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Abstract

The optimal partition of a huge, linear (flat) file among processing nodasniatwork to minimize the time to
search for signatures of interest in the file is considered. First, aregsipn is developed for the expected time of
finding thekth signature (including the last signature) if signatures for a uniform distribution of signatures in the
file. Secondly, for a single signature we propose processing data inelie drder from that with the most probability
mass (i.e. data with the most a priori likelihood of containing the signaturé)aowith the least probability mass
in a “greedy” manner to speed processing time. Applications of this warlkidie radar, sensors, image processing

and search.

I. INTRODUCTION

A “signature” is a data pattern of interest in a large data Slignature searching involves finding such signatures
in the voluminous amount of data that can be produced witbspeice technology. This process is complicated
by the possible presence of noise in the data and becausdimamnédeal signatures may only be approximate
in actual instances of data. There are natural radar andisapglications for signature searching. However, as
examples, three representative applications involvinggenprocessing are:

1) An automated lander for Mars may process views of the serfar the signatures of good landing locations

(e.g., flat areas, no boulders or trenches, etc...).

2) Archaeologists may process satellite imagery of jungéas for signatures of overgrown ancient structures.

3) Astronomers may search through images from a space baksgtdpe, such as the Hubble, automatically

cataloging distinctive astronomical features (e.g.,amalaxies).

In this paper divisible load theory is applied to the problefsignature search time evaluation in flat file

databases. That is, one can view the entire data set as almege, (flat) file that is to be optimally partitioned



among processing nodes in a network so that processing sirmnénimal. Flat (linear) files are a natural choice for
early database implementations though more sophistickttabase models are often later used [1].

In this paper after establishing the model and notatiortigsedl), the expected time for finding multiple signatures
in a flat file is developed (section IIl). In doing so, a unifodistribution of the signatures within the file is first
assumed. An expression is developed for the expected timénfding the kth signature out ofK signatures,
including the last signature. This work extends the eanlverk of Ko and one of the authors [1]. That work
considered single signatures with a uniform distributidrsignature location as well as finding the last signature
of a number of uniformly distributed multiple signatures.

However signatures may not always be uniformly distributeatr instance a satellite may record images of the
ocean in a search and rescue operation. Based on elapsedrtdnenown ocean currents it may be possible to
associate a probability density function to the currenatmn of a lost individual. As a second example, probability
density functions may also be associated with the positidresvessel or a vehicle one has lost contact with. Here
one would also take into account the potential speed of teselehicle.

In this paper we propose for such situations processing idavader from that with the most probability mass
(i.e. data with the most a priori likelihood to find a sign&uto that with the least probability mass in a “greedy”
manner to speed the processing time. Naturally for a sma#l dat on a single computer, time may not be an
issue. We are thus considering voluminous data sets, wgtiif&iant processing and transmission time, that can be
processed on a number of computers (such as a cluster of terspuNe use the term “greedy” in the spirit of
greedy combinatorial optimization algorithms which cheosach algorithm iteration, the combinatorial choice that
yields the largest possible improvement possible in maziimgi or minimizing an optimization (objective) function.

In section IV distributing load for greedy processing foethase of a single signature is examined. Greedy
processing for arbitrary location densities for a singlgnature is considered in section V. An example involving
a truncated normal probability density function appearsention VI. This is followed by conclusions and future

work in section VII.

A. Divisible Load Theory

In this paper we use divisible load analysis because ofdtgability and appropriateness for the model considered.
Divisible load theory was introduced by [2] and [3] and, alsdependently in [4] as “large-grained parallelism”.
Divisble load modeling is concerned with massive compaieti and communication loads without any precedence
relationships that must be optimally scheduled/allocdtegrocessors and links. Here optimality is defined as
processing the load in a minimal amount of time for a giveresetting policy and interconnection network topology.

Divisible load theory is a theory of proportions. If one ha®tprocessors and a very fast connection between
them, with one processor twice as fast as the other, it makesesthat two thirds of the load should be assigned
to the faster processor and one third of the load to the slgn@ressor to process the load in a minimal amount

of time. Given many processors interconnected by chanregdspimited links in some sort of interconnection

DRAFT



network one has a more complex problem of proportions buttbatcan still be solved through linear equations,
mathematical programming or, in some cases, by simple &gebecursions.

