
1

Signature Searching in a Networked Collection
of Files

Zhongwen Ying, Thomas G. Robertazzi, Fellow, IEEE
Department of Electrical and Computer Engineering, Stony Brook University

F

Abstract—A signature is a data pattern of interest in a large data
file or set of large data files. Such signatures that need to be found
arise in applications such as DNA sequence analysis, network intrusion
detection, biometrics, large scientific experiments, speech recognition
and sensor networks. Related to this is string matching.

More specifically we envision a problem where long linear data files
(i.e flat files) contain multiple signatures that are to be found using a
multiplicity of processors (parallel processor).

This paper evaluates the performance of finding signatures in files
residing in the nodes of parallel processors configured as trees, two
dimensional meshes and hypercubes. We assume various combinations
of sequential and parallel searching. A unique feature of this work is that
it is assumed that data is pre-loaded onto processors, as may occur in
practice, thus load distribution time need not be accounted for.

Elegant expressions are found for average signature searching time
and speedup, and graphical results are provided.

Index Terms—Database search, signatures, tree networks, mesh net-
works, hypercube networks.

1 INTRODUCTION

A signature is a relatively small data pattern of interest
embedded in a very large (in this paper sequential) data
file. It is assumed signatures are temporally distinct and
do not overlap each other. That is, there can be multiple
signatures in a file. Because the files we study are much
longer than the signatures, it is assumed that signa-
tures have infinitesimally small length. Such signature
searching occurs in network security, signal processing,
medicine, image processing, and sensor technology and
many other fields.

Most previous work on signature searching (known as
template matching and string matching) develop algo-
rithm for the detailed matching process. This paper, like
[1][2] addresses an upper level view of signature search-
ing involving system performance evaluation. However
we now briefly summarize some string matching work.

String searching, which is similar to our concept of
signature searching, is a special case of pattern searching.
String searching generically involves finding a pattern
of length m in a text of length n over some alphabet.
The worst case complexity of exact string matching is
O(n) but the proportionality constant of the linear term
can be very different depending on the string matching
algorithm, ranging from m for the naive algorithm to 2
for the Knuth-Morris-Pratt algorithm [3].

Approximate string matching involves string match-
ing that allows errors. That is, the pattern and/or text
suffer some corruption. Applications include noisy chan-
nels, speech recognition, hand writing recognition, find-
ing DNA sequences in the presence of mutations and
text searching. Approximate string matching algorithms
utilize some distance metric to quantify the amount
of difference between two strings. For instance, the
edit distance is the number of differences between two
strings. The computational complexity of approximate
string matching can range from linear to NP complete
depending on the error mechanism [4].

For on-line algorithms, it is assumed that the text is
not known in advance. For off-line algorithms the text
can be pre-processed, thus indexing can be used [5]. On-
line algorithms generally consist of a phase of entering
the string into a data structure and a phase of looking
for a match using the data structure [6].

In this paper we assume the data is stored in flat
files (i.e. very long linear sequences of data) stored at
nodes of certain interconnection networks. We assume
linear (in the file size) computational complexity which
applies to exact string matching and some approximate
string matching. Naturally more sophisticated database
methodologies are possible and flat file are often con-
verted into other structures [7][8] but for initial raw data
processing flat files are natural [9].

We envision a scenario where files containing signa-
tures are placed on a multiplicity of (parallel) processors
tied together by an interconnection network [1][2]. Un-
like the work in much of the divisible load theory litera-
ture [2][10][11][12], we do not take the time to distribute
the load to the processors and links into account. Rather
we assume the files are pre-loaded onto the processors
prior to time t = 0. This is relevant in certain applications.
Load is often spontaneously distributed to processors
without being scheduled, monitored or timed. Our goal
is to determine expected search time and speedup under
a variety of search protocols that largely differ in a
number of aspects. These include:

1) Whether the number of signatures in a file at a
node is known or unknown a priori. The latter is more
likely in general but the former could also occur. For
instance when a search is done for ”management” in



2

a company database, the number of signatures matches
may be generally known a priori.

2) Whether a data file stored at a node contains one
or more than one signature. For instance, a database
of company employee information may contain one
match for a given individual, but multiple matches for
individual who are ”management”.

3) If no signatures are stored in a node, whether it
implies that there are no signatures stored in the children
nodes of the node. For instance a node may store ag-
gregated/summarized national data and children nodes
store more detailed state/provincial data. It may be
possible in searching the national nodes to find children
nodes that should be searched and those that need not
be searched.

4) Differing degrees of sequentiality and concurrency
in the search strategy. Both have been investigated
in the divisible load scheduling literature over the
years[10][11][12].

These are important assumptions that may be made
in specific applications and we try to study this problem
in a complete manner. In this context this work exam-
ines tree, mesh and hypercube interconnection networks
[13][14][15][16]. We look at trees, meshes and hypercubes
mainly because these are fundamental interconnection
networks. Trees are often used as spanning trees to dis-
tribute load in other types of interconnection networks.
Meshes are often used as interconnection networks in
parallel processors. Meshes are particularly well suited
to networks on chips [17][18][19]. Hypercubes are widely
used in parallel processors. One could certainly examine
other interconnection networks but space limitations
prevent this in this paper.

