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ABSTRACT
A new model for naive equal allocation of divisible computation and commu-
nication load is developed. The model includes a detailed accounting of solution
reporting time. It is compared to sequential scheduling and a new type of multi-
installment scheduling. Numerical results indicate that speedup improvements
over equal division scheduling achievable through the use of optimal sequen-

tial scheduling can be at least as high as thirty percent and can be at least as



high as seventy percent for the type of multi-installment scheduling discussed
here compared to equal division scheduling. Aerospace applications include the

processing of satellite imagery, radar and sensor networks.



I. INTRODUCTION

The combination of the cost decrease and performance improvement in both computers
and data storage devices has led to new data intensive applications in the aerospace field.
Examples include processing satellite imagery, radar and sensor networks. It is becoming
more common to conceive and implement systems processing on the order of a petabyte (i.e.
10" bytes) of data a year.

In this paper we seek to examine a question for which answers to date have been anecdotal
in nature. That is, to what extent can optimal scheduling improve performance in a parallel
processor compared to naive scheduling? The naive scheduling polity investigated here is
“equal division” scheduling where 1/N of the data load is assigned to each of N processors.
The optimal policies discussed here are based on previously developed principles of divisible
load scheduling.

In a divisible model, load is assumed to be completely partitionable (divisible) in terms
of both computation and communication. Model parameters include processor and link
speed(s), and computation and communication intensity. A specific model is also charac-
terized by the parallel processor interconnection topology, scheduling policy and load distri-
bution assumptions. Divisible load scheduling analysis makes use of linear and continuous
variable mathematics to produce a tractable model. Typically one seeks to solve a particular
model for the optimal allocation of load, speed-up and solution time. The study of divisible
load models began in 1988 with a paper by Cheng and Robertazzi [8]. A 2003 survey paper
on this topic is [3] and a 1996 monograph on the subject is [4].

The target architecture used in this paper is an L-level K-ary tree topology. Using a tree



topology is quite generic as any arbitrary interconnection topology can be spanned by a tree.
Also if L=1 and all link speeds are equal, the tree reduces to a bus architecture.

The paper presents the first published closed form results for speedup for a multilevel
tree network under equal division scheduling. This is compared with optimal single install-
ment, and multiple installment scheduling. We find improvements in speedup under optimal
scheduling of as large as 70%.

Divisible load models involving single installment load distribution for trees were first
considered in 1990 by Cheng and Robertazzi [7]. Load distribution sequencing in trees is
discussed by Kim, Jee and Lee in [10]. The use of multiple installments of load distribution
in tree networks was first examined by Ghose, Mani and Bharadwaj in 1995 [5]. Asymptotic
results for large trees using the single installment policy by Bataineh and Robertazzi appeared
in 1997 [1]. Asymptotic multi-installment results appear in [9]. Finally, the concept of an
equivalent processor, used in this paper was introduced in Robertazzi [11]. A proof that
optimal load allocation can be found by forcing all processors to stop computing at the same
instant is presented in [12].

This paper is organized as follows. The system model is presented in section II. Equal
division scheduling, sequential optimal scheduling and multi-installment scheduling are mod-
eled in sections III, IV, and V, respectively. Numerical results appear in section VI. The

conclusion is in section VII.



II. SYSTEM MODEL OF L-LEVEL K-ARY TREE NETWORK

Figure 1: 3-level 3-ary tree network.

A L-level K-ary tree network of communicating processors is considered. For an example,
a 3-level, 3-ary tree network is shown in Fig. 1. Each processor is labeled in terms of indexes
from left to right and level to level. Here p; ; is the ith processor at the jth level. Processor
0 at level 0 is assumed to be the originating (root) processor which distributes the fractions
of the entire load to K processors. All processors in the L' level are terminal nodes and
other processors each have K children processors. Non-terminal processors redistribute the
fractions of the received load from the parent processor to K children processors. Also 0, ;
designates load distributed to processor i at level j (as discussed in section IV). It is assumed
that communication speeds are high enough relative to computation speeds that eliminating
subtrees does not result in a speedup improvement [3].

There exists K7 processors at the j* level for j = 0,1,2,---, L . Thus, the model of a L-

level K-ary tree network consists of Z]L:o K7 processors. Without loss of generality, it will be



assumed that the load is instantaneously available at processor 0 at time 0. Each processor
is interfaced with the network via a front-end communication processor for communication
off-loading. That is, the processors can communicate and compute at the same time.

It is important for p; ; to know its parent processor since p; ; receives load fractions from
its parent processor. Naturally, the parent processor of p; ; is located at the (j — 1)th level
just above the j level. The integer part of % indicates the order (index) of parent processor
as all processors at the (j — 1)th level have K children processors. Thus, the parent processor
of any processor, p; ; for j=1,2,---,Land i = 0,1, -+, K7 — 1 I8 piny(i/i),j—1. Let Pp (p;;)

be the parent processor of p; ;.

