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Abstract

The optimal partition of a huge, linear (flat) file among processing nodes ina network to minimize the time to

search for signatures of interest in the file is considered. First, an expression is developed for the expected time of

finding thekth signature (including the last signature) ofK signatures for a uniform distribution of signatures in the

file. Secondly, for a single signature we propose processing data in the file in order from that with the most probability

mass (i.e. data with the most a priori likelihood of containing the signature) tothat with the least probability mass

in a “greedy” manner to speed processing time. Applications of this work include radar, sensors, image processing

and search.

I. I NTRODUCTION

A “signature” is a data pattern of interest in a large data file. Signature searching involves finding such signatures

in the voluminous amount of data that can be produced with aerospace technology. This process is complicated

by the possible presence of noise in the data and because sometimes ideal signatures may only be approximate

in actual instances of data. There are natural radar and sensor applications for signature searching. However, as

examples, three representative applications involving image processing are:

1) An automated lander for Mars may process views of the surface for the signatures of good landing locations

(e.g., flat areas, no boulders or trenches, etc...).

2) Archaeologists may process satellite imagery of jungle areas for signatures of overgrown ancient structures.

3) Astronomers may search through images from a space based telescope, such as the Hubble, automatically

cataloging distinctive astronomical features (e.g., spiral galaxies).

In this paper divisible load theory is applied to the problemof signature search time evaluation in flat file

databases. That is, one can view the entire data set as a huge,linear (flat) file that is to be optimally partitioned



2

among processing nodes in a network so that processing time is minimal. Flat (linear) files are a natural choice for

early database implementations though more sophisticateddatabase models are often later used [1].

In this paper after establishing the model and notation (section II), the expected time for finding multiple signatures

in a flat file is developed (section III). In doing so, a uniformdistribution of the signatures within the file is first

assumed. An expression is developed for the expected time for finding the kth signature out ofK signatures,

including the last signature. This work extends the earlierwork of Ko and one of the authors [1]. That work

considered single signatures with a uniform distribution of signature location as well as finding the last signature

of a number of uniformly distributed multiple signatures.

However signatures may not always be uniformly distributed. For instance a satellite may record images of the

ocean in a search and rescue operation. Based on elapsed timeand known ocean currents it may be possible to

associate a probability density function to the current location of a lost individual. As a second example, probability

density functions may also be associated with the positionsof a vessel or a vehicle one has lost contact with. Here

one would also take into account the potential speed of the vessel/vehicle.

In this paper we propose for such situations processing datain order from that with the most probability mass

(i.e. data with the most a priori likelihood to find a signature) to that with the least probability mass in a “greedy”

manner to speed the processing time. Naturally for a small data set on a single computer, time may not be an

issue. We are thus considering voluminous data sets, with significant processing and transmission time, that can be

processed on a number of computers (such as a cluster of computers). We use the term “greedy” in the spirit of

greedy combinatorial optimization algorithms which choose, each algorithm iteration, the combinatorial choice that

yields the largest possible improvement possible in maximizing or minimizing an optimization (objective) function.

In section IV distributing load for greedy processing for the case of a single signature is examined. Greedy

processing for arbitrary location densities for a single signature is considered in section V. An example involving

a truncated normal probability density function appears insection VI. This is followed by conclusions and future

work in section VII.

A. Divisible Load Theory

In this paper we use divisible load analysis because of its tractability and appropriateness for the model considered.

Divisible load theory was introduced by [2] and [3] and, alsoindependently in [4] as “large-grained parallelism”.

Divisble load modeling is concerned with massive computational and communication loads without any precedence

relationships that must be optimally scheduled/allocatedto processors and links. Here optimality is defined as

processing the load in a minimal amount of time for a given scheduling policy and interconnection network topology.

Divisible load theory is a theory of proportions. If one has two processors and a very fast connection between

them, with one processor twice as fast as the other, it makes sense that two thirds of the load should be assigned

to the faster processor and one third of the load to the slowerprocessor to process the load in a minimal amount

of time. Given many processors interconnected by channel speed limited links in some sort of interconnection
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network one has a more complex problem of proportions but onethat can still be solved through linear equations,

mathematical programming or, in some cases, by simple algebraic recursions.