In earlier work the expected search time to find either
one [1] or multiple signatures [2] with a uniform distri-
bution of signatures in a flat file was found analytically.
This earlier work involved trees and daisy chains and
incorporated, unlike this work, load distribution time to
processors over a network.

The rest of the paper is organized as follows. Section 2
discusses searching time and speedup in tree networks
for different cases. The searching time and speedup in
mesh networks (store and forward) for different cases
are discussed in section 3. A comparison of the speedups
for different type of networks is presented in section 4.
Finally, this paper concludes with some possible exten-
sions in section 5.

2 TREE NETWORKS

A general tree is shown in Figure 1. Assume that in a
tree a node is a structure which contains exactly one file.
Each node has one, two or more child nodes, which are
below it in the tree space. A node that has a child is
called the child’s parent node.

A node has at most one parent. Nodes that do not have
any children are called leaf nodes. They are also referred
to as terminal nodes. A node’s height is the length of the

Fig. 1: Multi-level tree network

longest downward path to a leaf from that node. The
root’s height is the height of the tree. The depth of a
node is the length of the path to its root. The nodes in
the same depth of the tree are said to be at the same
level.

The height of the multiple-level tree in this paper is
H . Throughout this paper there is a single file, possibly
containing signatures, in each node. In all the cases for
tree networks which we examine the number of children
nodes ni per node is a random variable from 1 to N ,
possibly different for each level. But at the same level the
number of children in each subtree is the same. In this
section if a parent node has a signature(s), its children
nodes may also have signatures. If the parent node does
not have any signature of interest, its children nodes also
have no signatures and do not need to be searched. Some
dependency between signature occurrences is thus being
assumed. This may model locality of reference - if a
node has a signature(s), there may be related information
(signatures) on its children.

The lengths of all the files in the tree are same, L
(bits). The inverse searching speed for one processor is w
(s/bit). Suppose that the expected time we need to search
a file with signature is X , because the expected position
of signature is in the middle of such file (i.e. uniform
distribution in linear file assumption). The time to search
the whole file is 2X . while 2X = L · w. The purpose of
this paper is to calculate the time we need to find all of
the files with signatures. We will discuss several cases in
sub-sections 2.1 and 2.2 using the assumptions listed in
the introduction.

2.1 Number of signatures is unknown

2.1.1 Each file has at most one signature

Let Mi be the number of signatures in the ith layer and
ni be the number of children nodes in each subtree in the
ith layer. If there is at most one signature in one file, Mi ≤
Mi−1ni ≤ Mi−2ni−1ni ≤ . . . ≤ n1n2 . . . ni. The expected
time to search one file is X , the searching process for a
file will stop as soon as we find one signature (as also
true in section 3.1.1 and 3.2.1).

2.1.1.1 Only one node in the tree commands all
the nodes: First, assume that only the top most root
node in the multi-level tree commands all the nodes to



3

search, for every layer, every file in the layer and each
node replies to the top node whether there is a signature
in the node. That is, one layer is searched sequentially
at a time. The expected time to search the entire tree is

Tu1 = n1X+M1n2X+ . . .+MH−1nHX =
H∑
i=1

Mi−1ni ·X

(1)
Here, M0 = 1.
Now we consider a homogeneous case that for all the

subtrees in a certain layer the probability of a signature
is the same: pi for the ith layer. Equation (1) will be
Tu1 = n1X + p1n1n2X + . . . + (

∏H−1
j=1 pjnj)nHX =∑H

i=1(
∏i−1

j=1 pjnj)niX . A homogeneous case occurs if
p1 = p2 = . . . = pH−1 = p, equation (1) will be
Tu1 =

∑H
i=1(

∏i
j=1 nj)p

i−1X . The fully homogeneous
case occurs if the number of files in all of the subtrees
is the same: n, and the probability of signature is also
the same: p, then the expected search time is Tu1 =∑H

i=1 n
ipi−1X = pHnH+1−n

pn−1 X .
2.1.1.2 Every root node of each local tree com-

mands the nodes below it: In this case each level is
searched sequentially, within each subtree the search is
sequential but all subtrees at the same level are searched
in parallel. The time to search the ith layer is niX . The
total expected time to search the multi-level tree is

Tu2 = n1X + n2X + . . .+ nHX =

H∑
i=1

niX (2)

The speedup compared with case 2.1.1.1 is

τu1 =

∑H
i=1 Mi−1ni·∑H

i=1 ni

(3)

For the fully homogeneous case, τu1 = pHnH+1−n
pn−1

1
nH =

(pn)H−1
(pn−1)H .

2.1.1.3 All the files in every level are searched in
parallel, levels are searched sequentially: In this case
each level is searched sequentially and within a level the
nodes are searched in parallel. For every level the search
time is only X . The total search time is Tu3 = HX . The
speedup compared with case 2.1.1.1 is

τu2 =

∑H
i=1 Mi−1ni

H
(4)

For the fully homogeneous case, τu2 is ((pn)H−1)n
(pn−1)H .

2.1.1.4 All the files in the tree are searched in
parallel: This case is the fastest search method. All the
files in the entire tree are searched in parallel. The total
search time is Tu4 = X and the speedup is

τu3 =

H∑
i=1

Mi−1ni (5)

For the fully homogeneous case, τu3 is ((pn)H−1)n
(pn−1) .