Pp (pij) = Pint(i/K),j-1 (1)

Here, int(-) is the rounding down to the nearest integer. Further the grandparent processor

of p;j forany j=1,2,---,Land i =0,1,--+, K/ — 1 is Pp[Pp(pi;)].
Pp[Pp(pij)] = Pp (pint(i/K),j—l)
= Pint(int(i/K)/K),j-2
Pinii/x2),j—2 (2)
Generally, the ancestor processor of p;; at the (" level(l < j) is (j — ) levels above the

j™ level. In a manner similar to equation (2), the ancestor processor of p;; at the [ level

defined as A% (P;;) is expressed as follows:

AlP(Pi,j) = Dint(i/Ki-t),l (3)

This expression allows one to identify the ancestor processors of any processor, p;; and
perceive which processor distributes load fractions to it.
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Alternately, a processor, p;; for any j = 0,1,---,L —1 and i = 0,1,---, K/ — 1 has K
children processors labeled pix 4 1 for m =0,1,--- K — 1.

The following notation will be used throughout this paper:

e p;;: The i processor on the j level.

e «;;: The fraction of the entire processing load that is assigned to the i processor on

the j1 level.

e w;;: A constant inversely proportional to the computation speed of the it" processor

on the j level (see Fig 1).

e 2, ;: A constant inversely proportional to the channel speed of the i link at the j™

level.

e T,: Computing intensity constant. The entire load is processed in w; ;T;, seconds by

the i*" processor on the j¥ level.

e T.,: Communication intensity constant. The entire load can be transmitted in z; ;T.,

seconds over the i link at the j* level.

e T2°%: Solution reporting communication intensity constant. The entire solution report

can be transmitted in z; ;/75% seconds over the " link at the j level.

III. EQUAL DIVISION SCHEDULING

A multilevel tree is considered where load is distributed from the root to the children in a

store and forward mode of operation and “solutions” are transmitted back to the root.



Each processor transmits load fractions to its children processors in sequence. That is,
each processor transmits all the load that its left child (and its children) will require, then
it does the same for the next (to the right) child and so on. Each processor, that is not a
terminal node, repeats this load distribution policy. Thus, although load originates at the
root, as load distribution proceeds multiple nodes in the tree will be concurrently distributing
load. In equal division load scheduling, each processor keeps the same fraction of the total
load for processing. A L-level K-ary tree network has Zf:(] K7 processors. Let ¢ be the
fraction assigned to any processor. Consequently the fraction of normalized load for each

processor is obtained from the inverse of the total number of processors.

1
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The root processor at level 0 keeps ¢, a fraction of the total processing load for itself to
compute and divides and distributes the remaining load among to its children processors at
the next level. The processors at this level perform the same operation with the load they
receive. This process continues until the processors located at the terminal nodes of the tree
are assigned their share of the processing load.

Our goal is to find an expression for the solution (finish) time for the system described
under equal division scheduling. Towards this end the following subsection shows how to
calculate a communication delay for each processor. Each processor starts to process its load

fraction as soon as receives it.



A.  Communication delay for processor, p; ; to receive its load fraction from root processor

Communication delay is divided into three parts; one is the time delay incurred by the parent
processor, the second is the time delay incurred by the previous brother processors (which
are children of the parent node), and the third is the time taken for p;; to receive its load
fraction and load fractions for descendant processors. The time at which the processor, p; ;
finishes receiving its load fraction is defined as Cy (p; ;). Assume that the parent processor

distributes load fractions to its children processor starting from the left to the right.

Ca (pij) = tr (pij) +ti (pij) +tp (Piy) (5)

Here, in a different order, ¢, (p;;), t: (pi;) and t, (p; ;) are the times taken to receive load
fractions over the link to p; ;, the time delay incurred by the prior brothers processors, and

the time delay incurred by the parent processor of p; ; , respectively.
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Figure 2: Timing diagram of equal division scheduling.

Fig. 2 illustrates equal division scheduling. In Fig. 2, the third row is for p; ;. In the
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diagram communication time appears above each axis and computation time appears below
each axis. The first receiving brother processor is located on the second axis. The time taken
to receive load fractions over the link to p; ; is shown on the third axis.

The difference between the instant that the first brother receiving processor begins to
receive and the instant that p; ; begins to receive is t; (p; ;).

When p; ; finishes receiving load fractions, that time instant indicates the communication
delay, Cy (pi;) for p; ;. This is the same as t, (pik+m,j+1), the time delay incurred by the
processor (p; ;) which is the parent of its children processors (pixym,j+1) form =0,1,- -+ K —
1.

The root processor can process its load fraction while distributing the remaining load to
its children processors. Thus there is no communication delay time for the root processor.

Next we develop expressions for the three components of Cy (p; ;).

1. Receiving Time Delay, ¢,(p; ;)

Each processor at the same level has the same number of children and grandchildren pro-
cessors. Processors at any level except the L™ level have K children processors, K? grand-
children processors and so on. This is summed to the L** level. The number of descendent

processors for p; ; is defined as Np (p; ;).

L
Np(piy) = >, K™ (6)
m/'=j+1
L-j
= 2 K" (7)
m=1
K — KijJrl

1-K
The processor, p; ; receives [1 + Np(p; ;)] fractions for itself and for its descendent proces-
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sors from its parent processor and then sends Np(p; ;) fractions to its descendent processors.
Because p; ; receives [1 + Np(p; ;)] fractions from its parent processor, t.(p; ;) is expressed

as follows:

tr(pij) = e[l+ Np(pij)|zijTem (9)

= {1 + Z Km} 2Zi i Tem (10)

L—j
= £ Z K™. zi,chm (11)
m=0
1 — KijJrl
= ﬁé‘zi’chm (12)

Here, ¢ is the size of a fraction. The receiving time delay from the parent processor of p; ;

depends on the level ¢, and only z; ;, the inverse link speed connected to p; ;.