Ever since its introduction, divisible load theory has served as an effective modeling tool for data-intensive

applications [5][6][7][8][9][10] and a large amount of work has been published for various network structures

including linear networks [11], bus networks [12], single and multi level tree-networks [13][14][15], mesh networks

[16][17], hypercubes [18] and arbitrary graphs [19] with different constraints such as different release times,

buffer constraints [20], communication start-up costs andtime-varying network capacity. Also, various distribution

strategies have been studied including multi-installmentof load distribution [21]. In [22], [23] and [24], scheduling

strategies without knowledge of network resources are examined. In [25], signature searching is investigated on bus

networks experimentally. In [1], a uniform distribution ofthe signature in the dataset is assumed as it is a feasible

model of the distribution of signatures in large databases as discussed in [26].

II. SYSTEM MODEL

A. Network Model

P0 P1 P2 PM
L1 L2 LM

Fig. 1. Model of linear daisy chain network with communicationlinks.

P1 P2 P3 PM

L1

L2
LM

P0

L3

Fig. 2. Model of single level tree network with communication links.

We consider signature search time on two network models using divisible load theory. Fig. 1 describes a linear

daisy chain model and, in Fig. 2, a single level tree network model is described. In this second network model, one

root processor,P0, is connected to the rest of the processors via links. In bothmodels, the load is originated fromP0.

Communication links connected toPj are shown asLj . The notation used in this paper is summarized in TABLE

I. Hereαi is the optimal fraction of load distributed to processors and links, calculated with divisible load theory
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K The number of signatures in a data file when there are

multiple signatures

M The number of processors besides the load originating pro-

cessor (root)

B The total number of bins

αi Fraction of entire processing load assigned toith processor

wi Constant that is inversely proportional to the computation

speed of theith processor

zi Constant that is inversely proportional to the communication

speed of theith link

Tcp Computation intensity: time taken to process a unit load on

the ith processor whenwi = 1

Tcm Communication intensity: time taken to communicate a unit

load over linkli whenzi = 1

Si Processing start time of theith processor

βi Fraction of load that is processed duringSi andSi+1

|βi| The size ofβi

l(βi), u(βi) The lower and the upper boundaries ofβi

αi
j The fraction of load distributed toPi taken fromβi

|αi
i| The size ofαi

j

l(αj
i ), u(α

j
i ) The lower and the upper boundaries ofα

j
i

Y Random variable describing the amount of time to find a

single signature contained in a data file

Yk Random variable describing the amount of time to find the

kth of K signatures in a data file

Am Event whenkth of K signatures is found in processorm.

TABLE I

SUMMARY OF NOTATION FOR DIVISIBLE LOAD THEORY

using the rest of system parameters,wi, zi, Tcp and Tcm which are given as constant values. For the scheduling

policy for a single level tree network, we consider only the single-installment case, where communication of the

load to each processor takes place only once for each processor. We also assume that the originating node also

computes the load. It is also assumed that a child can only begin processing its load fraction after it receives it in

it’s entirety (“staggered start”). Furthermore, each processor is equipped with a front-end processor for off-loading

communication, so that communication and computation can take place concurrently. A closed-from solution for

the optimal load distribution fractions (αi) and an expression for the finish time (makespan) appear in [1] and [5]

and are reproduced in the next subsection.

B. Divisible Load Modeling

The solutions for the optimal load fraction to distribute toeach processor and the starting time and the finish

time of processing distributed load by each processor is obtained using recursive equations in [5]. Here optimality
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is defined as the processing of the load in a minimal amount of time for a given interconnection network and given

scheduling policy.