Ever since its introduction, divisible load theory has senas an effective modeling tool for data-intensive
applications [5][6][7][8][9][10] and a large amount of wothas been published for various network structures
including linear networks [11], bus networks [12], singledamulti level tree-networks [13][14][15], mesh networks
[16][17], hypercubes [18] and arbitrary graphs [19] withfelient constraints such as different release times,
buffer constraints [20], communication start-up costs ame-varying network capacity. Also, various distributio
strategies have been studied including multi-installmeéribad distribution [21]. In [22], [23] and [24], schedugin
strategies without knowledge of network resources are sanIn [25], signature searching is investigated on bus
networks experimentally. In [1], a uniform distribution tife signature in the dataset is assumed as it is a feasible

model of the distribution of signatures in large databasediscussed in [26].

Il. SYSTEM MODEL

e L ° Lo e e LM

Fig. 1. Model of linear daisy chain network with communicatiorks.

A. Network Model

Fig. 2. Model of single level tree network with communicatiamks.

We consider signature search time on two network modelgyudivisible load theory. Fig. 1 describes a linear
daisy chain model and, in Fig. 2, a single level tree netwodklehis described. In this second network model, one
root processorpP, is connected to the rest of the processors via links. In brattels, the load is originated fro.
Communication links connected #; are shown ad ;. The notation used in this paper is summarized in TABLE

I. Here «; is the optimal fraction of load distributed to processord &inks, calculated with divisible load theory
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K The number of signatures in a data file when there are
multiple signatures

M The number of processors besides the load originating pro-
cessor (root)

B The total number of bins

a; Fraction of entire processing load assignedttoprocessor

w; Constant that is inversely proportional to the computation

speed of theth processor
zi Constant that is inversely proportional to the communication
speed of theth link
Tep Computation intensity: time taken to process a unit load on
the ith processor whemw; = 1
Tem Communication intensity: time taken to communicate a unit
load over linkl; whenz; =1

S Processing start time of thigh processor
B Fraction of load that is processed durifg and.S; 1
15 The size of3?

1(B%),u(B?)  The lower and the upper boundaries&f
a§ The fraction of load distributed t@; taken from3?
o] The size ofo]

l(a{), u(ag) The lower and the upper boundariesm?f
Y Random variable describing the amount of time to find a
single signature contained in a data file
Yy Random variable describing the amount of time to find the
kth of K signatures in a data file
Am Event whenkth of K signatures is found in processot.

TABLE |
SUMMARY OF NOTATION FOR DIVISIBLE LOAD THEORY

using the rest of system parameteus, z;, 7., and 1., which are given as constant values. For the scheduling
policy for a single level tree network, we consider only tlirgke-installment case, where communication of the
load to each processor takes place only once for each parcé¥e also assume that the originating node also
computes the load. It is also assumed that a child can onlinlggcessing its load fraction after it receives it in
it's entirety (“staggered start”). Furthermore, each pssor is equipped with a front-end processor for off-logdin
communication, so that communication and computation alie place concurrently. A closed-from solution for
the optimal load distribution fractiongy() and an expression for the finish time (makespan) appear]iard [5]

and are reproduced in the next subsection.

B. Divisible Load Modeling

The solutions for the optimal load fraction to distributegach processor and the starting time and the finish

time of processing distributed load by each processor igimdéd using recursive equations in [5]. Here optimality
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is defined as the processing of the load in a minimal amouritra for a given interconnection network and given

scheduling policy.
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Fig. 3. Timing diagram for load distribution on a linear daidyain network.

Sy S, S, S; Swm1 Swu Thinish
[ | | | 00 | | |
Po 01Z1Tem I 02Z2Tem I 03Z3Tem l omZmTem
U-()WOTcp l
P
l (X1W1Tcp ‘
P,
(XZWZTcp ‘
. .
Prm-
™ oMW1 Tep ‘
P
" (XMWMTcp

Fig. 4. Timing diagram for load distribution on a single lewde network with single installment.

Fig. 3 and Fig. 4 presents timing diagrams of load distrdoutior a linear daisy chain network model and a
single level tree network model, respectively. It is shoWwattthe processing time of thigh processor is given as
a;w; Ty, and the load communication time for th# link is the amount of load to transfer multiplied by comsta
factor z;T.,,. For example, in Fig. 4, the amount of time to transferto P; is given asx; z17.,,. As the optimality
criterion of divisible load theory states, the computatiiome has to be finished at the same instant by all processors,
Ttinisn- This criterion is intuitively reasoned in [5] - while digiuting arbitrarily divisible loads, one should keep
all the processors utilized until the last moment. If allggssors do not stop at the same time, certainly the load can
be transferred from busy processors to idle processor toowvepthe solution. A rigorous proof of this optimality
criterion for various network models is presented in [5].tWihis intuition concerning the nature of an optimal
solution, M recursive equations can be written for the two network nmoadélthis paper as,

aw;Te, = (1 — Z a;)Zit1Tem + cip1wip1Tep,
=0 1)
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for the linear daisy chain network model and

aiwiTcp - ai+1zi+1Tcm + ai+1wi+1Tcpa (2)
i=0,1,...,M—1,

for the single level tree network model. Each set of recersiguations, along with a normalization equation, form

a system of(M + 1) linear equations wit{M + 1) unknowns,{ag, a1, . .., s }. The normalization equation is
given as,
M
Zai = 1) (3)
=0

for both network models. The starting timg;, of ith processorp;, is determined by communication time of the