2. Time delay of the prior brothers processors located at the same level, t;

Now, if p; ; does not receive first on its level from its parent processor, p; ; should wait while
its prior receiving brother processors at the same level receive load fractions from their parent
processor. The remainder after dividing 7 by K decides the receiving order (position) of p; ;.
The processor, p; ; is the first receiving order processor at the j level when mod (i/K) is
zero. Here mod (i/K) is the remainder after dividing ¢ by K. Thus, the time delay due to

the prior receiving processors can be expressed as follows:

mod(i/K)—1
tipij) = >, t(Dinsmi)g) (13)
n=0
Here, inx (n,i) is used to find the n'* receiving processor’s index of brother processors of
pij- The indexes of processors at the 7' level are sequentially written starting from the first

receiving child processor of py,;_1. From equation (1), the index of Pp (p;;), is int (i/K).
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Thus, the index of the children processors of Pp (p; ;) starts from int (i/K)- K. Furthermore,
the n' receiving processor index among brother processors of pi,; is obtained adding n and

int(i/K) K. Forn=0,1,---,mod(i/K) — 1;
inz (n,i) =n+int(i/K) - K (14)

Applying equation (12) to (13), the time delay by the prior brother processors is obtained

as follows:
mod(i/K)—1 [L—j
tipiy) = € D [Z K™ - Zina(n.i),j Lem (15)
n=0 m=0
L—j mod(i/K)—1
= £ Z K™ Z Zz'nm(n,i),chm (16)
m=0 n=0
_ gL+t mod(iz/f()l
= & Zinx(n,i),'Tcm (17)
1-K — J

The processors at the same level have the same number of load fractions as in equation
(8) since they have the same number of descendant processors. The bracket in the above
equation is the sum of the load distribution delays to the prior brother processors over their

links.

3. Time delay by the parent processor of p; ;, t,

Each child processor has a time delay caused by waiting for its parent processor. This time

delay, t, (p;,;) equals the total communication delay of the parent processor of p; ;.

tp (pij) = Ca (A% (piy)) (18)
Here, Al* (pi;) is the parent processor of p; ;. Using equation (5) and (18), equation, the
following recursive equations can be obtained.

ty(piy) = Ca(Ab" (piy) (19a)
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Ca (A5 (i) = o (A" i) +t: (A5 ) + 1. (A5 (i) (19D)
ty (A5 (piy)) = Ca (AT (pi))) (19¢)

Ca (A2 (ig) = tp (A7 (1)) +1: (AT (1)) + 1 (457 (i) (19d)

ty (A} (ij)) = Ca(Ap (pi))) (19e)
Ca(Ab (ig)) =ty (Ab i) +ti (Ab (i) +tr (A (1)) (19f)
ty (Ab (pig)) = Ca (A% (piy)) (19g)

Summing both sides of the above recursive equations, ¢, (p; ;) can be rewritten as follows:
j—1
ty (i) = Ca (AR (i) + Zt (A5 i) + Xt (AP (01) (20)
1=1

j—1 i—1
= St (A ) + St (4 ) (21)
I=1 =1
Note that the root processor has no communication delay. Thus Cy (A% (p;;)) is zero.

Substituting equation (21) into (5), communication delay for p; ;, Cq (pi ), is expressed

as follows:

Calpiy) = t(pig) +ti(piy) (22)
+ Z_X;I tr (A (i) + Zé t: (A (piy) (23)

Note that A% (pi;) = pi-
o) = 3 [t (A 0) 46 (4 )] 24

Equation (3) is applied to (12) and (17):

(Al (pw)) = b <pmt(i/ml),l>

1 - L1
= g ey )iden (25)
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and

t (Al (p’tj)) - t1 <pint(i/[(jl),l>
1 FL-11 mod|int(i/K7~1) /K]-1
7 > me[n,int(i/Kj—l)],chm (26)

n=0
In the above equation, if n = mod [int (i/Kj*l) /K], then inz [n, int (i/Kj*l)] = int (i/Kj*l).

From equation (14):

+int (L (K;l)) K (27)

Thus, the summation of ¢, (AﬂD (p”)) and t; (AiD (p”)) is mentioned.

b (Ab (i) + 1 (A% (pig)

| gLt modlint(i/Ki~1) /K]

T ST K nz::(] Zine [ it (i Ki—)] 1 Tem (29)
Now equation (29) is substituted into (24).
il KL 141 mod[int(i/ K37 /K]
Ca(pij) ; < _K nz:% Zinm[n,int(i/Kj—l)],chm (30)
In the special case of homogeneous link speeds (2 ; = 2)
j 1 KL—H-l mod[int(i/Kj*l)/K]
Cd(pi,j) = Z E——F———— Z ZTcm (31)
=1 1-K n=0
J 1— KL +1 nt
= Y e |L+mod M e 2T (32)
=1 - K
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B. Closed Form of Finish Time

Here, since load is equally divided among processors and since a homogeneous network is
considered, different processors may finish computing at different times.

The last receiving processor is pgr_y g in the L level K ary tree network. As soon as
this node finishes processing its load fraction, the node reports its solution. The system is
finished when the solution of pxr_; , is delivered to the originating processor.