P0

P1

PM

P2

PM-1

S0 S1 S2 S3 SM-1 SM Tfinish

0 z1Tcm

0w0Tcp

0 1 z2Tcm

1w1Tcp

0 1 2 z3Tcm

2w2Tcp

0 M-1 zMTcm

M-1wM-1Tcp

MwMTcp

Fig. 3. Timing diagram for load distribution on a linear daisychain network.

P0

P1

Pm

P2

Pm-1

S0 S1 S2 S3 SM-1 SM Tfinish

1z1Tcm

0w0Tcp

2z2Tcm

1w1Tcp

3z3Tcm

2w2Tcp

MzMTcm

M-1wM-1Tcp

MwMTcp

Fig. 4. Timing diagram for load distribution on a single leveltree network with single installment.

Fig. 3 and Fig. 4 presents timing diagrams of load distribution for a linear daisy chain network model and a

single level tree network model, respectively. It is shown that the processing time of theith processor is given as

αiwiTcp and the load communication time for theith link is the amount of load to transfer multiplied by constant

factorziTcm. For example, in Fig. 4, the amount of time to transferα1 to P1 is given asα1z1Tcm. As the optimality

criterion of divisible load theory states, the computationtime has to be finished at the same instant by all processors,

Tfinish. This criterion is intuitively reasoned in [5] - while distributing arbitrarily divisible loads, one should keep

all the processors utilized until the last moment. If all processors do not stop at the same time, certainly the load can

be transferred from busy processors to idle processor to improve the solution. A rigorous proof of this optimality

criterion for various network models is presented in [5]. With this intuition concerning the nature of an optimal

solution,M recursive equations can be written for the two network models of this paper as,

αiwiTcp = (1−

i
∑

j=0

αj)zi+1Tcm + αi+1wi+1Tcp,

i = 0, 1, . . . ,M − 1,

(1)
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for the linear daisy chain network model and

αiwiTcp = αi+1zi+1Tcm + αi+1wi+1Tcp,

i = 0, 1, . . . ,M − 1,
(2)

for the single level tree network model. Each set of recursive equations, along with a normalization equation, form

a system of(M + 1) linear equations with(M + 1) unknowns,{α0, α1, . . . , αM}. The normalization equation is

given as,
M
∑

i=0

αi = 1, (3)

for both network models. The starting time,Si, of ith processor,Pi, is determined by communication time of the

Network Model S0 Sm (m = 1, . . . ,M)

Linear Daisy Chain 0
m−1
∑

j=0







1−

j
∑

k=0

αk



 · zj+1Tcm





Single Level Tree 0
m
∑

j=1

αj · zjTcm

TABLE II

TIME TO START SEARCHING

load to the previous processors, fromP0 to Pi−1 andPi itself. The starting time for each network model is given

in [1] and is reproduced in TABLE II.

III. E XPECTEDSIGNATURE SEARCHING TIME FOR UNIFORM DISTRIBUTION

A. Problem Description

We define a set of random variables{Xi} that describes the positions ofK signatures in the dataset with the

normalized size1. We assume that the positions of the signatures have a certain distribution,

{Xi} ∼ F, (4)

where F is joint cumulative density function (CDF) defined on[0, 1]K . We denoteYk as a random variable

describing the amount of time to find thekth signature. The objective of this section of this paper is to find the

expectation value ofYk.

B. Uniform Distribution with Single Installment

Let {Xi} be independent and identically distributed random variables with uniform distribution,Xi ∼ U(0, 1), i ∈

[1,K]. The position of thekth signature is given asX(k), the kth order statistics of{Xi}. The E[Yk] can be

expressed as,

E[Yk] =
M
∑

m=0

E[Yk|Am]Pr(Am), (5)
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whereAm denotes the event when thekth signature is found onPm. For the single installment case, we have,

Pr(A0) = Pr(0 ≤ X(k) ≤ α0)

Pr(Am) = Pr(
m−1
∑

j=0

αj ≤ X(k) ≤

m
∑

j=0

αj), m ∈ [1,M ].
(6)

Given that thekth signature is found onPm,

Yk|Am = gm(X(k)|Am)

= (X(k)|Am −
m−1
∑

i=1

αi)wmTcp + Sm,
(7)

wheregm(·) is the transformation function presented in [1], which takes the position of a signature as an argument

and gives the signature search time depending on which processor the signature is found. The search times for the

processors are partially overlapping and the start times are generally increasing in signature position in the file.

