loads have the characteristic that they can
be arbitrarily partitioned into any number of load fractions. These load fractions may or may not
have precedence relations. For example, in the case of Kalman filtering applications, the data is
arbitrarily divisible but there may exist precedence relation among these data segments or load
fractions. On the other hand, if the load fractions do not have precedence relations, then each
load fraction can be independently processed. These latter type of loads are the ones which are of
interest to us. Applications which satisfy this divisibility property include processing of massive
experimental data, image processing applications like feature extraction and edge detection, and
signal processing applications like extraction of signals buried in noise from multidimensional data
collected over large spans of time, computation of Hough transforms, and matrix computations.
Traditionally, the parallelism inherent in these problems was exploited through parallel algorithms.
Now with the availability of distributed computing systems it is realized that these parallel algo-
rithms can be mapped on to network based computing. However, this is not a straightforward
mapping since many of the special properties and limitations of distributed systems affect the per-
formance of the load distribution algorithms. One such factor is the communication delay which is
considerably higher in a distributed network environment (that has distributed memory machines
with message-passing architecture) than in a parallel processing environment (which has a shared
memory architecture). This is especially true for the processing of divisible loads since there is

very little interprocessor communication during the actual computation process.

2 A Historical Perspective

The initial application of divisible load processing was motivated by the objective of integrating
communication and computation in distributed sensor network modeling. The basic goal was to
understand “intelligent” sensor networks. Nodes in such a network could make measurements of
the environment, perform computations on the measurement data and communicate the measure-
ments to other nodes to gain the benefits of parallel processing. What proved most fortuitous was
the generic nature of the original load model. The “job” (load) to be processed was envisioned as
basically a very large linear data file that could be arbitrarily divided amongst a number of proces-
sors. The concern with measurement data (such as radar or sonar returns) led to the “divisible”
nature of the load. Linear models were used to represent processing speeds and transmission times,
making them dependent on the processor and communication hardware only to the extent of a

linear constant. This is an important feature in an era of rapid changes in networking technology.



A simple parametrization also allowed one to specify the size of the load and whether it was more
computation or communication intensive. Moreover, the overall model was purely deterministic,
with none of the statistical assumptions that can be the Achille’s heel of stochastic models. What
was not envisioned originally was that this generic load sharing model would prove so simple to
solve. In fact the reason for this simplicity, the linearity of the model, took some time to be fully
appreciated. But what it did mean was that many of the analytically powerful concepts of linear
theory used in research on electric circuits, queueing models and control theory, could be applied

to divisible load analysis.

The generic nature of the divisible load model also meant that it was eventually realized that
the theory would apply to parallel and distributed computer system modeling as well as to sensor
network modeling. Thus, in the history of the literature on divisible load theory, early publications
tended to appear in such journals as the IEEE Transactions on Aerospace and Electronic Systems
and later ones often in computer engineering journals. In the past few years the literature on divisi-
ble loads has been enriched by many significant contributions by researchers from several countries.
A book that covers the early results in this area of research is [1]. Another book that covers several
results in the perspective of various network topologies is [2]. A compendium of papers in this area

is available in the last author’s webpage at <http://www.ee.sunysb.edu/ tom/dlt.html>.

3 Load Distribution Strategies: Design and Analysis

The basic idea underlying the process of scheduling divisible loads to minimize the processing time
in distributed networks is in devising efficient load distribution strategies. While a data partitioning
algorithm is simple to implement, the non-triviality of scheduling divisible loads lies in designing
strategies that efficiently utilize the available network resources in terms of computational power

and communication channel bandwidth.