Network Model So Sm (m=1,...,M)
m—1 J
Linear Daisy Chain 0 Z (1 - Z ak> zjp1Tem
j=0 k=0
m
Single Level Tree 0 Z a; - 2jTem
j=1
TABLE I

TIME TO START SEARCHING

load to the previous processors, frafy to P;,_; and P; itself. The starting time for each network model is given
in [1] and is reproduced in TABLE II.

[1l. EXPECTED SIGNATURE SEARCHING TIME FOR UNIFORM DISTRIBUTION
A. Problem Description

We define a set of random variabl¢X;} that describes the positions &f signatures in the dataset with the

normalized sizel. We assume that the positions of the signatures have arcelitdribution,
{X;} ~F, 4)

where F is joint cumulative density function (CDF) defined d, 1]%. We denoteY;, as a random variable
describing the amount of time to find thgh signature. The objective of this section of this papemidind the

expectation value oY.

B. Uniform Distribution with Single Installment

Let {X,} be independent and identically distributed random vagblith uniform distributionX,; ~ U(0,1), i €
[1, K]. The position of thekth signature is given aX;), the kth order statistics of X;}. The E[Y}] can be

expressed as,
M

E[Yi] =Y E[Yi|An]P(Ay,), (5)

m=0
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where A,,, denotes the event when th¢h signature is found ow®,,. For the single installment case, we have,

Pr(AO) = PI’(O < X(k) < Oéo)

m—1 m 6
Pr(Ay) =Pr()  a; <Xy <Y ay), me [1,M]. ©
j=0 j=0
Given that thekth signature is found ot,,,,
Yk‘Am = gm(X(k)|Am)
m—1 (7)
= (X(k')‘Am - Z ai)mecp + S,
=1

whereg,,(+) is the transformation function presented in [1], which takee position of a signature as an argument
and gives the signature search time depending on which ggoc¢he signature is found. The search times for the
processors are partially overlapping and the start timesganerally increasing in signature position in the file.
Plotted as a graph search time versus position exhibits @ctesistic saw tooth type shape. Hefg, denotes the
starting time ofP,,, as described in TABLE Il andX )| A, — Z?;l «;) is the offset of the position of thith
signature from the beginning of load fraction distributedR,, .
The kth order statistics of the uniform distribution follows thaell known beta distribution (see equation (19))

of applied mathematics,

Xy ~ Bk, K +1—Fk). (8)

If we denotef x(x) as the probability density function of theh signature ofK’ signatures, given thaX;,
is on P, the conditional distribution oX ) is given as,

i ()
'77:7—1 fk’[((l')dl‘ (9)
k@) §
- I (k) _ T (k)v Tm—1 = VYm,

Ym TYm—1

Xy | A ~

where the limits of the integration,,_; and~,, are 27;01 a; and Z;.”:O «;, respectively. We sey_; = 0 for
conveniencel, (k) is the shorthand notation fdr, (k, K + 1 — k), which is the cumulative distribution function of

the beta distributionf, x (z).

LK +1-0) = [ e (10)
0
It follows I., , = I, = 0. Taking the expectation of equation (7),
m—1
E[Yk|Am] = (BE[X(1)|Am] = > ai)wmTep + S (11)
1=0

From (9),
( ) [ |A ] ’;Y'rn ) xfk,K(w)dx
E X m — m— ,
® L, (k) = I, (k)

(12)
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From (6),

Ym
Pr(Am) :/ ka((x)d.T

Ym—1 (13)
= I’Y'm (k) - I’Yntfl (k)
Using these results into equation (5), we have an expregsioine expected time for finding thieth signature

out of K signatures:

M I wf ke (v)de
Bl =Y (( TS _’}:ﬂ_l - vm_1> W Tep + Sm>

* (I, (k) = Iy, (k).
Single Signature Case
When there is only one signature, we have= k£ = 1. We use the identity,
a+b—1
(a+b—1)! . bl
I.(a,b) = I(1 — z)** 7, 15
(a,b) ; Aato Tt (15)
Whena=k=1andb=K+1-k=1,
m
L, (1L1) =7m =Y _aj. (16)
j=1