Plotted as a graph search time versus position exhibits a characteristic saw tooth type shape. Here,Sm denotes the

starting time ofPm as described in TABLE II and(X(k)|Am −
∑m−1

i=1 αi) is the offset of the position of thekth

signature from the beginning of load fraction distributed to Pm.

The kth order statistics of the uniform distribution follows thewell known beta distribution (see equation (19))

of applied mathematics,

X(k) ∼ B(k,K + 1− k). (8)

If we denotefk,K(x) as the probability density function of thekth signature ofK signatures, given thatX(k)

is onPm, the conditional distribution ofX(k) is given as,

X(k)|Am ∼
fk,K(x)

∫ γm

γm−1

fk,K(x)dx

=
fk,K(x)

Iγm
(k)− Iγm−1

(k)
, γm−1 ≤ γm,

(9)

where the limits of the integrationγm−1 and γm are
∑m−1

j=0 αj and
∑m

j=0 αj , respectively. We setγ−1 = 0 for

convenience.Ix(k) is the shorthand notation forIx(k,K +1− k), which is the cumulative distribution function of

the beta distribution,fk,K(x).

Ix(k,K + 1− k) =

∫ x

0

fk,K(ζ)dζ (10)

It follows Iγ
−1

= I0 = 0. Taking the expectation of equation (7),

E[Yk|Am] = (E[X(k)|Am]−

m−1
∑

i=0

αi)wmTcp + Sm. (11)

From (9),

E[X(k)|Am] =

∫ γm

γm−1

xfk,K(x)dx

Iγm
(k)− Iγm−1

(k)
, (12)
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From (6),

Pr(Am) =

∫ γm

γm−1

fk,K(x)dx

= Iγm
(k)− Iγm−1

(k).

(13)

Using these results into equation (5), we have an expressionfor the expected time for finding thekth signature

out of K signatures:

E[Yk] =

M
∑

m=0

(( ∫ γm

γm−1

xfk,K(x)dx

Iγm
(k)− Iγm−1

(k)
− γm−1

)

wmTcp + Sm

)

∗ (Iγm
(k)− Iγm−1

(k)).

(14)

Single Signature Case

When there is only one signature, we haveK = k = 1. We use the identity,

Ix(a, b) =

a+b−1
∑

j=a

(a+ b− 1)!

j!(a+ b− 1− j)!
xj(1− x)a+b−1−j . (15)

Whena = k = 1 andb = K + 1− k = 1,

Iγm
(1, 1) = γm =

m
∑

j=1

αj . (16)

Then from equation (13)Pr(Am) = Iγm
(k)− Iγm−1

(k) =
∑m

j=0 αj −
∑m−1

j=0 αj = αm. SinceX(1) is uniformly

distributed, whenK = 1, E[X(1)|Am] = (γm+γm−1)/2. Also, (γm+γm−1)/2−γm−1 = (γm−γm−1)/2 = αm/2.

Substituting these results into equation (5),

E[Y1] =
M
∑

m=0

αm

(

αmwmTcp

2
+ Sm

)

=

M
∑

m=0

αm

(

αmwmTcp + 2Sm

2

)

=

M
∑

m=0

αm

(

Tfinish + Sm

2

)

,

(17)

whereTfinish denotes the time when the computation finishes and is given asTfinish = αmwmTcp + Sm. The

expected time of single signature search time is found as theweighted average of midpoints of the processing times

of each processor. This special case confirms the result presented in [1].