3.1 The Load Distribution Model

Divisible load distribution, in general, goes through the following process. The load to be processed
arrives at a node, called the originator or the root node (in the case of tree networks), depending
upon the architecture under consideration. Also, the architecture can be such that the processors
can be equipped with front-ends or without front-ends. In the with front-end case, with a network
involving m processors, the originator partitions the load into m fractions, starts the computation

on its own load fraction and simultaneously starts distributing the other load fractions to other



processors one at a time in a predetermined order. Note that the computation and communication
events occur concurrently at the originator, if it is equipped with a front-end (also known as a
communication co-processor). On the other hand, in the without front-end case, the originator
first distributes the load fractions to the rest of the processors and then it computes its own load
fraction. Of course, when we consider a linear topology for the network, the originator pumps all
the data in a pipelined fashion, and every processor that receives the data from its predecessor
keeps the portion intended for it and passes the rest to its successor. The problem is then to choose
the size of these load fractions in such a way that our objective of minimum processing time is met.
It is important to note that we are addressing the problem of load partitioning in a heterogeneous
system of processors and links, and hence, dividing the load into equal sized fractions will naturally

result in a poor performance.

3.2 Nomenclature

Below we describe the standard notations used in the divisible load scheduling literature.

a=(ag,...,qy) : Load distribution vector
a; : Load fraction allocated to processor p;
T(«) : Finish time with load distribution «

w; : Ratio of the time taken by processor p;, to compute a given load, to the time taken by

a standard processor, to compute the same load
T¢p : Time taken to process a unit load by the standard processor

z; + Ratio of the time taken by link /;, to communicate a given load, to the time taken by a

standard link, to communicate the same load

T, : Time taken to communicate a unit load on a standard link

2T em

0= wTep

Then a,;w;T¢, is the time to process the fraction a; of the entire load on the i-th processor.
Note that the units of a;w;T., are [load] x [sec/load] x [dimensionless quantity] = [seconds].
Likewise, a;z;T¢p, is the time to transmit the fraction «; of the entire load over the i-th link. Note

that the units of a;2z; Ty, are [load] x [sec/load] x [dimensionless quantity] = [seconds].



The standard processor or link referred to above is any processor or link which is used as
a reference. It could be any processor or link in the network or a conveniently defined fictitious

processor or link.

3.3 Linear Networks

The first target architecture to be examined in the study of divisible loads, was that of a (linear)
daisy chain [3]. This was done based on a perception that such a reduced case might be tractable.
The original application was for sensor networks where the “sensors” were networked computers
that shared information. In a linear network the processor pg (the root) is connected to processor
p1 via link Iy, p; is connected to py via l> and so on until p,,—; is connected to the boundary
processor p,, via l,,. If a divisible load originates at one end of a daisy chain of m processors then
a set of m linear equations can be set up to solve for the optimal fraction of load to be assigned
to each processor in order to minimize the “finish time”. Here finish time is the time when all
processing has ceased. Other variations to this problem deal with a load that originates at an
interior processor and also when the time for processors to report solutions back to the originator

is non-negligible.

This optimal assignment of load is done in the context of the schedule of load distribution
that the equations are based on. One can have load distribution strategies that involve round robin
distribution of load to the processors or strategies that simply distribute load to each processor
in turn once. One can also distinguish between a store and forward reception of load and those

strategies that are more akin to the virtual cut through switching strategy of networking.

Finally, linear daisy chains that are infinite in extent can be solved to obtain performance
bounds. Actually finish time tends to saturate as more processors are added to the network
because of the repetitive overhead in communicating load down a chain. Using concepts from
algebra, combinatorics, and even electric circuit theory, both the optimal load allocations and
finish time of infinite sized daisy chains can be obtained [4, 5]. Such infinite networks represent
a performance benchmark that finite chains can be compared against. However, it soon became

apparent that other topologies such as tree and buses would yield superior performance.

As an illustration, we consider a linear network with three processors. The equations,
however, are easily generalizable to m processors. Each processor is equipped with a front-end.
The timing diagram, given in Figure 2, shows communication delay above the time axis and

computation time below. The finish times for all processors are assumed to be equal for optimal
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Figure 2: Load distribution in a three-processor linear network

load distribution (see Section 3.5).

ag + aitax=1

aiwiTey, = (1—ag— - —a)zig1Tem + tiprwip1Tep, 1=0,1

These linear equations can be reduced to a series of product forms that are easy to compute
recursively and whose elegance aids analysis. Closed form solutions are available when the network

is homogeneous (that is, equal link speeds and processor speeds).