Fig. 2: Speedup when the number of signatures is unknown
and each file can have multiple signatures

It is apparent that as the height increases, all the three
speedups also increase, and τu1 < τu2 < τu3, τu3 is
much larger than τu1 and τu2 when the height is high.
From equations (3), (4), (5) we know τu3 = H · τu2,
τu2 =

∑H
i=1 ni

H τu1, the expected mean number of
∑H

i=1 ni

H

is
N
2 H

H = N
2 . This confirms that the highest performing

strategies, if it can be implemented, is to search all files
in parallel.

2.1.2 Multiple signatures can exist in one file

One should search the whole file to find all of the
signatures in each file. If there are multiple signatures
in one file, the expected search time is 2X (section 3.1.2
and 3.2.2), Mi can be larger than Mi−1·ni, and we assume
that those Mi signatures exist in Ni files (each of Ni files
with at least one signature).

2.1.2.1 Only one node in the tree commands
all the nodes: The expected search time in layer i is
Ni−1ni · 2X , for Ni files with signatures, Ni ≤ Mi. The
total expected search time is:

T́u1 =
H∑
i=1

Ni−1ni · 2X (6)

2.1.2.2 Every root node of each local tree com-
mands the nodes below it: Again the levels are searched
sequentially, within each subtree the search is sequential
but all subtrees at the same level are searched in parallel.
The expected search time in layer i is ni · 2X . The total
expected search time is:

T́u2 =
H∑
i=1

ni · 2X (7)

The speedup is:

τ́u1 =

∑H
i=1 Ni−1ni · 2X∑H

i=1 ni · 2X
=

∑H
i=1 Ni−1ni∑H

i=1 ni

(8)



4

2.1.2.3 All the files in every level are searched
in parallel, levels are searched sequentially: The same
case as before, T́u3 = H · 2X . The speedup is τ́u2 =∑H

i=1 Ni−1ni

H
2.1.2.4 All the files in the tree are searched in

parallel: The same case as before, T́u4 = 2X . The
speedup is τ́u3 =

∑H
i=1 Ni−1ni

The speedup is plotted in figure 2. As a baseline result,
it is assumed that the distribution of signatures in every
file is a Poisson distribution: P (m = k) = λk

k! e
−λ(m is

the number of signatures in every file). We can see from
figure 3 that when λ goes up from 1 to 20, the speedup
τ́u1 increases quickly first and then saturates. That is
because initially the number of subtrees needed to be
searched increased and later one winds up searching all,
but not more than all, files in a level, then the speedup
saturates.

2.2 Number of signatures is known

When the number of signatures is known, the searching
process will stop as soon as the last signature is found,
thus the time should be shorter than that of the case
where the number of signatures is unknown. Two cases
are discussed.

2.2.1 Each file has at most one signature
In this case assume that there are m signatures in n
files in a single level of the tree. Each file can have
at most one signature. Each node holds one file. We
focus on the last signature because the searching process
will not stop until the last signature is found, thus the
search time depends on the position of the last signature.
Because there are m signatures and every file can have
at most one signature, the last signature should be in
the mth, (m+ 1)th, . . . , nth file. If the last signature is
in the (m − 1)th or even a file to the left of mth file,
there will be multiple signatures in some files, which is
a contradiction. The probability that the last signature is
in the mth file is (there are m − 1 signatures in m − 1
files)

Pm =

(
m−1
m−1

)(
n
m

) (9)

And the expected search time is

tm = Pm(mX) (10)

The probability that the last signature is in the ith file
is (there are m− 1 signatures in i− 1 files) for i ≥ m− 1
is

Pi =

(
i−1
m−1

)(
n
m

) (11)

And the expected search time is

ti = Pi · (mX + (i−m)2X) =

(
i−1
m−1

)(
n
m

) (2i−m)X (12)

Fig. 3: Single level tree when the number of signatures is
known

Thus, the expected search time Ts for this single level
is

Tn,m =
n∑

i=m

ti =
n∑

i=m

(
i−1
m−1

)(
n
m

) (2i−m)X (13)

We plot the expected search time as the number of
signatures increases. In figure 3 the number of files
n = 100, and we can conclude that when m = 13, the
expected search time is the largest.

We derive the expression for the maximum value of
the function of figure 3 in the supplementary file.

d

dm
Tm,n =

2n−m2 − 2m+ 1

(m+ 1)
2 ·X = 0 (14)

Then we obtain m =
√
2n+ 2 − 1. If n = 100,

then equation 14 will be d
dmTm,n = 200−m2−2m+1

(m+1)2
, let

d
dmTm,n = 0, then we get the maximum expected search
time occur when m = 13.21 which is close to m = 13. For
this graph if a file has a signature the expected search
time is X , and if there is no signature, it is 2X . Initially
the mean time to find all signatures increases as more
signatures are located closer to the last file. Eventually
though as the number of signatures increases most files
have a signature forcing the average search time per file
closer to X rather than 2X and the curve decreases.

Up to this point in this section the expected time for
one single level has been solved. Next the expected time
to search an H level tree is considered. There are four
cases just as in the case where the number of signatures
is unknown.