Time to find the last signature

If the file contains multiple, uniformly distributed, signatures then the distribution of the position of the last

signature is given as,

X(K) ∼ B(K, 1). (18)

The standard form of the probability density function of thebeta distribution is given as,

f(x; a, b) =
1

B(a, b)
xa−1(1− x)b−1, (19)
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whereB(a, b) is the beta function with the parametersa and b. That is,B(a, b) =
∫ 1

0
ta−1(1 − t)b−1dt. When

k = K, a = K, b = K + 1− k = 1, fK,K(x) = f(x;K, 1) = 1
B(K,1)x

K−1. Also, from equation (15),

Ix(K, 1) = xK (20)

Using these with equation (12), withm being processor number,

E[X(K)|Am] =

∫ γm

γm−1

x
f(x;K, 1)

γK
m − γK

m−1

dx

=

∫ γm

γm−1

x
xK−1

B(K, 1)

1

γK
m − γK

m−1

dx

=

∫ γm

γm−1

xK

B(K, 1)

1

γK
m − γK

m−1

dx

=
K

K + 1

γK+1
m − γK+1

m−1

γK
m − γK

m−1

,

(21)

where we useB(K, 1) = 1
K from B(a, b) =

∫ 1

0
ta−1(1− t)b−1dt. With equations (5), (11), (13) and (20),

E[YK ] =

M
∑

m=0

((

K

K + 1

γK+1
m − γK+1

m−1

γK
m − γK

m−1

− γm−1

)

wmTcp + Sm

)

∗ (γK
m − γK

m−1).

(22)

In [1], the expected search time of the last signature is derived using the concept of an equivalent processor for

the uniformly distributed case. Here, a closed form solution using the beta distribution is derived.
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Fig. 5. Linear daisy chain network: time to find the last signature versus number of processors,K signatures,w = 1, z = 0.2, Tcp =

1, Tcm = 1.

Fig. 5 shows the search time for the last signature when thereareK signatures. The dotted line at the top is

the finish time when the processors do not stop processing after the last signature is found. It can be seen, as

expected, search time can be decreased by adding processorsup to a saturation limit. However, as shown in the
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Fig. 6. Linear daisy chain network: time to find thekth signature versus number of processors,10 signatures,wi = 1, zi = 0.2, Tcp =

1, Tcm = 1.

plot, as more processors are added the expected signature search time is slightly increasing after the search time

is saturated (i.e. saturates at four processors). While the search time through parallel processing is not decreased

because of the communication overhead, when calculating the expected value of the signature search time, the

residual probability mass of finding signatures on the processors that are added after the saturation contributes to

decreasing the expectation value albeit in a negligible way.

Fig. 6 shows the search time for thekth signature when the number of signatures is fixed toK = 10. It can be

observed that before the speed up saturates, the order of expected times to find the signature changes as shown in

the figure.

1
st

2
nd

10
th

3
rd

7th

P0

P1

S0

S1
Tfinish

0 1

1/11 2/11 10/11

Load with 10 

signatures

Timing 

diagram

Fig. 7. Load with 10 uniformly distributed signatures and minitiming diagram for two processors,w = 1, z = 0.2, Tcp = 1, Tcm = 1

The reason for this can be explained with Fig. 7. In the figure,the upper part describes the normalized load with

size 1 with 10 uniformly distributed signatures of those expected locations are shown as vertical lines. With the

same system parameters for generating the plot for Fig. 6, when there are two processors the load distribution is

given as{0.52381, 0.47619}. The bottom part shows a mini timing diagram when the load is distributed with this

proportion and the expected location of signatures. As shown in the timing diagram, the expected time to find the

7th signature is smaller than the expected time of the 3rd signature because of parallel processing. Although this

diagram is not exact as it uses the expected positions, it explains why the order of expected search time may be
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switched as shown in Fig. 6. A similar effect is also pointed out in [1].

This all assumes a load is mapped continuously and sequentially into each load fraction for each processor. The

signatures are not necessarily detected in the original order they appear in the original flat data file. In the case of

signature searching if the original flat file is indexed by time, there may be some concern that signatures spanning

two sides of a load partition boundary are correctly detected. This can be handled by some overlapping of data

fragments near partition boundaries. If this can be handled, then the original load could conceivably be multiplexed

into each processing node sequentially and repetitively sothat signatures are more likely to be detected closer to

their original order if that is important.