3.4 Tree and Bus Networks

Research during the very early stages of divisible load theory considered these networks [6] in
addition to linear networks discussed in the previous section. In these studies, a bus network
architecture was conceived as a special case of single-level homogeneous tree networks. This is, of
course, expected as our modeling ensures that when all the link speeds are identical in single-level
tree network (SLTN) or in star network architectures, the resultant network becomes identical to
a bus network. Thus, all the results that are valid for SLTN also hold for bus networks. The

treatment to obtain optimal finish time solution follows the same technique as the linear network.
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Figure 3: Load distribution in a three-processor tree network

There is a possibility in tree networks of varying the order or sequence of load distribution
among the child processors. There are m! such sequences possible with m processors connected
to the root. An optimal sequence is that in which the load distribution follows the order in
which the link speeds decrease. However, from a network designer’s perspective, if architectural
rearrangement is permissible, then the best way one can arrange the processors and links would be
to connect the fastest processor to the fastest link and the next fastest processor to the next fastest
link and so on and then follow the optimal sequence of load distribution. Further, when front-ends
exist the root must be the fastest of all the processors in the network [7, 8]. The extension of many

of these results to multi-level tree networks is also available [9].

In bus networks, three possible configurations are of interest: (i) Bus equipped with a control
processor or a bus controller unit (BCU), (ii) Bus not equipped with a BCU, but processors with
front-ends, and (iii) Bus not equipped with a BCU, but processors without front-ends. While the
analytical treatment and the load distribution process remains identical, the study of divisible load
scheduling on bus networks is of interest since the network is simple in nature and allows one to

design and study the performance of complex scheduling strategies [9, 10].

As an illustration we consider a tree network with one root processor and two child processors

in Figure 3. The corresponding load distribution equations are,



oy + a1+a2:1

ajwiTe, = aip12i41Tem + aipiwiz1Tep, ©=0,1
These equations too can be solved recursively. Closed-form solutions are also possible.

As a numerical example, consider a single-level heterogeneous tree with 4 processors where
wo =2, w1 =3, wa =1, w3 =2, 21 =2, 20 =05, 23 =5 and Ty, =T, = 1. If we use all
the processors then o = {0.4321,0.1728,0.3457,0.0494} and T'(a)) = 0.8642. But this distribution
is not optimal. Suppose ps is given a3 + as and p; is not given any load, then the new load
distribution is o/ = {0.4321,0,0.5185,0.0494} and the processing time is T'(«’) = 0.8642. In this
case, the processors do not stop at the same time. If we redistribute load to the reduced network
consisting of pg, p2, and p3 only so that they all have the same finish times then the new load
distribution is «” = {0.3962,0,0.5283,0.0755} and T'(a”) = 0.7924, which is indeed the optimal

finish time solution to this problem.

3.5 The Optimality Principle

In the above discussions we assumed that to obtain optimal processing time all the participating
processors must stop computing at the same instant in time. This was the basic optimality principle
in the case of divisible load scheduling problems. This assertion is supported by an intuitive
observation that when all processors do not stop computing at the same time, it is possible to
redistribute some load from processors that stop computing later to those that stop computing
earlier. While the above claim seems to have an intuitive validity, it was subsequently shown that,
for a single level tree network, the optimal processing time can be achieved by distributing the
load only among the “fast” processor-link pairs. An exact expression that distinguishes the “fast”
processor-link pairs from the “slow” processor-link pairs has been derived [1]. A reduced network
can then be obtained after eliminating the slow processor-link pairs and the load is distributed

among the remaining processors using the optimality principle.

Based on the above, it is reasonable to say that although the optimality principle remains
valid for even an arbitrary network topology, the optimal time performance depends crucially on
the selection of a proper subset of the available processors. Thus, using a larger set of nodes may
yield an inferior performance compared to an optimal subset of nodes among which the load is

distributed according to the optimality principle.

In the case of homogeneous single-level tree networks (and also for the bus networks) all the

10



processor-link pairs are identical and hence all of them must be used to process the load. this has

been shown to be true in [11].