2.2.1.1 Only one node in the tree commands all
the nodes: Assume that there are mi,j signatures in
the jth subtree in layer i, and Mi =

∑Mi−1

j=1 mi,j , Mi

stands for the total number of signatures in the ith layer.
Then for the jth subtree in layer i, the expected search

time Tni,mi,j =
∑ni

i=mi,j

( i−1
mi,j−1)

( ni
mi,j

)
(2i − mi,j)X . The total

expected search time is thus:

T1 =

H∑
i=1

Mi−1∑
j=1

Tni,mi,j (15)



5

Assume m1,1 = m1 = M1 and M0 = 1.
2.2.1.2 Every root node at local tree to command

the nodes below it: Again, the levels are searched
sequentially, within each subtree the search is sequential.
However all subtrees at the same level are searched in
parallel. For a given layer, the search time in this layer is
the longest expected search time in the layer’s subtrees.
Assume that in the ith layer the largest expected search
time is max[Tni,mi,j ] (j is from 1 to Mi−1 while Mi has
been defined before), The total time to search the entire
tree is:

T2 =
H∑
i=1

max[Tni,mi,j ] (16)

The speedup is:

τ1 =

∑H
i=1

∑Mi−1

j=1 Tni,mi,j∑H
i=1 max[Tni,mi,j

]
(17)

For the fully homogeneous case where n1 = n2 = . . . =
nH = n and m1 = m2,1 = . . . = mH,1 = · · · = m, the
number of signatures in every subtree is the same in
every layer in the first case. Then

τ1 =

∑H
i=1 m

i−1Tn,m

H · Tn,m
=

mH − 1

H(m− 1)
(18)

2.2.1.3 All the files in every level are searched in
parallel, levels are searched sequentially: Discussed as
before, T3 = HX and the speed up compared with case
2.2.2.1 is

τ2 =

∑H
i=1

∑Mi−1

j=1 Tni,mi,j

HX
(19)

For the fully homogeneous case that n1 = n2 = . . . =
nH = n and m1 = m2,1 = . . . = mH,1 = . . . = m, τ2 =
mH−1
H(m−1)Tn,m = m(mH−1)(2n−m+1)

H(m2−1) .
2.2.1.4 All the files in the tree are searched in

parallel: Discussed as before T4 = X , and the speedup

τ3 =
∑H

i=1

∑Mi−1
j=1 Tni,mi,j

X
. For the fully homogeneous case

that n1 = n2 = . . . = nH = n and m1 = m2,1 =

. . . = mH,1 = . . . = m, then τ3 = mH−1
H(m−1)Tn,m =

m(mH−1)(2n−m+1)
m2−1 .

This is apparent that τ3 > τ2 > τ1, because for the
fully homogeneous case, τ3 = Hτ2, τ2 = m(2n−m+1)

m+1 τ1,
absolutely m(2n−m+1)

m+1 > 1.

2.2.2 Multiple signatures can exist in one file
First we consider a single level tree which has n files and
m signatures. We combine all the files logically in one
level into a single file. We also assume that the capacity
of one file is L bits, so that the length of the combined file
is n ·L. The position of the signatures is X1, X2, . . . , Xm,
(nL ≥ X1, X2, . . . , Xm ≥ 0), X ∼ U(0, nL).

P (Xmax = x) =

(
m

1

)
· 1

nL
· ( x

nL
)m−1 (20)

Fig. 4: The expected search time when the number of signatures
is known and multiple signatures can exist in one file for a
single level tree

The expected length of the last signature position:

Xmax =

∫ nL

0

m

nL
· ( x

nL
)m−1 · xdx =

m

m+ 1
· nL (21)

The search inverse speed is w s/bit. Then the expected
time we need to search one single level is T́n,m = Xmax ·
w = m

m+1 · n · L · w, here L · w = 2X , thus

T́n,m =
2m

m+ 1
nX (22)

This is plotted in figure 4. Here the number of files
is 10 and the maximum number of signatures is 50.
From the figure we can see that the expected search time
will increase and saturate as the number of signatures
increase. That can be seen from equation (22), as m
increases, T́n,m will be close to 2nX .

Until now in this section we have solved the expected
time in one single level, now we consider the expected
time we need to search the H level tree. Assume that
the mi signatures are in ńi files. Apparently ńi ≤ mi.
The four cases are discussed as below.

2.2.2.1 Only one node in the tree commands all
the nodes: For the ith layer, there are Ni−1 files that
should be searched, there are mi,1, mi,2, . . . , mi,Ni−1

signatures in ńi,1, ńi,2, . . . , ńi,Ni−1 files, Ni =
∑Ni−1

j=1 ńi,j .
The total time is

T́1 =

H∑
i=1

Ni−1∑
j=1

T́ni,mi,j (23)

Note that N0 = 1 and ńi,j ≤ mi,j .
2.2.2.2 Every root node at local tree to command

the nodes below it: In this case the search time in the ith
layer is the time to search one of the subtrees which has
the largest number of signatures (like the case discussed
before). The total search time is:

T́2 =
H∑
i=1

max[T́ni,mi,j ] (24)