Then from equation (13Pr(A,) = I, (k) — L, , (k) = 327 g o — Z;ﬁ:’ol @j = Q. SinceX(qy is uniformly
distributed, whenk' = 1, E[X(1)|Ap] = (Ym +Ym—1)/2. AISO, (Vm+Ym-1)/2=Ym-1 = (Ym —Vm-1)/2 = am/2.
Substituting these results into equation (5),

M Wi T
E[Y,] = A <n12'm.cp + Sm>

M
= Z [077%) <O"’”w"”TZP + 257”) (17)

l <Tfinish + Sm>
=3 o (Lo Sy,

m=0
where T;,;sp, denotes the time when the computation finishes and is givefi;ass, = mwmTep + Sm. The
expected time of single signature search time is found as/éighted average of midpoints of the processing times
of each processor. This special case confirms the resulemessin [1].
Time to find the last signature

If the file contains multiple, uniformly distributed, sigmaes then the distribution of the position of the last

signature is given as,

Xy~ B(K,1). (18)
The standard form of the probability density function of theta distribution is given as,

f(z;a,b) =

Blab) e (R L (29)
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where B(a,b) is the beta function with the parametersand b. That is, B(a,b) = f01 to=1(1 — t)*~1dt. When

k=Ka=Kb=K+1-k=1, fx k(@)= f(z;K,1) = 50013

(Kyl)xK—l. Also, from equation (15),

L(K,1) =z (20)

Using these with equation (12), with being processor number,

where we useB(K,1) = +

Ym

f(x; K, 1)
p A )
vE —4K
K1 1
x K _ K
B(Ka 1) Tm — Tm—1

K 1

E[X(K)lAm] = / d.l?

Ym—1

/’Ym
Y

m—1

’le
- /Ym1 B(K7 1) 'Ynlg - 77{5—1
K AR+t —rt]

K+ KAk

dzr
(21)
dzx

from B(a,b) = [ t*~(1 — ¢)>~'dt. With equations (5), (11), (13) and (20),

- ’Ym—l) mecp + Sm)

ElYk] =

(

(vl — k).

M

D

m=0

K+1 K+1
K Ym ~ Ym—1

K+1 y8 =5

(22)

In [1], the expected search time of the last signature isvddriusing the concept of an equivalent processor for

the uniformly distributed case. Here, a closed form sotutiging the beta distribution is derived.

Expected Signature Search Time

Fig. 5.
1, Tem = 1.

\ dashed line: finish time

markers: expected time

L]
'
]
|

*
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]
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0.1

Number of Processors

Linear daisy chain network: time to find the last signatversus number of processors, signaturesw = 1,z = 0.2,Tp =

Fig. 5 shows the search time for the last signature when thexd( signatures. The dotted line at the top is

the finish time when the processors do not stop processimg tife last signature is found. It can be seen, as

expected, search time can be decreased by adding procegstwsa saturation limit. However, as shown in the
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dashed line: finish time
. markers: expected time

Expected Signature Search Time

5
Number Of Processors

Fig. 6. Linear daisy chain network: time to find tf¢h signature versus number of processd®,signaturesw; = 1,z; = 0.2,T¢p =
1, Tem = 1.

plot, as more processors are added the expected signaarah ggne is slightly increasing after the search time
is saturated (i.e. saturates at four processors). While éhecls time through parallel processing is not decreased
because of the communication overhead, when calculatiagepected value of the signature search time, the
residual probability mass of finding signatures on the pgsoes that are added after the saturation contributes to
decreasing the expectation value albeit in a negligible. way

Fig. 6 shows the search time for th¢h signature when the number of signatures is fixed(te= 10. It can be
observed that before the speed up saturates, the order e€texptimes to find the signature changes as shown in

the figure.

Load with 10 |
signatures

1711 2111 [ ]

Timing | | | | | |
dagram [ [ [ [ [ []r

S
! ™ Tonish

Fig. 7. Load with 10 uniformly distributed signatures and ntiniing diagram for two processors; = 1,z = 0.2, Tcp = 1, Tem = 1

The reason for this can be explained with Fig. 7. In the figtive,upper part describes the normalized load with
size 1 with 10 uniformly distributed signatures of those eotpd locations are shown as vertical lines. With the
same system parameters for generating the plot for Fig. &nwhere are two processors the load distribution is
given as{0.52381,0.47619}. The bottom part shows a mini timing diagram when the loadistituted with this
proportion and the expected location of signatures. As shiowthe timing diagram, the expected time to find the
7th signature is smaller than the expected time of the 3ndasige because of parallel processing. Although this

diagram is not exact as it uses the expected positions, lai@spwhy the order of expected search time may be
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switched as shown in Fig. 6. A similar effect is also pointed io [1].