First the time delay for pxr_; 1 to report solution is considered. It takes 5-zKL,1’LTj7ff to
transmit the solution of pxr_; ;, from this node at level L to pxr-1_4 ;_4, its parent processor
at level L—1. The parent processor of pgr_  collects the solutions of K children processors
and transmits (1 + K) solutions including its own solution to the ancestor processor at level
L — 1. This procedure keeps until the originating processor receives all solutions. Let Sy be

the time delay for pgr_, ; to report its solution to the originating processor.

Sd
]
Tz

= lo2gr g+ (1 +K)zge— g1+ (1 + K + KQ) ZRL-2-1p-2 7+t

+(1+K+K2+"'+KL71)ZK71,1

The above equation can be condensed as follows:

L-1 m

Sd = £ Z Z K". ZKL—m,LL,mT;%l (33)

m=0 n=0
L—1 1
1 — K™+
— 6 Z - -, _° ZKL*M_I,L_ TSOI (34)
m=0 1-K e

For homogeneous network speeds:

e2T50l
Sy = —m . |L-K
I 1-K l
_ el [KMoK
K—1

(35)

(36)



The finish (solution) time for the equal division scheduling is obtained as follows:
TfEDS (L, K) = Cy(pr.xr) +ewgr_y 1 Tep + Sy (37)

The first term is the communication delay for pxr_, 1, the second term is the computation

time for pgr_y ;, and the third term is the reporting time.

IV. SEQUENTIAL OPTIMAL SCHEDULING

In sequential optimal scheduling, each processor that is not a terminal node distributes load
to each child (once) in turn from left to right. The single transmission of load to a child
includes all loads that child’s descendents will need. Thus the “sequencing” is similar to
equal division scheduling except the size of load fractions will now be determined optimally.
In sequential optimal scheduling, solution reporting times are staggered in a subtree of a L-
level K-ary tree network. Children processors finish reporting their solution while a parent
processor is processing.

Load scheduling for the general tree network was first presented by Cheng and Robertazzi
[7]. The general tree network can be collapsed into one equivalent processor that preserves
the characteristics of the original tree network in terms of its minimum processing time. The
concept of processor equivalence in [11] can be used to obtain a closed-form solution to the
minimum processing time for tree networks (without solution time).

In this section, the closed form of the finish time for a L level K ary tree network is
considered. The scheduling discussed here includes solution reporting time. The procedure
to obtain the finish time for a L level K ary tree network can be expanded to a general tree

network.
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First, consider a subtree of the network that consists of one processor, p;;_; for any
i=0,1,---, K" — 1 at the (L — 1)" level and K children processors which are terminal
nodes of the network and labeled as p;xym,r for m = 0,1,--- K — 1. This subtree can be
analyzed as a single level tree network. It is assumed that a load of size 6,1, is assigned
to p;,r—1 and its descendant processors. The size of 6; ;_; is determined by the equivalent
processor speed. The processor, p; ;_1 receives ; ;_; from its parent processor. After that,
this processor keeps a fraction o 11 for itself to compute and distributes the remainder to
its children processors. The first child receives a fraction ;g of 0, _1, the second child
receives a fraction a;x 41,1 of 0; 11, and so on until the last child receives a fraction g+ x 1.1,
of 0;r-1.

The finish times for the parent processor, p; ;-1 and the children processors p;x.ym, 1, for

m=0,1,--- K — 1, considered in isolation, are given as follows:
TO;p—1) =0ir 1011w 1Te (38)

This single level tree network can be collapsed into one equivalent processor that preserves
the characteristics of the original tree network in terms of its minimum processing time.
Define the wfg as a constant that is inversely proportional to the computation speed of the

5% level and " equivalent processor.

T(0s1-1) = Oi—1wi7, Top (39)

From equation (38) and (39), the speed of the equivalent processor, w;7_; is obtained as

follows for any i = 0,1,---, K7 — 1:

wiqul = Q4L 1Wi L1 (40)
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Now, the inverse speed of the processor, w; _; is replaced by quL_l . Then, the processors
at (L — 1)th level are terminal processors. This same procedure is used for the subtrees at
level L — 2, L — 1 and moves up to level 0, one level at a time. Every parent processor
and its children will be collapsed into one equivalent processor. This process will continue
until the root processor and its children are collapsed to one equivalent processor. Then the
finish (solution) time of sequential optimal scheduling, our goal in this section, is obtained
as follows:

T3 (L, K) = iy T, (41)

In the next section an expression is developed for the equivalent inverse processing speed,

eq
(VK

w; 5, of the ith equivalent node at the jth level under sequential optimal scheduling. This
expression can be used to find wg, the inverse speed of a single equivalent processor for the
entire multilevel tree network, and hence finish time and speedup. This is done by collapsing
each single level subtree within the multilevel tree into an equivalent processor, starting at

the bottom levels and working towards the root level. Finally a single equivalent processor

. eq :
of inverse speed wy remains.

A. Equivalent Processor Speed

It is assumed that one parent processor and its children are collapsed into one equivalent

processor from level L to level j + 1. Thus, the processors at the (j + 1) level are terminal

processors with equivalent processor speed, wf,'f’jﬂ form=0,1,---, Kt — 1. Fig. 3 shows
a subtree with p;; and wij ., ., for m = 0,1,---, K — 1. The entire load assigned to p;;

and its descendant processors is 6; ;. Then, p; ; distributes the load fractions, 0,k m j+1 for
m=0,1,---, K — 1 according t0 Wiz, j11-
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eiK+0,j+1ZiK+0,j+l-|-cm eiK+K-1,j+1ZiK+K-1,j+1Tcm

0 z T

iK+m,j+1%iK+m,j+1 " cm

&
Wikem,j+1

PiK+0,j+1 PiK+m,j+1 PiK+K-1,j+l

Figure 3: A subtree with equivalent processor.