IV. GREEDY PROCESSING: DISTRIBUTING LOAD

A. Load Classification based on Starting Time

Consider a search of a massive flat file for a single signature.Fig. 8(a) shows the timing diagram of the computation

time of distributed load for a single level tree network (in fact since the figure only involves computation it is also

appropriate for a linear daisy chain network but for this discussion the figure can be thought of as representing a

single level tree network). The load is distributed in sequential order as it has been assumed in the literature of

divisible load theory, where the position of the fraction has not been considered. In sequential load distribution,

onceαi, the fraction forPi is determined,P0 gets the first part of load andP1 receives the next part of load. The

ranges of the fractions inside the total load are[0, α0] and [α0, α0 + α1], respectably, forP0 andP1.

However, when the likelihood of finding a signature is not uniform, by greedily computing earlier the fractions of

load with a higher likelihood of finding the signatures, the expected time of finding the signature will be shown to

be reduced. Fig. 8(b) shows the classification of load based on their starting time of computation. Hereβi denotes

the fraction of load which is computed betweenSi andSi+1. Sinceβ0 is processed at the earliest time, it should

contain the fraction of load that has highest probability ofcontaining signatures. The fraction,β1, having the highest

probability excludingβ0 is processed betweenS1 andS2. Since bothP0 andP1 process their fraction during that

time period,β1 is separated into two fractions,α1
0 andα1

1, whereαi
j denotes the fraction of load distributed to

Pj from βi. We assume thatβi is from one contiguous region of load and later this assumption will be relaxed.

Note thatβi is divided into i + 1 fractions because there arei + 1 processors computing their fraction between

Si and Si+1. Also, each processor,Pj , receives the load fromM − j different βi. Note that there are events

S0, S1,. . ., SM , Tfinish. Thus there are(M +1)βi, hence each processorPj receives load fromM +1− j different

βi. For example,P0 computes its fraction fromS0 to Tfinish so it receives the fractions from allβi.

In the DLT literature,αi usually means the size of the fraction of the load and its position in load is not

considered. Sinceβi andαi
j are from different parts of total load, their position needsto be taken account as well

as their size.

For the size ofβi andαi
j , we use|βi| and |αi

j | andl(·) andu(·) for the boundaries of the range of fractions. For

notational consistency, we also use|αi| to denote the size of fraction of load distributed using the usual sequential
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(a) Sequential load distribution.
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(b) Load distribution based on starting time.

Fig. 8. Comparison of Load Distribution Schemes.

distribution althoughαi means the same quantity. For summary, our notationβi andαi
j consist of pairs of values,

(|βi|, l(βi)) and (|αi
j |, l(α

i
j)), respectively, andu(·) = l(·) + | · |.

The values of{|αi
j |} and |βi| can be obtained from|αi| which can be obtained from well-known solutions of

the literature of divisible load theory and can be calculated using recursive equations presented in Section II.

From {|αi|}, {|αi
j |} is calculated with the following equations

|αj | =

M
∑

i=j

|αi
j |, j = 0, . . . ,M (23)

with a constraint,

|αi
0|w0Tcp = · · · = |αi

j |wiTcp, i = 1, . . . ,M, j ≤ i (24)

and,
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|β0| = |α0
0| |βi| =

i
∑

j=1

|αi
j |, i = 1, . . . ,M. (25)

From (23),






















|α0|

|α1|
...

|αM−1|

|αM |























=























|α0
0| |α1

0| . . . |αM−1
0 | |αM

0 |

|α1
1| . . . |αM−1

1 | |αM
1 |

...
...

...

|αM−1
M−1| |αM

M−1|

|αM
M |













































1

1
...

1

1























=























|α0
0| |α1

0| . . . |αM−1
0 | |αM

0 |

w0

w1

|α1
0| . . . w0

wM−1

|αM−1
0 | w0

wM

|αM
0 |

...
...