6

Fig. 5: Speedup when there can be multi-signatures in one file
and the number of signatures in a level is known

Note that j is from 1 to Ni−1. The speed up is:

τ́1 =

∑H
i=1

∑Ni−1

j=1 T́ni,mi,j∑H
i=1 max[T́ni,mi,j ]

(25)

2.2.2.3 All the files in every level are searched
in parallel, levels are searched sequentially: Discussed
as before, T́3 = 2HX . The speedup compared with case
2.2.2.1 is

τ́2 =

∑H
i=1

∑Ni−1

j=1 T́ni,mi,j

2HX
(26)

2.2.2.4 All the files in the tree are searched in
parallel: The total search time in this case is 2X . The
speedup here is:

τ́3 =

∑H
i=1

∑Ni−1

j=1 T́ni,mi,j

2X
(27)

The speedup figure for these cases has been plotted in
figure 5. From the figure we can see that τ́3 > τ́2 > τ́1.
The reason is similar to the case in 2.2.1.

3 MESH NETWORKS: STORE AND FORWARD

A regular two dimensional mesh network of processors
[11] is shown in Figure 6. It is a commonly used in-
terconnection network. In this network structure each
processor is located in the corners of four rectangles and
has four neighbors. The central processor is called the
originator, it can communicate information or transport
data to its four neighboring nodes. As in trees, the central
node is assumed to be layer 0, and its four neighboring
nodes in layer 1, the nodes which are neighbors to the
nodes in layer 1 but not in layer 0 are in layer 2, . . .
, the nodes which are neighbors to the nodes in layer
i but not in layer i-1 are in layer i+1, as shown in the
mesh structure. A node can only send messages or data
to its neighboring nodes. If the node in the north of layer
2 wants to send a message to the node in layer 0, first
it should send message to the node in the north top of
layer 1, then the message will be transferred to layer 2.

Fig. 6: Mesh network

Assume that there are N layers (as shown in figure
6) and there is at most one signature in every node in
a mesh network. There are 4i nodes in the ith layer.
Different from the tree network, the case that every node
can have a signature will be discussed in section 3.1.
That is, if a node has no signature, its children nodes
can still have signatures. Assume the average time to
search every node in the mesh network is the same: X ,
and again there is at most one signature in one file.

3.1 Every file can have its own signature regardless
of the upper layer node
3.1.1 The number of signatures is unknown
In this case every node should be searched. There are
three cases.

3.1.1.1 Only one node in the network commands
all the nodes: The central node which is in layer 0
commands each node to search for signatures. As soon
as the central node sends a message to command one
node to start to search its file, the central node will wait
until it receives a message indicating whether there is
any signature in the file. All of the nodes in the mesh
network are searched one by one. It is apparent that the
searching time is the longest, the searching time in the
ith layer is 4i ·X . The total expected search time is:

T1 = 4X + 8X + . . .+ 4NX = 2N(N + 1)X (28)

3.1.1.2 Every root node of each local network
commands the node below it: The searching time in
layer one is 4X . For layer two, there are 8 nodes to
be searched. We assign two nodes in layer two to be
searched by each node in layer one, the search time
should be 2X . For layer three, there are two cases, the
first case is for the four nodes in the upmost, or down-
most, or leftmost, or rightmost direction. The expected
search time for these four nodes is 3X , because there



7

Fig. 7: Speedup when the number of signatures is unknown in
a mesh network and each node can have at most one signature

are three neighboring nodes in their lower layer; and for
the second case (the remaining nodes), there are only
two neighboring nodes in their lower layer. Thus the
expected search time is 2X . However, we can eliminate
X searching time for both cases, because every node in
layer three except the four top nodes in four directions
have two upper nodes (different from the tree network).
If one node for the node in layer three is commanded
by one node in layer two, the other node in layer two
need not command it to search for a signature. For
layer three, the searching time is 2X , the same for layer
four, five, . . . . The total expected search time is T2 =
4X+2X+2X+ . . .+2X = 4X+2(N−1)X = (2N+2)X .

3.1.1.3 All the files in every layer are searched
in parallel, layers are searched sequentially: Like the
third case in the tree network, the search time in every
layer is X . The total time is T3 = NX .

3.1.1.4 All the files in the mesh network are
searched in parallel: The expected search time in this
case is only T4 = X .

Then we calculate the speedup in these four cases:
τ1 = T1

T2
= N, τ2 = T1

T3
= 2(N + 1), τ3 = T1

T4
= 2N(N + 1),

and the speedup figure has been plotted in figure 7. From
the figure we know that τ3 > τ2 > τ1, that is because
τ2
τ1

= 2(N+1)
N > 2 and τ3

τ2
= N .

3.1.2 The number of signatures is known
3.1.2.1 Only one node in the network commands

all the nodes: This case is mostly similar to the case in
the tree network: assume there are mi signatures in the
ith layer, we focus on the last signature. There are 4i files
in the ith layer, the probability that the last signature is
in the jth file in the ith layer is:

Pj =

(
j−1
mi−1

)(
4i
mi

) (29)

The expected searching time in the ith layer is:

T́i =

4i∑
j=mi

(
j−1
mi−1

)(
4i
mi

) (2j −mi)X (30)

Fig. 8: Speedup when the number of signatures is known in a
mesh network and there is at most one signature in each node

The total time to search the mesh network is T́1 =∑N
i=1 T́i. The time should be less than T1.