This all assumes a load is mapped continuously and seqlemi@ each load fraction for each processor. The
signatures are not necessarily detected in the originardteey appear in the original flat data file. In the case of
signature searching if the original flat file is indexed bydjnthere may be some concern that signatures spanning
two sides of a load partition boundary are correctly detkcliénis can be handled by some overlapping of data
fragments near partition boundaries. If this can be handlesh the original load could conceivably be multiplexed
into each processing node sequentially and repetitivelthab signatures are more likely to be detected closer to

their original order if that is important.

IV. GREEDY PROCESSING DISTRIBUTING LOAD
A. Load Classification based on Starting Time

Consider a search of a massive flat file for a single signaffige8(a) shows the timing diagram of the computation
time of distributed load for a single level tree network (&ctf since the figure only involves computation it is also
appropriate for a linear daisy chain network but for thiscdssion the figure can be thought of as representing a
single level tree network). The load is distributed in sedia order as it has been assumed in the literature of
divisible load theory, where the position of the fractiorshat been considered. In sequential load distribution,
oncec;, the fraction forP; is determined P, gets the first part of load anB;, receives the next part of load. The
ranges of the fractions inside the total load #rgvg] and [, a9 + 1], respectably, fol, and P;.

However, when the likelihood of finding a signature is notfamn, by greedily computing earlier the fractions of
load with a higher likelihood of finding the signatures, thg@ected time of finding the signature will be shown to
be reduced. Fig. 8(b) shows the classification of load baseith@ir starting time of computation. Hef® denotes
the fraction of load which is computed betwegnand S;, ;. Since3° is processed at the earliest time, it should
contain the fraction of load that has highest probabilitg@ftaining signatures. The fractioft, having the highest
probability excludings® is processed betwee$y and.S,. Since bothP, and P, process their fraction during that
time period,3! is separated into two fractionsy and a}, where«’ denotes the fraction of load distributed to
P; from 3. We assume thas; is from one contiguous region of load and later this assumptiill be relaxed.
Note thatg; is divided intoi 4 1 fractions because there aie- 1 processors computing their fraction between
S; and S;,;. Also, each processof;, receives the load fromd/ — j different 3*. Note that there are events
S0,51, -, Sus Trinisn- Thus there ar¢M +1)5;, hence each processsy receives load fromd + 1 — 5 different
Bi. For example P, computes its fraction front, to Tti,is, SO it receives the fractions from aif’.

In the DLT literature,«; usually means the size of the fraction of the load and itstijposin load is not
considered. Sincg; and aj- are from different parts of total load, their position ne¢dlde taken account as well
as their size.

For the size of3; anda, we use|3;| and || andi(-) andu(-) for the boundaries of the range of fractions. For

notational consistency, we also ugg| to denote the size of fraction of load distributed using theal sequential
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(b) Load distribution based on starting time.

Fig. 8. Comparison of Load Distribution Schemes.

distribution althoughy; means the same quantity. For summary, our notatioand 043» consist of pairs of values,
(18:],1(8:)) and (|’ |, 1(at)), respectively, andi(-) = I(-) + | - |.

The values of{|o’[} and|3’| can be obtained fron;| which can be obtained from well-known solutions of
the literature of divisible load theory and can be calculaising recursive equations presented in Section II.

From {|a;|}, {|a%]} is calculated with the following equations

M
gl => labl, j=0,....M (23)
i=j

with a constraint,

|af)|w0Tcp =...= |oz§-|wiTcp7 i=1,....,M, j<i (24)

and,
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1
18°] =[] B =) lafl, i=1,..., M. (25)
j=1
From (23),
|ao el fagl o fag" M lag”] 1
|a] lef] o ™ ol 1
lanr—1] i1l ledial | |1
|| \a%\ 1
M-—1
agl  agl - lag | o’ .
M-1 /
wlodl o gEled Sl [
= : : E _ (26)
M— 1 .
alogt T g lad| .
i
1 1 ... 1 1 0
Wo Wo Wo_ |a0
wy T WM —1 WL |a(1)
wo wo
WAL —1 WAL M
wy lag” |
w nM
Here, the second equality is from (24).
Taking the inverse of théM + 1) x (M + 1) matrix,
-1
0 1 1 ... 1 1
|ag wy wy wy |cvol
1 wy T WpM—1 WM
g : ) : |a]
= : : : |- (27)
Wo Wo_ :
M WM —1 w N
g’ | wy ||
WM

The matrix form is given in (27) for exposition purposes. Tdie may be solved more efficiently using standard
divisible load theory algebraic recursions in this. Once{|ag|, |agl, ..., |ag|} is found, other{|a’|}, < i and

|3¢| follows from equations (24) and (25).