3.6 Multi-Installment Strategy

The load distribution model discussed above underwent a fair bit of revision when it incorporated
pipelining in the form of a multi-installment strategy, where a processor need not wait till the
complete load fraction to its predecessor has been transferred. Exploiting the divisible nature of
the load, each fraction was further subdivided and distributed in a repetitive sequence [12, 13].
This strategy reduced the idle time of the processors at the farthest end of the load distribution
sequence. In addition to a resulting reduction in processing time, one can also have a control on
the finish time by selecting the number of installments. This capability is crucial for real-time

processing of certain types of loads.

3.7 Performance Saturation

The presence of communication overheads limits the performance of networks processing divisible
loads. Although the speed-up performance and the finish time performance improves with increase
in the number of processors m in the network (and the number of installments n in the case of multi-
installment strategies) the incremental performance improvements follow the law of diminishing
returns. The performance curves are governed by a relation somewhat similar to Amdahl’s law as
the communication overhead associated with load transfer takes place in a sequential fashion. In
Figures 4 [1] we see the speed-up saturation as the number of processors increases in a homogeneous
linear and tree network, respectively, equipped with front-ends and using a single installment load
distribution strategy. In Figure 5 [1] we see the variation in the optimal finish time T'(m,n) with
the number of processors m and the number of installments n in a homogeneous tree network
equipped with front-ends and using a multi-installment strategy [13, 14]. Asymptotic analyses of
various load scheduling policies is quite tractable in the divisible load framework. One way to go
about this is to develop expressions for a single processor whose characteristics are equivalent to
a network of processors of interest [15]. That this can be done is not too surprising as divisible
modeling is generally linear, just as in the case of linear electric circuit theory and its concept of

equivalent circuits.

Another contribution in this direction is [16] where the parallel time and speedup is analyzed
for a linear array, a mesh, a multi-level n-ary complete tree, and a pyramid. It is shown that the

speedup is bounded from above by a quantity independent of network size, but dependent on the
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architecture. An asymptotic performance analysis based on a single processor equivalent of a mesh
of processors has been conducted in [27]. In [29] analytical performance evaluation is presented for

three dimensional mesh of processors.

4 Applications and Extensions

Several potential applications of divisible load theory has been mentioned earlier. Specifically,
an edge detection application in the image processing domain has been considered [1]. In this
example, the difference in the finish times when one considers a parallel system (communication
delays are negligible) and a distributed system (non-negligible communication delays) are clearly
demonstrated with a numerical example. Subsequently, several applications and extensions of the

divisible load paradigm have been addressed in the literature. We will discuss some of them below.

4.1 Large Matrix-Vector Products

Large matrix-vector products are necessary in several applications involving iterative solutions of
matrix equations. For example, in the design and simulation of microwave ovens, the finite element
approximation of a wave equation in a cavity filled with non-homogeneous material gives rise to
large systems of linear equations with near about 300,000 unknowns. Solutions of such equations
via iterative methods require the computation of large-sized matrix-vector products. Such cases

also arise during the design of complex control systems with large number of state variables.

Due to the large size of the matrices and the homogeneity of the computational process it
is possible to treat these problems as divisible jobs. For example, consider the computation of a
matrix-vector product b = Az, where b is an m X 1 vector, A is an m X n matrix, and z is an
n x 1 vector. The total number of multiplications and additions needed to compute b is mn and

m(n — 1), respectively. The problem is decomposed using a row striping strategy as follows: Let

A = (A17A27"'7Am)T
r = (x1,29,...,2,)7
b = (blava"'vbm)T

where, A; is the i-th row of the matrix A, z; is the i-th element of the vector z, and b; is the i-th

element of the vector b. Then, b; can be computed as

bi:AiiE, i:l,...,m
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where, A;z is the inner product of the vectors A4; and . The load processed by a processor P; is
given in terms of the number of rows m; of the matrix A that P; processes. That is, P; computes

m; elements of the vector b. Thus,
mg+my+---+my=m

Thus, in the matrix-vector problem defined above, the (p + 1)-tuple (mg,ma,...,mp) defines a

load distribution.