...
w0

wM−1

|αM−1
0 | w0

wM

|αM
0 |

w0

wM

|αM
0 |







































1

1
...

1

















=























1 1 . . . 1 1

w0

w1

. . . w0

wM−1

w0

wM

...
...

...
w0

wM−1

w0

wM

w0

wM







































|α0
0|

|α1
0|
...

|αM
0 |

















(26)

Here, the second equality is from (24).

Taking the inverse of the(M + 1) ∗ (M + 1) matrix,

















|α0
0|

|α1
0|
...

|αM
0 |

















=























1 1 . . . 1 1

w0

w1

. . . w0

wM−1

w0

wM

...
...

...
w0

wM−1

w0

wM

w0

wM























−1
















|α0|

|α1|
...

|αM |

















. (27)

The matrix form is given in (27) for exposition purposes. Theα’s may be solved more efficiently using standard

divisible load theory algebraic recursions in theα’s. Once{|α0
0|, |α

1
0|, . . . , |α

m
0 |} is found, other{|αi

j |}, j ≤ i and

|βi| follows from equations (24) and (25).

|αi
j | = |αi

0|
w0

wj
. (28)

The values of theβi can be determined from equation (25).

When the probability distribution function for the locationof signatures is monotonically increasing or decreasing

as shown in Fig. 9, for allβi, one contiguous fraction suffices to give the optimal range.In the next subsection,

we will give a motivational example with the probability distribution shown in the figure and discuss the case of

arbitrary shapes of distributions in the following section.
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(a) Sequential distribution.
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(b) Distribution based on the probability mass.

Fig. 9. A comparison between the load distribution schemes.

B. Motivational Example

In this example, a linearly increasing probability densityfor the location of a single signature is considered. We

describe a more efficient processing of the load based on the shape. Consider Fig. 9. It shows that the probability

mass of the position of the signature linearly increases toward the end of the load. In the usual sequential load

distribution, the load is partitioned in sequence as shown in Fig. 9(a). The load distributed toα0 is chosen from

the beginning of the whole load of which computation begins at S0. Fig. 9(b) is a distribution scheme based on

the timing diagram of Fig. 8(b), where the fraction of the load containing the larger mass of probability of finding

the signature is distributed toP0 and processed betweenS0 andS1, during the earliest time. The grayed area of

the figures identify the portion of load distributed toP0. In the figure, multiple fractions of load contribute toα0,

the load distributed toP0. Note that, as probability mass monotonically increases, the range ofβi is continuous

and eachβi, i > 0 is partitioned for multiple processors.

The probability distribution function of the signature position shown in the figure is given as

fx(x) = 2x, 0 ≤ x ≤ 1 (29)

For a linear daisy chain network with 5 processors, the{|αm|} and{Sm} is calculated using recursive equations

presented in section II and TABLE II. The calculated values are shown in TABLE III.

In TABLE IV, the size of the fraction of the load distributed to Pj from βi, |αi
j | is calculated using equation

(27) and equation (28). Although the sizes are determined for αi
j and βi, with the aid of the DLT solution, the
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m 0 1 2 3 4

|αm| 0.299 0.229 0.181 0.152 0.139

Sm 0 0.0701 0.117 0.146 0.160

TABLE III

αm AND Sm FOR L INEAR DAISY CHAIN NETWORK WITH w = 1, z = 0.1, Tcm = Tcp = 1

i 0 1 2 3 4

|αi
0
| 0.0701154 0.0472423 0.0290935 0.0138541 0.138541

|αi
1
| 0.0472423 0.0290935 0.0138541 0.138541

|αi
2
| 0.0290935 0.0138541 0.138541

|αi
3
| 0.0138541 0.138541

|αi
4
| 0.138541

|βi| 0.0701154 0.0944847 0.0872806 0.0554162 0.692703

TABLE IV

αi
j , L INEAR DAISY CHAIN NETWORK WITH w = 1, z = 0.1, Tcm = Tcp = 1

range of the fractions of load still needs to be determined. In Fig. 9(b), the shaded area indicates the fractions of