. . W,
o] = Jag| — (28)

J
The values of thes’ can be determined from equation (25).

When the probability distribution function for the locatiohsignatures is monotonically increasing or decreasing
as shown in Fig. 9, for alB;, one contiguous fraction suffices to give the optimal rarigehe next subsection,
we will give a motivational example with the probability tlibution shown in the figure and discuss the case of

arbitrary shapes of distributions in the following section

DRAFT



14

— oo @ —><—(an>1

(a) Sequential distribution.

Brm ee e [3‘—»4 [t
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Fig. 9. A comparison between the load distribution schemes.

B. Motivational Example

In this example, a linearly increasing probability dengay the location of a single signature is considered. We
describe a more efficient processing of the load based onhidgges Consider Fig. 9. It shows that the probability
mass of the position of the signature linearly increasesatdwhe end of the load. In the usual sequential load
distribution, the load is partitioned in sequence as shawkig. 9(a). The load distributed te@, is chosen from
the beginning of the whole load of which computation begih$@ Fig. 9(b) is a distribution scheme based on
the timing diagram of Fig. 8(b), where the fraction of theda@ontaining the larger mass of probability of finding
the signature is distributed tB, and processed betweefy and S;, during the earliest time. The grayed area of
the figures identify the portion of load distributed K. In the figure, multiple fractions of load contribute 4@,
the load distributed tdP,. Note that, as probability mass monotonically increades,range of3’ is continuous
and eachs?,i > 0 is partitioned for multiple processors.

The probability distribution function of the signature pims shown in the figure is given as
fo(@)=22,0<z<1 (29)

For a linear daisy chain network with 5 processors, {theg,,|} and{S,,} is calculated using recursive equations
presented in section Il and TABLE Il. The calculated values shown in TABLE III.
In TABLE 1V, the size of the fraction of the load distributed P; from 7, || is calculated using equation

(27) and equation (28). Although the sizes are determinedy;oand B, with the aid of the DLT solution, the
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m 0 1 2 3 4
|| 0299 0.229 0.181 0.152 0.139
Sm 0 0.0701 0.117 0.146 0.160

TABLE Il

m AND Sp, FORLINEAR DAISY CHAIN NETWORKWITHwW = 1,2 =0.1, Temn =Tep =1

i 0 1 2 3 4
lod| | 0.0701154 0.0472423 0.0290935 0.0138541 0.138541
Y 0.0472423  0.0290935 0.0138541  0.138541
o | 0.0290935 0.0138541 0.138541
|od| 0.0138541  0.138541
o | 0.138541
|7 | 0.0701154 0.0944847 0.0872806 0.0554162 0.692703

TABLE IV
0/,3-, LINEAR DAISY CHAIN NETWORKWITHw =1, 2 = 0.1, Tem, = Tep =1

range of the fractions of load still needs to be determinad-iy. 9(b), the shaded area indicates the fractions of
load that need to be distributed . Here, the load distributed t&, are from multiple parts of the load based
on their their probability mass. Now{ which is processed betweefy and S; is taken from the part of load with
highest probability mass. The fraction of load processeathdiuthe period betweeSy, andTyin;sn, Sar, is taken
from the beginning part (leftmost area in Fig. 9) of the araiload because of its small probability mass. Since
all the processors process the fraction the load duringpghebd, 5, is partitioned and distributed to all of the
processors. As the ranges of fractions are dispersed iro#ftg the position of each fraction needs to be obtained.

To begin, the range of; needs to be obtained and then the positions oﬁg’alforj = 1...7 are calculated.

UCRIRICE) 8%  ushH 1B
0 0692703 0.748119 0.8354 0.929885

TABLE V

LOWER BOUNDARY OF 3% WITH LINEAR DAISY CHAIN NETWORK WITHw = 1,z = 0.1, Tom = Tep = 1, u(8?) = 1(8%) + |8Y]

In this example with a monotonically increasing distribuati the range of5; can be obtained in a straightforward
manner with knownj3;| as we can take,; from the end of the load toward the beginning sequentiallghasvn in
9(b) and the lower boundaries 6; are calculated and shown in TABLE V. The table shows the |ldwmmdary
of 3;, but the upper boundary can be easily derived wWith: «(8;) = 1(5;) + |5i|, whereu(-) denotes the upper
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boundary of the load fraction.

i 0 1 2 3 4

(o) | 0.929885  0.8354  0.748119 0.692703 0

I(ad) 0.882642 0.777213 0.706557 0.138541

I(ad) 0.806306 0.720411 0.277082

1(ad) 0.734265 0.415623

I(ad) 0.554164
TABLE VI

LOWER BOUNDARY OFal,, I(aZ,) WITH LINEAR DAISY CHAIN NETWORK WITHw = 1, 2 = 0.1, Tem = Tep = 1,
u(ey,) = Uap,) + o,

The lower boundary ofa!,} is shown in TABLE VI. Inside the range ¢f;, we partition thes; in the order of
the processor index for simplicity. Therefoig¢a) = 1(31) andi(at) = 1(81) + || and other lower boundaries
are obtained similarly. Other ways of partitionifg are possible but are not considered in this paper.