It is also possible to solve this problem using a column-striping strategy where, if a processor
gets columns j to k then it is also assigned z; to x; elements of the vector . Each processor
computes m partial sums of the vector b. The consolidation of the results at the root constitutes
p vector additions to obtain the elements of b. Thus, a total of pm additions have to be performed
by the root after the main computations are over. This accumulation of partial sums in the child
processors increases the computational burden on the root while the child processors remain idle.
Since the broad objective of load partitioning is to distribute the arithmetic operations (additions
and multiplications) in a way that would minimize the processing time, row striping (in which
consolidation implies only collecting the elements of b) provides a more efficient distribution. On
the other hand, column striping gives rise to the possibility of multicasting the vector = too. But
this advantage is not very significant when m & n or m > n since A has O(m) more elements than
z. Consequently, since the communication time is usually much less than the time for performing
arithmetic operations, the computation time at the root turns out to be far in excess of the

communication time saved by multicasting the vector z [17].

4.2 Experimental Verifications

While the above paper emphasizes the development of a theoretical framework, in the work in
[18], experimental evidence to validate the time performance of algorithms based on the divisible
load paradigm on Ethernet based bus networks is reported. In this experiment, a network of
Pentium III series computers is used as a test-bed and a matrix of size 200 x 100, 000 is considered
to implement the matrix-vector multiplication algorithm. A software architecture based on C++
Microsoft foundation class is developed. All the theoretical findings reported in [17] were tested

and the time performance is demonstrated by setting different speed parameters.

Other experimental verifications were reported in [19], where the authors implemented ap-
plications such as pattern search, file compression, joining operation in relational databases, graph

coloring, and genetic search using the divisible load paradigm. In the case of pattern search ap-
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plication, a given string of characters are searched for a known substring. In file compression
applications, parts of the file, in chunks of 10KB each, are compressed independently using LZW
compression algorithm and the resulting compressed files are sent back to the originator. In the
join operation two lists, extracted from relational databases, are joined to produce a final list.
One of the lists, say A, was transmitted to all the processors and the second list, say B, is par-
titioned into m parts and each of the processors are allowed to calculate the the join on A and
B; i = 1,...,m and return the results to the originator. In the last application, the problem of
determining a chromatic number is a hard problem and hence, genetic search was used to solve
this problem approximately. The population derived from a pool of possible genes are distributed
among the processors and each processor generates a fixed number of new populations and these
are transmitted back to the originator. The results from the theoretical model and the experimen-
tal values were found to be close. This quite convincingly shows the applicability of divisible load

paradigm to several important applications.

4.3 Monetary Cost Optimization

It is interesting to consider scheduling models where the monetary cost of scheduling is a consider-
ation. One reason is that for a “computer utility” that charges customers for access to distributed
and networked computer resources an important question is the management of computing and
communication to provide profitable and attractive service. A second reason is that an important
question in current computer architecture and microelectronics is whether it is better to design
a system using one very fast but expensive processor or to use many cheap but slow processors.
One can use the linear scheduling theory of divisible loads to address such issues. The initial work
[20] on such cost modeling considered bus or single level tree interconnected networks of front-end
equipped processors. A contribution that applies these ideas to parallel processor configuration

design is [21].

There are really two optimization criteria, that are sometimes conflicting, in such situations:
finish time and cost. While there are a variety of ways to trade cost against finish time, a natural
way is to minimize cost such that for a given sequence of load distribution (i.e., the order in which
processors receive load) finish time is minimized. In a bus network if only computation costs are
considered a simple ordering based on the ratio of computing cost and computing speed is optimal.
In a single level tree network, if link transmission costs are also considered then there is no simple
optimality condition but rather a set of moderately complex algebraic conditions to determine

when an interchange of processors in the load distribution order is beneficial. Such conditions, or
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even a direct cost evaluation, can be used as the basis of a greedy algorithm to create efficient
(though not always optimal) load distribution orders. Modern heuristic techniques such as tabu

search or simulated annealing can be applied to such problems effectively.