It is assumed that solutions are reported in the same sequential as processors are received.

The timing diagram for a subtree with equivalent processor is shown in Fig. 4.

From Fig. 4, the following recursive equation can be obtained for children processors of

pi,ja piK—l—m,j+1 fOI' m = 0’ ]_’ .. ,’K —1.

eq sol
Oik+m.j+1 - (wiK+m,j+1TCp + ZiK+m,j+1Tcm)

— €q
= ik tmt1,4+1 (wiK+m+1,j+1Tcp + ZiK+m+Lj+1Tcm) (42)

20



i Vi ep
sol
eiK+0,j+1ZiK+0,j+1Tcm e\K+(J,j+1Z\K+0,j+1Tcm
eq
PiK+0,j+1 eiK+0}+1WiK+O \+1Tcp
sol
elK+m,|+1Z\K+m,|+1Tcm 9|K+m,J+IZ|K+m,|+1Tcm
eq
IDiK+m‘j+1 eiK+m \+1WiK+m i+1TCrJ
eiK+m+1,j+lziK+m,j+1Tc e z sol
IK+m+1,j+1%iK+m,j+1 " cm
W
€q
PiK+m+1,j+1 9|K+m+1 \+1WiK+m i+1TCD
sol
eiK+K-1,j+1ZiK+K-1,j+1Tcm eiK+K-1,j+1ZiK+K-1,j+1Tcm
eq
PiK+K-1,j+1 e\K+K-1 \+1WiK+K-1 \+1Tcu

Figure 4: Timing Diagram of Sequential Optimal Scheduling for a Homogeneous Subtree

Network.
or
Wi T., + 2 1T
0 -0 iK+m+1,5+1+¢cp iK+m+1,j+14em 43
iK+myj+1 = ViK4m+1,5+1 eq T Tsol (43)
Wik 4m j+1dep T Zik+m,j+14 05,
The equation for the parent processor, p; ; is expressed as follows:
K-1
_ eq
ai,jwi,chp = Z 9iK+n,j+1ZiK+n,j+1Tcm + 0(’i+1)K71,j+1w(i+1)K_17]'+1Tcp
n=0
sol
FO0(i41) K —1,j412(+1) K—1,j+1L oy (44)
Further, X,, is defined as follows:
€q
Y _ Wik ym+1,j411ep + Ziktmi1,j41Tem (45)
m €q sol

Wik tm,jt1Lep T Zik+mj+1 150

Now, Oixin,j+1 forn =0,1,---, K — 1 can be expressed in terms of (;1)x—1,j41. Equation
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(43) can be rewritten as follows:

zK—I—n,J—I—l H Xm z—|—1 K-1,j+1 (46)

Applying equation (46) to (44), a; ; equation (44) can be expressed in terms of 0 1)k 1,541

OGi+1)K—1,j+1 Kb Rt
Qi = — Z H Xm ZiK—I—n,j—I—chm

wi,jTCp n=0 \m=n

+w(z+1)K—1,j+1TCp + Z(i+1)K—1,j+1T;7le] (47)

The normalization equation is:
K—1
Y Oikcingrr + aig = 0 (48)

n=0

Now 0(i11)k-1,j4+1 is obtained by substituting equation ( 46) and (47) into the above equation.

K-1 K-1 /K-1 Zikc+m i1 Tom
Oirnk-151 = Z H Xm | + Z H Xm -’T
n=0 m=n

n=0 \m=n Wi,51L cp
eq l -1
+w(i+1)K—1,j+1TCp n 241 K—1,j41 T o (49)
Wi ;T ep w; ;1o

Equation (49) can be substituted into (47). Then «; ; is obtained as follows:

eq
P T w,; 1 Tep
Hz',j'< (HK 1 X’ ) iK+n,j+1lcm (i+1)K—1,j+1

wi,j Tep Wi 5 Tep

1
Z(i+1)K71,j+1Tchn
+

Wi, j Tep

(50)

Qij =

€q 1 sol
K-1 HK—l X 2iK4n,j+17 Wit K—1,j+11¢P Z('+1)K—1,'+1T
=0 ( m=n m) (1 + = n.J Cm) + : J + : J &

w; jTep wi,jTep wi,j Tep

Now equation (45) is substituted into the above equation. Similarly in equation (40), the

equivalent processor speed can be obtained as follows:

eq
Wij = Qi Wi (51)
K-1 /K-1 eq
N ! -
n=0 \m=n sz—l—m j-l—lT + ZiK+4m J+1Tso w1,]Tcp
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€q sol
w(z‘+1)K71,j+1Tcp 234 1)K 1,411 om

+ +
Wi Tep Wi Tep
K-1 /K-1 ,,€4q
B = Z (H wz‘K+m+1,j+1TCp + ZiK+m+1,j+1Tcm) (1 + ZTcm ) (54)
o €q . . l .
7m0 \m=n  Wikimj41lep + Zikymj+1 T3 Wi Tep

eq sol
+w(z‘+1)K—1,j+1Tcp 215

Wi Tep Wi Tep
In the above equation, wfg- is expressed using its original processor speed, w;; and the
equivalent children processor speeds, wif ,,, ; 1, form =0,1,---, K—1. The above expression
of inverse equivalent processing speed for a single level subtree within a multilevel tree can
be used to collapse subtrees into equivalent processors until a single equivalent processor for

the entire network remains. From this finish time (equation (41)) can be found.