In order to find the expected signature search time for thagidution scheme, equation (5) can be re-written as

E[Y]= ) E[Y|A]Pr(A],), (30)
m=1..M,j<m

where A?, denotes an event when the signature is foundjn Similarly to equation (7),

m

YA, = gm(X)]47,)

4 4 (31)
= (X|4;, — l(a;,)wmTep + S
wherel(a!,) denotes the starting position of,, in load.
Taking expectation ol |A?, gives
BIY|A;,] = (BX|AL] = Uay,))wmTep + Sm. (32)
The conditional expectation of the location of the signatgiven that it is distributed t@,, and from 3¢,
u(on,) .
1 fl ay, 5 dC
E[X|A},] = (<>— (33)
S fa(€)dC
Also, the probability of the event’  is
) u(ay,)
Py = [ 0 (34)
Finally, substituting the above equations into (30),
u(al)
) fa(C)dC ,
EY] =Y Juay,y 2= QdC 1(02) | wmTep + S
fu(a'rn) f dC
(m,i) Uad,) Il (35)

< e

Ued,)
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When probability distribution is given as (29), we have,

o) TRRITRY
[ e = 22dz
l

(CH) Wat,) (36)
_ 6oy, [*Uay,) + 6l [12(ay,) + 2]os, [°
B 3
and
u(ag,) Lo, )+lag,|
/ fo(x)dx = / 2z dx
UCED Wat,) (37)

= 2lag,[l(ag,) + lag, >

0.6

0.5

04 S

Finish Time

..... [ EEEEET TR SN |

03F  ® e, °

02+

With Load Classification

Expected Signature Search Time
¢
]

0.1p

1 2 3 4 5 6 7 8 9 10
Number Of Processors

Fig. 10. Comparison of expected time to find a single signatetesden sequential distribution and distribution basedoawl Iclassification
based on the probability distribution on single level tregwork, w; = 1,2; = 0.2,T¢p =1, Tem = 1.

By using the calculated values from the above tables, wetpéoexpected search time using the usual sequential
distribution in the DLT literature and when the load is clfied by probability mass in Fig. 10. As shown in the
figure, when the load is classified by the probability mass sofeduled with consideration of the starting time of
each processor the expected time to find signatures is.fdsterfinish time of computation is shown in the plot
for comparison.

Similar curves for a linear daisy chain of processors as gufé 10 could be produced using equations (23)
through (37).

V. GREEDY PROCESSING ARBITRARY DENSITIES
A. Greedy Load Rearrangement Procedure

In this section, we present a greedy procedure to distriloate based on the distribution of a single signature as
introduced in the previous section. We assume that the pilitgadistribution of the location of a single signature
is known. In this approach, the load is rearranged first ireoaf the likelihood of finding the signature. Fig. 11

describes the procedure. As shown in Fig. 11(a) and Fig.)lit{b load is sliced into equal sized bins. Practically
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(a) Sequential load distribution. (b) Load partitioned intaB bins.
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(c) Bins arranged in the order of the (d) Probability mass approximation for

contained probability mass. Bi.

Fig. 11. Greedy rearrangement of loads based on ranking.

bins can be rearranged by a server that feeds load to a nurilparallel processors according to an a priori
known pattern (distribution) of signature location(s).eTthoice of bin size should take into account the number
of processors available, the desired solution time and &erating nature of the search time curves. These bins
are arranged in decreasing order of probability mass (sgelf{c)). A further approximation step (Fig. 11(d)) is
described in the next subsection. Note that once we get assftire steps of Fig. 11(c) and 11(d) then the results
of the previous section apply.

To be specific,we denotB the total number of bins and, therefore, the normalized sfzeach bin isl/B. In

the next step, shown in 11(b), the probability mass of eanhidcalculated as,
bn
F, :/ fu(z)de, (38)
bn—1

where F,, denotes the probability mass ath bin andb,, = n x* %. Once the mass of each bin is calculated the
load is sliced and rearranged in the order of the decreasagnitude of the probability mass as shown in Fig.
11(c). We call this the sorted load.