There are many possible variations to such monetary cost optimization problems. One may
seek to develop algorithms to minimize cost subject to a bound on finish time or to minimize
finish time with a bound on cost. One may optimize, in a tree network for instance, over logical
sequences of load distribution from parent node to children or one may optimize over different
physical arrangements of processors and links. This flexibility in modeling is ideal for addressing

important problems in cost optimization.

4.4 Efficient Movie Retrieval for Network-based Multimedia Systems

As opposed to the idea of data striping in organizing the data onto a set of disks (for example, RAID
technology), divisible load paradigm proposes a totally different way of retrieving a long duration
movie to service a client request on a network. In the conventional video/movie-on-demand systems
(V/M-oD), a single server serves a pool of requests and also attempts to maximize the number of
clients that it can serve (admission control algorithms). Whereas the divisible load paradigm allows
an elegant solution in which a pool of servers are considered for retrieving a movie to the client site.
Thus, in this case, even low-bandwidth servers can be effectively utilized in the retrieval process
while, at the same time, every server can maximize the number of clients that it can support. This
is due to the fact that the server is used only for a small amount of time. Typically, the following

equations govern the retrieval process.
mi+1bwi+1 < m;bw; + miRp, 1=0,1,...,N —2. (1)

where, m; is the portion of the movie retrieved from server S;, bw; is the inverse of the band-
width, and R, is the playback rate of the movie at the client site. The inequality captures an
important relationship referred to as the continuity constraint, which has to be satisfied so as to
have a continuous presentation at the client site. Thus, solving these set of recursive equations
(with equality conditions) determine the minimum amount of movie portion to be retrieved from
each server maintaining the continuity relationship, and yields minimum time to access the movie
(minimum time that a client has to wait before the start of the presentation). The idea of multiple
installments can also be directly applied and the work in [22] presents a complete analysis as well
as simulation results of these schemes. The above idea was extended to the case of a generic sce-
nario in which multiple movies are requested by multiple clients from different sites in an arbitrary

network topology, in [23]. Here, a scheduler is designed to carry out a careful allocation of the
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available server bandwidth among client requests. The minimum size of buffers needed at the client
site and the size of movie portions to be downloaded from each server to the respective clients are

also derived.

4.5 Collection-Aware Query/Image Processing

A study that extends the concept of optimal sequencing to general tree networks, when one consid-
ers both the load distribution phase and the results collection phase, is given in [24]. The problem
is solved for two different classes of applications, namely query processing and image processing.
Query processing applications execute a search through the database and the result of the query is
a fixed size data. Image processing applications, on the other hand, extract data homogeneously
from the database and so the size of the result is proportional to the size of the data. The paper
extends the concept of utilizing an optimal subset of nodes to general tree networks. The set of
nodes that do not participate in the computation process are referred to as conductor nodes. These
nodes just communicate loads to their descendants. Using the concept of equivalent processors,
an algorithm is proposed to construct an optimal load distribution sequence. Also, several greedy
strategies are proposed to yield the optimal subset of active nodes. A second work on query pro-
cessing [25] develops solutions for expected record search time in flat file distributed over either a

linear daisy chain or a single level tree network.

4.6 Other Network Topologies

Apart from linear arrays and tree networks, several other network topologies, such as mesh and
hypercubes, have been considered by researchers [26]-[32]. These topologies have been used as
interconnection architectures for dedicated parallel processors. Important results such as speed-up
and processor utilization were obtained. As one would naturally expect, the speed-up and the
utilization were found to be dependent on the dimension of the respective networks. Simulation
results reported reflect this behavior and also highlight the possibility of achieving a much desirable

linear speed-up.
4.7 Release Times, Multi-Tasking, and Fault-Tolerance
In a general distributed network, there is no guarantee that all processors will be available for

use at the same time instant. In a study by Bharadwaj et al. [33], availability of processors was

modeled as a constraint in the problem formulation and various possible release time distributions
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were considered in scheduling a divisible load. For an arbitrary processor release time distribution,
a load sharing condition was found that identifies processors that are required at every stage
of iteration. For some specific release time distributions, the load distribution adopted a multi-
installment strategy. In fact, such a mix of strategies was found to achieve optimal processing

time.