V. MULTI-INSTALLMENT OPTIMAL SCHEDULING

In the sequential and equal division distribution of the previous sections, a child processor
receives load fractions at the same time for itself and for processors at the next level. This
causes the processors at each level to have long idle time. In this section, a processor at
the ;% level doesn’t distribute all load at once to each descendent processors but instead
distributes load in turns (installments) to its descendent processors. The basic concept of
multi-installment optimal scheduling was developed originally by Bharadwaj, Ghose and
Mani [4,5] as a way to reduce solution time by modifying the load distribution policy. In this
work partial load is delivered in several installments (rounds) to each processor to minimize
idle time. A somewhat different approach is taken in this paper, distributing load in complete
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integral units to each individual processor but in “installments” to the processors in the tree
as a whole. That is, each node including the root distributes load to each of (only) K
processors in turn during each set of installments. During each succeeding installment load
is distributed in integral units for another K processors. The process repeats until all of the
tree’s processors have received load.

This scheduling strategy is best illustrated by way of example. Let, again, i be the
children number and j be the level number for processor p;;. . In a 3-level 3-ary tree
network, for instance, the root processor, pgo distributes fractions to children processor in
the sequence of pg 1, p11, P2.1. As soon as each processor at the first level receives its load
fraction, it begins to process. Again pgo distributes load fractions to pg1, pi,1, and po.
in sequence. As pg1, pi,1, and po already received their load fractions, these processors
can redistribute load to their children processors. That is as soon as they receive fractions,
Do, P11, and po distribute load fractions to pg2, pso , and pgo respectively. After that,
additional load fractions are distributed to po 1, p1,1, and pa1. As po2, P32 , and pe o already
received their load fractions, this time, pg1, p11, and po; distribute load fractions to p; o,
P42, and pr o respectively.

As po distributes fractions in the sequence of py 1, P11, P21, processors poo, P32 , and
Pe,2 receive before pi o, psao, and p7 o receive. The receiving order at the second level is pg o,
P32, P62, then pi o, Pao, pro, then poo, pso, and pgo. After each processor at the second level
receives its load fraction, it begins to distribute the load fractions received from its parent
processor. This procedure continues until the terminal processors receive their fraction.

This strategy shuffles the index, ¢ in p; ;. In Fig. 5, the number beside the link indicates
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Figure 5: A L-level K-ary tree network.

the distribution sequence at the same level. Now, the actual distribution sequence at the ;%

level can be calculated with the processor identification number, the index ¢ in p; ;.

o
Pij = pK-mod(%)#»int( ' ),j (55)

%
or
p;n:j - pK-mod(%)+int(%),j (56)

: \\ th
Thus p; ; is the (K -mod (%) +int (%)) receiving processor at the j level. Let Pmj be

/ /

the m/™ receiving processor at the j" level. Furthermore, o}, ;, w}, ;. and 2, ; are relative

J

to p’m,j. The prime variable is written in terms of the actual sequence of load distribution to
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account for the load distribution shuffling of processor identification.
The goal in the following is to find an expression for the finish time, and hence speedup,

of optimal multi-installment load distribution for the described multilevel tree network.
A. Load Distribution

1. Processors at the j* Level

Fig. 6 shows the timing diagram for processors at the j* level. While pg ;, the first receiv-
ing processor is receiving its fraction, the second receiving processor, pg ;, is idle until its
grandparent finishes sending a load fraction for itself to its parent processor. As soon as py ;

finishes receiving its load fraction, the parent processor of pg ; distribute a fraction to pg ;.

- " Tsol
uO,ZO,Tcm GOZO,Tcm
P 0,j C(U \W 0.|TcD
:PD‘J
' g |
oz, T oz T8

1j71j cm J_cm

a', w l.|Tcp

1]

1j
=Py
. A
am,zm.TCm um,zm,TCm
Pm,} urr||Wm\-|-cu
=Pk modqmikysintmi).
' ' ' ' sol
am+1 Zm+1.JTcm qm*lJZ m+1 Tcm
P m+1,j a m+1,\w m+1 JTCD
=P mod(me 1K) sint(me1K)+1,]
. . . . sol
Ayl 2 KJ-I‘]Tcm GKJ-LjZKJ-LTcm
Py =Py Ly Wiy Tep

Figure 6: Timing diagram of multi-installment optimal scheduling for the j** level of a L-level

K-ary tree network.

For the processors pj, ; for 0 < m < K’ — 1 at the j" level it is assumed that solutions
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are reported in the same sequential processor order that load is received in (without loss of
generality they could be reported in the reverse order). From Fig. 6 the following recursive

equations are obtained. For 1 < m < KJ —1:

/ sol o ! !
Q. (wm iTep + Zm ]Tcm) Fmt1,5 (merIJTCP + ZerlJ'Tcm) (57)
or:
W' !
o = o Wi lep + Emr gL em (58)
m,j m+1,j sol
wy, ]Tcp + 2z, chm
= Qpi1j - Xm,j (59)
Here:
!
X R am:j
m,j - /
am+1,j
!
_ m+1 ]T + “m+1 chm (60)
wm ]TCp + Zm ]Tcﬁ%l

Thus, equation (57) can be rewritten in terms of X, ; for 0 <m < K7 — 2.