3.1.2.2 Every root node of each local net-
work commands the nodes below it: For layer one,
the expected search time is the same as T2.1 =∑4

j=m1

( j−1
m1−1)
( 4
m1

)
(2j − m1)X . For layer two, three and the

next layers, there are two types of nodes. The first type of
nodes is those nodes which have three children nodes in
their lower layer, from figure 2 the first type of nodes are
in the top most position of east, west, south, north four
directions. The other type of nodes are the other nodes,
which only have two children nodes in their lower
layers. However, the searching time for the two types
nodes are not 2X and 3X , because every node except the
four top nodes have two parent nodes. Assume that in
the first X searching time all the nodes except the four
top nodes are searched, and for the parent node only
one node commands one node. If all the signatures are
found, the searching time in this layer is X . If there are
some signatures in the top four nodes, we need to add
X more time to find the signature, then the searching
time should be 2X . The probability that there are no
signatures in the top four nodes in the ith layer is:

P2.i =

(
4i−4
mi

)(
4i
mi

) (31)

The total time of the mesh network in this case is:

T́2 = T́1 +

N∑
i=2

(P2,iX + (1− P2,i)2X) (32)

3.1.2.3 All the files in every layer are searched in
parallel, layers are searched sequentially: The same as
the last case we have discussed, the total time is T́3 =
NX .

3.1.2.4 All the files in the mesh network are
searched in parallel: .

The total time is T́4 = X .
Now we calculate the speedup for these four cases.

τ́1 = T́1

T́2
=

∑N
i=1 T́i

T́1+
∑N

i=2 P2,iX+(1−P2,i)2X
, while T́i and P2,i



8

Fig. 9: Searching time for the mesh network in case 3.2.1 as
signature probability is varied

have been defined before (see eq.30 and eq.31). τ́2 =
T́1

T́3
=

∑N
i=1 T́i

NX
, τ́3 = T́1

T́4
=

∑N
i=1 T́i

X
. The speedup figure

has been plotted in figure 8. From the figure we can
know that τ́3 > τ́2 > τ́1. That is because τ́3 = N · τ́2 ,
τ́2
τ́1

=
T́1+

∑N
i=2 P2,iX+(1−P2,i)2X

NX
> 1.

3.2 Only the nodes whose parent node has a signa-
ture can have a signature.
In this case those nodes whose parent node do not have
a signature, will also have no signatures. Only those
nodes whose parent node has a signature need to be
searched. This case is so complex that one can not find
a general equation to solve it. We simulated 100,000
mesh networks with different probabilities of finding
signatures in the files, and calculated the search times.
In this section we only discuss the case that the number
of signatures is unknown.

3.2.1 Only one node in the network commands all the
nodes
The mesh network structure is divided into four parts:
up-left, up-right, down-left and down-right. The nodes
in these four parts will search their children nodes
in four different directions, which is also up-left, up-
right, down-left and down-right. It is probable that those
nodes, whose parent node has a signature, will have
signatures. The nodes that are not in the top position
of every layer have two parent nodes, the case that
either of them or both of them have a signature will
lead the child node to possibly have a signature. We
can get the mesh structure by creating the signature
distribution layer by layer. The next step is to calculate
the search time in every layer, which depends on the
signature distribution in the upper layer. The four top
nodes have three children nodes, and the other nodes
have two children nodes. Thus the total search time for
a certain layer is the number of top nodes, which have
a signature to be searched, times 3X , plus the number
of the other nodes, which have a signature, times 2X .
For this algorithm figure 9 shows the search time for

Fig. 10: Searching time for the mesh network in case 3.2.2 as
signature probability is varied

every layer as the probability of signatures increases.
Smaller values of p result in the signature searching
processing stopping earlier as irregular signature free
boundaries form around the mesh network that prevent
further signature searching.

Figure 9 shows that when the probability of finding a
signature in every node is higher, the expected time to
search every layer will be longer. When the probability of
a signature is exactly 1, that means every node will have
a signature, the time to search the ith layer is 4i. When
the probability of a signature is equal or less than 0.5, the
number of nodes which have signatures will decrease as
the layers increase until no node will have signatures
in a certain layer. When the probability of signature
is equal to 0.6, there are almost always nodes which
have signatures and the number of nodes which have
signatures in every level remains almost constant. When
the probability of signature is equal or more than 0.7,
the number of nodes which have signatures increases.

3.2.2 Every root node of each local network commands
the nodes below it
For the four top nodes in the east, west, north, and south
directions, if both of the two neighboring nodes in their
layer have no signatures (i.e they will not command their
lower layer node to search their files), the searching time
for the top nodes is 3X . If one of the neighboring nodes
or both of them have signatures, we can assign the node
whose parent nodes are the top node and its neighboring
node to be commanded by the node neighboring the
top node. Thus the searching time will be cut to 2X .
For the other node, the maximum searching time is 2X ,
when these nodes have signatures. All the local mesh
networks (the node and its children nodes) search their
own nodes in parallel. The searching time for a certain
layer depends on the signature distribution of the top
node of the upper layer, as mentioned before, it will be
3X , 2X , or 0 (there are no signatures in the whole parent
nodes). We simulate this case in figure 10.