Multi-tasking capability has been considered in bus networks to schedule divisible loads [1].
A numerical algorithm to find optimal fraction of the entire work load for minimal processing
time is presented by a deterministic analysis when the background job’s arrival and departure
process is known exactly, and by stochastic analysis when these processes are not known. In the
deterministic analysis, when there are k£ background jobs running in a processor, each job receives
1/k of the total computational power of the CPU. When a job leaves the system, the remaining
jobs receive an increased amount of the CPU time. In the case of stochastic analysis, the arrival
and the departure process of the jobs are modeled as a M/M/1 queueing network and also as a

M/G/1 queueing model.

Fault-tolerance was considered by Bataineh et al. [34] in the context of a bus network. They
consider an instance when a processor becomes faulty after the computation process has begun
and its load has to be redistributed among the healthy processors. This requires interprocessor
communication. Several methods have been considered in this study to redistribute the load held
by a processor. A probabilistic analysis yields the average unfinished task in the system and the

corresponding average finish time.

4.8 Start-Up Costs and Time-Varying Loads

The process of communication or computation demands an initial start-up time. More detailed
modeling of communication and computation loads is possible using the divisible load paradigm.
For instance, the process of communication and computation may include a significant fixed start-
up delay. These costs (really delays, not monetary cost) were explicitly considered by Blazewicz et
al. [35] and Bharadwaj et al. [36]. Recursive equations were developed and a condition to determine
the maximal set of processors that can be assigned the load fractions was derived. This process of
obtaining the maximal set is found to have the order of complexity O(log m), using binary search
procedures. Expressions for the speed-up and utilization were also derived. While [35] considers
the start-up costs in communication time of the load fractions alone, in [36], the start-up costs were
included in both the communication and computation times of the loads. These overhead factors

are considered as additive components, thus defining the computation and communication models
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as a;w;Tep + 0o and ;2T + Ocm, respectively. Using this model, a necessary and sufficient
condition on the existence of an optimal solution (employing the optimality principle) using m
processors in the system was derived. The concept of sequencing the load distribution was also
considered with these overhead, and it was shown that, when the overhead parameters are included
in the analysis, the processing time depends on the sequence of load distribution. Thus, in [36],
the influence of these overhead factors on the sequencing is analyzed and an optimal sequence is
obtained. This paper [36] also presents a greedy algorithm that produces a sub-optimal solution,

when an optimal sequence fails to exist with a m-processor sequence.

The effect of overheads was also analyzed for the case of linear networks and necessary and
sufficient conditions for utilizing all the processors in the system were derived [37]. Both the cases

when the processors are equipped with and without front-ends are considered.

In [38] the problem of partitioning a very large image data is considered on a bus network of
processors with start-up costs. Different possible data partitioning schemes were discussed. Using
row-wise partitioning scheme, closed-form solution for optimal number of pixels to be distributed to
the processors and the optimal processing time are derived by assuming the data to be arbitrarily

divisible.

A second feature of loads, their time-varying nature, is examined in [39]. Here processor
and/or link speed is modeled as time-varying because of the presence of background jobs/transmissions.
In this environment, if the arrival/departure times of background loads are known in advance, it
is possible to optimally distribute a divisible job among a number of processors. A first study at

a stochastic analysis with no future knowledge, also appears in this work.

A paper that uses a combination of queueing and divisible load theory to determine bounds

on the arrival rate of loads as a function of system and load parameters is [40].

4.9 Granularity

A specific problem of divisible loads is the granularity of the loads assigned to the processors.
A divisible load can be coarse- or fine- grained depending on the application and processing re-
quirements. In most of the literature on divisible load theory, all loads are considered to be fine
grained to the extent that they are assumed to be infinitely divisible. However, for most current

day application requirements, this assumption imposes severe constraints.