QBJ = Clej . X()’j (61)
O/m,j = a;n—l—l,j  Xm,j (62)
0411(1‘72,3‘ = O/KJ?I,j - Xkio, (63)

Now a, ; for 0 <n < K7 — 1 can be rewritten in terms of oy ;.

H XLah (64)

Note that H%:bX’lj is one when a < b.

m,
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2. First Reception Processors at a level

Fig. 7 shows the timing diagram for the first reception processors at a level. After the fraction
for pg;_q,; at the j™ level finishes being distributed, the parent processor of po; intends to
distributes another load fraction to py ;. The processor, py ; sends the load fraction to pg ;1 as
soon as it receives the fraction from its parent processor. However, there is a time gap between
the distribution time of the last receiving processor at the j% level and the distribution time
of the first receiving processor at the (j + l)th level. The time gap is ag ji+120,;Tem (see the
fourth and sixth axis in Fig. 7). Note that p; = po; and p’Kj_Lj = pki_1,; from equation
(56)

From the fourth axis in Fig. 7 the processing time of the processor which receives its

load fraction first at the j* level is expressed as follows. For j =1,---,L —1:
Ki-1
' ! _ ! ! ! !
W0 Tep = D Oz Tem + 1170, Tem
n=1
Kitl 1
! ! / !
+ Z an,j—l—lzn,j—i—chm + aKj+1—1,j+1ij+1—1,j+1Tcp
n=0
/ ! sol / sol
K+ 1 511 (ZKJ+1—1,j+1Tcm + ZKJ‘—l,chm) (65)

The first term is the reception delay for the processors at the j level, the second term
is the time gap mentioned above, the third term is reception delay for the processors at
the (j + 1)th level, the fourth term is computation time of the last receiving processor at
the (j + l)th level, the last term is the solution reporting time of p’l(j+1—1,j+1 over two links
above the the (5 + 1) and the ;% level. The time gap is occurred in reporting time. From

equation (64), the following can be obtained.

n—1

o 1

Qpj = Xonj = Qo (66)
m=0
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Figure 7: Timing diagram of multi-installment optimal scheduling for a L -level K-ary tree

network.

O/n,j—l—l = H Xm]—i—l 046,3‘+1 (67)
KJ+1 2
O/I(J'+1—1,j+1 = H Xm]+1 aU,]+1 (68)

The above equations are substituted into equation (65).

! !
g Wo j Tep

Ki-1

-1
_ —1 ! ! ! !
= 2 | 1 Xa ety ) 20 Tom + 0l a2, Tom (69)
n=1 =0
Ki+1l_

! /
+ Z HX’ITL]+1 Qg 41 Zn,j+1Tcm
o
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KJ+1 2
sol sol
H m]+1 - oy g+l (’LUKHI 1]+1Tcp + Zxit1 g ]+1T + 2k JT ) (70)

Equation (70) can be rewritten as follows:

et (11 52) .1

n=1

= o L;'T —I—K]il(HX > T
- 0,j+1 [ 0,j-cm mj+1 | “nj+1

n=0 m=0
Kitl_g '|
+ H Xm]+1 (wK]+l 1]+1Tcp + ZK-]+1 lj+1TSOl + ZK] 1 JTSOl)J (7].)
or:
af),j = a/;),j—l—ly} (72)
Here:
ab -
Y, = - (73)
Qo,5+1

Kitl
Zf],chm+ Z <HX ,g+1> n]+1T

n=0 m=0

KJ+1 2
sol sol
H m]+1 (’LUKHI 1]+1TCP+ZKJ+1 13+1T + 2 1JT ) (74)

(75)

wh; Tep Kil (H Xm]>

n=1

Now the processing time of the root processor, and hence system finish time, can be

found as follows (see the first axis in Fig.7):

O‘:),UUJO,UTcp = Ki O‘;,lz:z,chm
n=0
+O/K—1,1 : (le—1,1T + 2k 1TSOZ) (76)
Here from equation (64):
Qp1 = H X L Qg (77)

30



K—2
-1
O/K—l,l = H Xm,l : 046,1
m=0
Similarly, using equation (64), equation (76) can be rewritten as follows:

/
Qo0 = YE]OC()J

Here:
K-1 n—1 -1 ! K-2 v—1 / ! sol
v 2 n=0 ( m=0 Xm,l) ZpiTem + (Hm:0 Xm,l) (wkq,chp + ZKfl,chm)
0 pung
wO,OTcp
/ . : . /
Now ayg ; for j =0,1,---, L — 1 can be expressed in terms of Y; and ag ;-
! _ '
Qoo — Yan,l
! _ : !
agj1 = Yjog,
! _ 1
ag; = Yjag 4
Qo -1 = Yiiap,
From above equations, ag, for { =1,2,---, L — 1 can be expressed in terms of o .