Finally, the load is distributed according to pre-calcetbfs }. Once the load is sorted according to the probability
mass in the previous step, the range and the siZg3gf does not vary for a given network model with the same

system parameters independently from the probabilityitigion of signatures. For example, the range and size of
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B8O B B? B? g
|67]  0.0701154  0.0944847 0.0872806 0.0554162  0.692703

w(B)  0.0701154  0.1646 0.251881  0.307297 1
TABLE VII
|ﬁ7" AND UPPER BOUNDARIES OE@i WITH LINEAR DAISY CHAIN NETWORK FORSCALED NORMAL DISTRIBUTIONWITHw = 1,z = 0.1,
T = Tep = 1

{B} can be calculated for the linear daisy network with= 1,z = 0.1 andT,,, = T, = 1 as shown in TABLE
VII. The size of 3; are obtained using (23), (24) and (25). The rangg;df taken from the beginning of the sorted
load. Therefore, the upper boundaries shown in TABLE VI #ire values in the sorted load, not in the original

load.

B. Approximation of Expected Signature Search Time

Fig. 11(d) illustrates the approximated probability massigned to the portion of load with the same ranking.
Since the exact distribution for a portion of the load witle #ame ranking is not specified, the actual calculation
of the expected search time can only be approximated. Thexippated value of the expected time of signature

search time is given as,

mm:§:§%;§*@i (39)
=1

where F; denotes the approximated probability mass calculated $6}.

: (b —1(BY) | « (u(B") — by)
Fﬁ’i = F(k_l)l/iB + ;F(k) + F(p+1)1/731 (40)
Hereb,_1 < I(8%) < by andb, < u(B%) < b,+1. Here the b's are the integration limits of equation (38)rdHe
F( is the probability mass of theth bin after sorting.
Intuitively, this equation shows that the approximatedestpd signature search time is the weighted sum of the

mid points of processing time dfs;} with their approximated probability masses.

V1. EVALUATION AND ANALYSIS

As an example, assume that the distribution of the locatibsignature time is given as a truncated normal
distribution on the rang), 1] centered at thé /2. The distribution can be written as,
1 —
F¢(558)
o(P5H) — @ ()

o g

flx;p,0,a,b) = (41)
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bility mass.

Fig. 12. Greedy rearrangement of loads based on ranking famaated normal distribution.

Hereg(+) is the probability density function of the standard normiatribution, and®(-) is its cumulative distribution
function. Also,a andb denote the limits of the range of truncation, gndenotes the average ands the standard

deviation value. Witha =0, b =1 andp = 1/2,

1p(=12)
f(:c;l/2,o,0,1):@(%)_é(_%), (42)

This distribution is shown in Fig. 12(a). Following the pealtre presented in the previous section, the load is
sliced into bins as shown in Fig. 12(b) and rearranged bageitieo probability mass of the bins as shown in Fig.
12(c). The figures are based on 30 bins being used. Finatlyapiproximated probability mass 6f is plotted in
Fig. 12(d).

Fig. 13(a) shows the expected signature search time withwatidut load arrangement procedure with various
standard deviationsy. The figure was computed using (39) and (40) and the defintioapeedup. Fig. 13(b)
shows the performance improvement in terms of percentalgerenthe speed up is defined as the ratio of signature

search time on one processor to signature search tim¥ pnocessors. Naturally speedup is greater than one but
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(a) Expected signature search time.
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(b) Speed up of signature search time.

Fig. 13. Performance improvement (%) through greedy load argement for various.

is often less thenV because of inefficiencies in parallel processing. “Speédu@a common parallel processing
advantage performance metric. As shown in the figures, aprifteability of finding a signature is concentrated in

a smaller area (lowet value) the performance gain increases.

VIl. CONCLUSION AND FUTURE WORK

In the first part of this work, closed form solutions of the egfed search time of theh signature of signatures,
with a uniform distribution of signature locations, are ided. In the latter part, with a prior knowledge of the
signature distribution, it is shown that the expected tirh8raling a single signature can be improved and a greedy
procedure to speed up the signature search time and a sonufesult are presented. With highly concentrated
distributions, the improvement in the speed of finding a aigre is shown to be significant. As extensions of this
work one can examine how database operations can be mapp@dsible load scheduling and investigate how a
knowledge of input data can be used to create distributic@ategies that improve performance.

The trend in data processing is the use of parallel procggsirspeed execution even to the level of a single

machine (i.e. multicore architectures). Thus for radamsee and image data processing, the use of divisible load
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theory leads to a better quantitative understanding of gmsiog performance and processing options. Thus the

result in this paper should be of interest for quite some time
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