In Bharadwaj et al. [36], for bus networks with m processors, integer approximation is

carried out to yield integer load fractions. Thus, in this case, we obtain only a sub-optimal
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solution (as the processors will not stop at the same instant in time) and it was shown that the
solution obtained using the integer approximation technique is within a radius of (w7, + 2Tem)
from the optimal solution, for a homogeneous system of processors in a bus network. Further, in
[41], this issue has been addressed and a restricted partitioning of the loads (at most k partitions
are allowed) is considered. A minimum size, referred to as divisibility factor, is considered in the
analysis of divisible load scheduling. Thus, the load fractions assigned to the processors can no
longer be of arbitrary size, but they must be integral multiples of this fundamental divisibility
factor. Using this restricted partitioning constraint together with the granularity constraint, two
algorithms, referred to as PIA (Processor based Integer Approzimation)and ITA(Installment based
Integer Approzimation) are proposed. In the case of PIA strategy, while carrying out the integer
approximation, the surplus (deficit) load is “pushed” to (“pulled” from) its successor by a processor,
while in ITA strategy, the surplus (deficit) is “pushed” to (“pulled” from) the next round of the
same processor. Using these algorithms, the performance bounds (the bounds on the sub-optimal
solutions generated) is found to be within a radius of (mzTep)/2 + wep and 2Tem + (kwTye,)/2,

from the optimal solution, respectively.

4.10 Scheduling Hybrid Loads

In general, loads arriving at a computer system may not be strictly of one particular type. For
instance, jobs can be indivisible, modularly divisible, or arbitrarily divisible. Also, it is possible
that different parts of the load may be of different types. An algorithm to schedule both indivisible
and divisible loads was proposed by Bataineh et al. [42] with an objective to obtain a schedule
that gives the minimum finish time. The algorithm was designed for a Mach operating system.
The central idea of the algorithm is to allow all the processors to serve the divisible loads first and

then the indivisible loads.

However, in some cases, it was found that this policy may not lead to an optimum solution.
In these cases, part of the processors are assigned indivisible loads and the rest are assigned divisible
loads. The assignment depends on the number of indivisible loads, their finish times, and the total
finish time of the divisible loads. In this study the communication delay is included in the execution
time of the task, as it is assumed that the communication overhead for each task is available a
priori. Although this assumption is somewhat strong, in the case of parallel processing systems,

where the communication overheads are almost insignificant, the algorithm seems to be relevant.

A recent paper presents an algorithm for scheduling divisible and indivisible tasks in mul-

tiprocessor systems [43]. In addition to applying both paradigms, the algorithm is proved to be
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better than all existing ones and its results are very close to optimal values.

4.11 Scheduling with Finite-size Buffer Constraints

In processing divisible loads, an important practical issue is the available buffer size capacity at
the nodes for processing. In fact, this limits the amount of data that a single node can accept for
processing. Very recently, the issue of finite-size buffers are considered and an algorithm referred
to as incremental balancing strategy(IBS) is proposed in the literature [44]. This algorithm is
demonstrated to work in an incremental fashion by checking the available buffer at each iteration
before supplying the load. This algorithm is an off-line algorithm and determines the amount of
load that can be supplied to each node in every iteration. The algorithm guarantees that there
will be no load that is left unprocessed when it terminates and the order of complexity is proven
to be O(m). Several important properties leading to the proof of optimal solution is presented
in [44]. The IBS algorithm was also applied to a hypercube cluster in [45]. An n-dimensional
hypercube is considered and the load is assumed to originate at one of the corner processors. The
processors were assumed to have a limited buffer capacity. The load is partitioned and assigned
to the processors as recommended by the IBS algorithm and time performance is measured. Also,
during the load distribution process, the number of layers of processors on the hypercube that can

be assigned the load is determined based on granularity constraints.

5 Conclusions

In this paper we have surveyed the recent but fairly extensive literature on divisible load theory with
special emphasis on recent work done in this area. The wide spread of applications of divisible
load theory to practical problems is apparent from the diverse fields in which this theory has
contributed. The early literature on divisible load theory primarily concentrated on developing
theoretical tools to analyze the various algorithms that arise from the basic framework. However,
the more recent work focuses on the applications and extensions of this theory. In fact, some of the
recent efforts have been in the area of experimental verifications where encouraging results have
been obtained. We hope that this survey paper will help to compile at one place the recent work
on divisible load theory and encourage researchers to take up challenging problems in this area of

research.
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