From figure 10, when the probability of a signature is
equal or less than 0.6, the searching time is shorter and



9

shorter until we need not search the signature in the
lower layer as the layer is larger. That’s because smaller
values of p result in the signature searching processing
stopping earlier as irregular signature free boundaries
form around the mesh network that prevent further
signature searching. When the probability of signature
is equal or higher than 0.7, for those higher layer the
searching time is exactly 2X . That is because the proba-
bility that the top node has a signature and meanwhile
the two neighboring nodes have no signatures is almost
impossible. Thus the searching time for those high layers
is exactly 2X .

The speedup for case 3.2.1 and case 3.2.2 (speedup 1)
has been depicted in figure 11 . From it we can conclude
that when the probability of a signature is below 0.6, the
speedups are saturated at less than 4. We can not reduce
much searching time by using the method in case 3.2.2
when the probability of a signature is below 0.6 as the
number of layers increases. That is because when the
probability of a signature is below 0.6, the searching time
for every layer in case 3.2.1 will decrease as the number
of layers increases (see figure 9). While the probability
of a signature is more than 0.6, the speedup rises much
faster. That is because in figure 9 we know the the
searching time will go up quickly, while the searching
time will be 2X in figure 10.

Fig. 11: Speedup 1 when the number of signatures is unknown
and only the nodes whose parent node has a signature can
have a signature in the mesh network

3.2.3 All the files in every layer are searched in parallel,
layers are searched sequentially.

The searching time for every layer is X . The total search
time is thus NX . The speedup for 3.2.1 and case 3.2.3
(speedup 2) has been depicted in figure 12. It can be seen
from figure 12 the speedup is larger than the speedup in
figure 11 when the probability of signature is larger than
0.6, for the searching time for every layer is the same X .
When the probability of signature is lower than 0.6, the
same as figure 11, the speedup does not increase when
the number of layers increases.

Fig. 12: Speedup 2 when the number of signatures is unknown
and only the nodes whose parent node has a signature can
have a signature in the mesh network

3.2.4 All the files in the mesh network are searched in
parallel
The expected search time in this case is only X . The
speedup (speedup 3) for case 3.2.4 and case 3.2.1 has
been plotted in figure 13. It can be seen that the speedup
increases much faster as the number of layers increase,
than the speedup in figure 12 when the probability of
a signature is larger than 0.6, and when the probability
of a signature is lower than 0.6, the speedup does not
increase as the number of layers increase.

4 SEARCHING TIME COMPARISON FOR DIF-
FERENT TYPES OF NETWORK

The four types of networks considered are tree networks,
mesh networks: store and forward, mesh networks:
circuit switched and wormhole routing (discussed in
the supplementary file) and hypercubes (discussed in
supplementary file). Each of these has advantages and
disadvantages. Now we want to compare their searching
time if the total number of nodes is fixed: N . For the tree
network, assume that the number of nodes in every sub-
tree, n, is the same, which is a homogeneous case. The

Fig. 13: Speedup 3 when the number of signature is unknown
and only the nodes whose parent node has a signature can
have a signature in mesh network



10

height of the tree should be: 1+n+n2+ . . .+nH−1 = N ,
then H = logn((n − 1)N + 1). The total searching time
for case 3.1.1.2 is T1 = nHX = n logn((n − 1)N + 1)X .
The searching time is plotted in figure 14 (here N = 100)
for these four types of network. We can see that when
the number of nodes in every subtree increases, the
searching time also increases. For the store-and-forward
mesh network, the number of layers should be: 1 + 4 +

. . . + 4(H − 1) = N , then H = 1+
√
2N−1
2 . The searching

time should be T2 = (2H + 2)X = (3 +
√
2N − 1)X .

For the circuit switching and wormhole routing mesh
network, the searching time is T3 = logp+1 NX . For the
hypercube network, the searching time is T4 = log2NX .
In figure 14, we can see that the searching time for circuit
switching and the wormhole routing mesh network is
short, but this type network is hard to realize. The
searching time for hypercubes is also very short, and this
type can be easily realized in low dimensionality. For the
tree network and store-and-forward network, which are
easy to realize, if the number of nodes in every subtree is
more than 4, the searching time for the store and forward
mesh network is shorter, for the tree network when the
number of nodes in every subtree is less than or equal
to 4, the searching time for the tree network is shorter.

1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

the number of files in each subtree

S
ea

rc
h 

tim
e

 

 
Tree network
Store and forward mesh network
Circuit switching and wormhole routing mesh network
Hypercube network

Fig. 14: Four types of networks comparison

5 CONCLUSION

It has been demonstrated that the expected search time
for signatures in a wide variety of search scenarios
for tree, mesh and hypercube networks, where load
distribution time is not considered, can be calculated
either analytically or through simulation. This should
also be possible for other types of interconnection net-
works. Future research should consider other types of
file structures or statistical assumptions. This work is
of interest in a wide variety of applied areas involving
signature searching.

6 ACKNOWLEDGMENTS

The authors acknowledge the support of DOE grant DE-
SC0003361.