-1
1 -1
ag, = [ Y; - aog
7=0

Furthermore o, ; can be express in terms of ag, substituting (85) into (64).

n—1 -1
a;z,l = (H Xm1l> : (H le) " Qo
m=0 7=0

The normalization equation is:

Kl'—1

L
g +> > o, =1

=1 n=0
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Equation (86) is substituted into the above equation. Then «q can be obtained as follows:

-1

L K'-1 /n-1 -1
o= 143 3 (T 2] - (11 9
I=1 n=0 \m=0 j=0
The finish (solution) time then is:
THOS (LK) = aggwTy, (89)
1.
- e (90)

1+ 5k, SRS (M Xo) - (=6 Y, )
For a homogeneous network speedup can be calculated as w7, divided by the above

solution time for the complete multilevel tree.

VI. NUMERICAL RESULTS

Speedup, for a computational problem, is the ratio of solution time on one processor to
solution time on NN processors. It is thus a measure of parallel processing advantage.

The speedup versus the K and L for equal division scheduling, sequential optimal schedul-
ing and multi-installment optimal scheduling are plotted in Fig. 8, 9, 10 and 11, respectively.
The speedup increases as either K or L is increased.

Sequential scheduling and the multi-installment scheduling are compared with equal di-
vision scheduling. The speedup improvement is shown in Fig. 12 and 13. The speedup

improvement is obtained as follows. For Fig. 12:

SSOS (L, K) _ SEDS (L, K)

[5|Fig. 12 — GEDS (L K) x 100 [%] (91)
For Fig. 13:
SMOS ([ K) — SEPS (L. K
IS|Fig. 13 = ( SED)S (L, K) ( ) x 100 [%] (92)
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Here, SPPS (L, K), S59% (L, K) and SM9% (L, K) are the speedups for equal division schedul-
ing, sequential scheduling and multi-installment scheduling, respectively. The speedup is

defined as follow:

wT,

SEDS (L’ K) T}.EDS—(ZI;JI() (93)
wl,

GS0S (LK) = TfSOTI?K) (94)
wT,

SMOS (LK) = TJ{V[T([}jK) (95)

Also the speedup improvement calculated in equation (91) and (92) are shown in Table.
1 and 2. Five or six digits accuracy is shown here, not because real scheduling is that
precise, but to aid in result replication. Comparing the multi-installment scheduling with
the sequential scheduling, the multi-installment strategy has the higher speedup.

In the tables it can be seen that speedup improvements of from 3% to 70% were found
for the tree topology. As L and K are increased the speedup improvement first increases
then may decrease for certain parameter combinations.

It is interesting to ask over what range of parameter values is the speedup improvement
most pronounced. If a job is computation intensive one would expect 1/N equal division
scheduling to be optimal. If a job is communication intensive, the use of a single processor
may well be optimal. It is that range where computation intensity is one the order of

communication intensity that one can expect optimal scheduling to be most efficacious.

VII. CONCLUSION

The results in this paper indicate that one can achieve significant improvements in speedup
(and by implication, solution time) by using optimal scheduling policies compared to naive
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K=1 | K=2 |K=3 |K=4
L =113.0000 |4.8657 |6.6068 | 8.2321
L=2]77911 | 13.2612 | 18.8595 | 23.6171
L =31]14.0182 | 22.4653 | 29.0953 | 31.5415
L =4121.3361 | 29.3861 | 32.7270 | 26.7681

Optimal Scheduling; w; = 1, z; = 0.05, T, = 1, Tp.p, = 1, T5%0 = 0.2

K=1 | K=2 |K=3 |K=4
L =11]3.0000 |4.8657 |6.6068 | 8.2321
L=21]95714 | 18.6093 | 26.8686 | 32.4850
L =3 20.2847 | 43.5657 | 49.8413 | 36.7902
L =4 34.6968 | 70.2669 | 42.7284 | 20.8299

Table 1: Speedup Improvement in Percentage: Equal Division Scheduling vs. Sequential

Table 2:

Speedup Improvement in percentage: Multi-

Equal Division Scheduling vs.

Installment Optimal Scheduling; w; = 1, 2, = 0.05, T., = 1, T, = 1, T2 = 0.2
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Figure 8: Speedup vs. K and L; L=1; w; = 1, 2, = 0.05, T, = 1, T, = 1, T2 = 0.2.

equal division scheduling. In doing this the first published analytical model for equal division
scheduling for a multilevel tree network is presented. We believe the improvement noted will
carry over to other topologies through the numerical amount of improvement will, of course,
differ. Useful future work would include determining performance improvement bounds, both

across possible parameter values for a particular topology and across different topologies.

VIII. ACKNOWLEDGEMENTS

The support of the National Science Foundation through grant CCR-99-12331 is acknowl-

edged.

35



18

—&—  Equal Division Scheduling
16 | —o—  Sequential Scheduling 8
—%—  Multi-Installment Scheduling

Speedup

1 15 2 25 3 35 4
K-ary

Figure 9: Speedup vs. K and L; L =2; w; =1, 2, = 0.05, T, = 1, T.,, = 1, T2% = 0.2.
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Figure 11: Speedup vs. K and L; L=4; w; =1, z; = 0.05, T,, = 1, To.,, = 1, T3% = 0.2.
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Figure 12: Speedup improvement in percentage vs.

0

60

w o2
o o
T

Speedup Improvement [%]

N
o!\

%

10

IS
=)
T

A WOWNPF

-

K and L; comparing equal division

scheduling with sequential optimal scheduling; w; = 1, z; = 0.05, T, = 1, To.,, = 1, T2 =

0.2.

39



Figure 13: Speedup improvement in percentage vs.
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