REFERENCES
[1] K. Ko and T. Robertazzi, “Signature search time evaluation in flat

file databases,” Aerospace and Electronic Systems, IEEE Transactions
on, vol. 44, no. 2, pp. 493–502, 2008.

[2] Y. Kyong and T. G. Robertazzi, “Greedy signature processing
with arbitrary location distributions: A divisible load,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 48, no. 4, 2012.

[3] R. Baeza-Yates, “Algorithms for string searching,” in AcM sIGIR
Forum, vol. 23, no. 3-4. ACM, 1989, pp. 34–58.

[4] G. Navarro, “A guided tour to approximate string matching,”
ACM computing surveys (CSUR), vol. 33, no. 1, pp. 31–88, 2001.

[5] P. Michailidis and K. Margaritis, “String matching algorithms:
Survey and experimental results,” in International Journal of Com-
puter Mathematics, vol. 76, 2000, pp. 411–434.

[6] Z. Galil and R. Giancarlo, “Data structures and algorithms for
approximate string matching,” Journal of Complexity, vol. 4, no. 1,
pp. 33–72, 1988.

[7] H. Kitakami, T. Shin-I, K. Ikeo, Y. Ugawa, N. Saitou, T. Gojobori,
and Y. Tateno, “Yamato and asuka: Dna database management
system,” in System Sciences, 1995. Vol. V. Proceedings of the Twenty-
Eighth Hawaii International Conference on, vol. 5. IEEE, 1995, pp.
72–80.

[8] M. Hoffman and D. Carver, “Reverse engineering data require-
ments,” in Aerospace Applications Conference, 1996. Proceedings.,
1996 IEEE, vol. 2. IEEE, 1996, pp. 269–277.

[9] M. Lubeck, D. Geppert, and K. Nienartowicz, “An overview
of a large-scale data migration,” in Mass Storage Systems and
Technologies, 2003.(MSST 2003). Proceedings. 20th IEEE/11th NASA
Goddard Conference on. IEEE, 2003, pp. 49–55.

[10] T. Robertazzi, Networks and grids: technology and theory. Springer
Publishing Company, Incorporated, 2010.

[11] M. Drozdowski, Scheduling for Parallel Processing. Springer-Verlag
New York Inc, 2009.

[12] H. Casanova, A. Legrand, and Y. Robert, Parallel algorithms. CRC
Press, 2009.

[13] W. Głazek, “A multistage load distribution strategy for three-
dimensional meshes,” Cluster Computing, vol. 6, no. 1, pp. 31–39,
2003.

[14] M. Drozdowski and W. Glazek, “Scheduling divisible loads in a
three-dimensional mesh of processors,” Parallel Computing, vol. 25,
no. 4, pp. 381–404, 1999.

[15] K. Li, “Speed-up of parallel processing of divisible loads on k-
dimensional meshes and tori,” The Computer Journal, vol. 46, no. 6,
pp. 625–631, 2003.

[16] J. Błażewicz and M. Drozdowski, “Performance limits of two-
dimensional network of load-sharing processors,” Foundation of
Computing and Decision Sciences, vol. 21, no. 1, pp. 3–15, 1996.

[17] T. Bjerregaard and S. Mahadevan, “A survey of research and
practices of network-on-chip,” ACM Computing Surveys (CSUR),
vol. 38, no. 1, p. 1, 2006.

[18] E. Salminen, T. Kangas, V. Lahtinen, J. Riihimäki, K. Kuusilinna,
and T. Hämäläinen, “Benchmarking mesh and hierarchical bus
networks in system-on-chip context,” Journal of Systems Architec-
ture, vol. 53, no. 8, pp. 477–488, 2007.

[19] S. Stuijk, T. Basten, M. Geilen, A. Ghamarian, and B. Theelen,
“Resource-efficient routing and scheduling of time-constrained
streaming communication on networks-on-chip,” Journal of Sys-
tems Architecture, vol. 54, no. 3-4, pp. 411–426, 2008.



11

Zhongwen Ying Zhongwen Ying received his B.S. degree in Electrical

Engineering from Zhejiang University (Hangzhou, China) in 2009. He
has been in Stony Brook University since 2009, where he is pursuing
his Ph.D degree. His research interests are in the area of distributed
and parallel computing and algorithm design and he is currently working
on signature searching algorithm and divisible load theory.

Thomas G. Robertazzi Thomas G. Robertazzi (S’75-M’77-SM’91-F06)

received the Ph.D from Princeton University, Princeton, NJ, in 1981 and
the B.E.E. from the Cooper Union, New York, NY in 1977.

He is presently a Professor in the Dept. of Electrical and Computer
Engineering at Stony Brook University, Stony Brook N.Y. In supervising
a very active research group, he has published extensively in the areas
of parallel processing and grid scheduling, telecommunications network
planning, ATM switching , queueing and Petri networks. Prof. Robertazzi
has also authored, co-authored or edited six books in the areas of
networking, performance evaluation, scheduling and network planning.
For eleven years Prof. Robertazzi was the faculty director of the Stony
Brook Living Learning Center in Science and Engineering. For the
past five years he has co-chaired the Stony Brook University Senate
Research Committee.