load that need to be distributed toP0. Here, the load distributed toP0 are from multiple parts of the load based

on their their probability mass. Nowα0
0 which is processed betweenS0 andS1 is taken from the part of load with

highest probability mass. The fraction of load processed during the period betweenSM andTfinish, βM , is taken

from the beginning part (leftmost area in Fig. 9) of the original load because of its small probability mass. Since

all the processors process the fraction the load during thatperiod,βM is partitioned and distributed to all of the

processors. As the ranges of fractions are dispersed in the load, the position of each fraction needs to be obtained.

To begin, the range ofβi needs to be obtained and then the positions of allαi
j for j = 1...i are calculated.

l(β4) l(β3) l(β2) l(β1) l(β0)

0 0.692703 0.748119 0.8354 0.929885

TABLE V

LOWER BOUNDARY OFβi WITH L INEAR DAISY CHAIN NETWORK WITH w = 1, z = 0.1, Tcm = Tcp = 1, u(βi) = l(βi) + |βi|

In this example with a monotonically increasing distribution, the range ofβi can be obtained in a straightforward

manner with known|βi| as we can takeβi from the end of the load toward the beginning sequentially asshown in

9(b) and the lower boundaries ofβi
j are calculated and shown in TABLE V. The table shows the lowerboundary

of βi, but the upper boundary can be easily derived with|βi|: u(βi) = l(βi) + |βi|, whereu(·) denotes the upper
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boundary of the load fraction.

i 0 1 2 3 4

l(αi
0
) 0.929885 0.8354 0.748119 0.692703 0

l(αi
1
) 0.882642 0.777213 0.706557 0.138541

l(αi
2
) 0.806306 0.720411 0.277082

l(αi
3
) 0.734265 0.415623

l(αi
4
) 0.554164

TABLE VI

LOWER BOUNDARY OFαi
m , l(αi

m) WITH L INEAR DAISY CHAIN NETWORK WITH w = 1, z = 0.1, Tcm = Tcp = 1,

u(αi
m) = l(αi

m) + |αi
m|

The lower boundary of{αi
m} is shown in TABLE VI. Inside the range ofβi, we partition theβi in the order of

the processor index for simplicity. Therefore,l(α1
0) = l(β1) and l(α1

1) = l(β1) + |α1
0| and other lower boundaries

are obtained similarly. Other ways of partitioningβi are possible but are not considered in this paper.

In order to find the expected signature search time for this distribution scheme, equation (5) can be re-written as

E[Y] =
∑

m=1..M,j≤m

E[Y|Aj
m]Pr(Aj

m), (30)

whereAi
m denotes an event when the signature is found inαi

m. Similarly to equation (7),

Y|Ai
m = gm((X)|Ai

m)

= (X|Ai
m − l(αi

m))wmTcp + Sm,
(31)

wherel(αi
m) denotes the starting position ofαi

m in load.

Taking expectation ofY|Ai
m gives

E[Y|Ai
m] = (E[X|Ai

m]− l(αi
m))wmTcp + Sm. (32)

The conditional expectation of the location of the signature given that it is distributed toPm and fromβi,

E[X|Ai
m] =

∫ u(αi

m
)

l(αi
m
)
xfx(ζ)dζ

∫ u(αi
m
)

l(αi
m
)
fx(ζ)dζ

. (33)

Also, the probability of the eventAi
m is,

Pr(Ai
m) =

∫ u(αi

m
)

l(αi
m
)

fx(ζ)dζ. (34)

Finally, substituting the above equations into (30),

E[Y] =
∑

(m,i)









∫ u(αi

m
)

l(αi
m
)
xfx(ζ)dζ

∫ u(αi
m
)

l(αi
m
)
fx(ζ)dζ

− l(αi
m)



wmTcp + Sm





∗

∫ u(αi

m
)

l(αi
m
)

fx(ζ)dζ.

(35)
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When probability distribution is given as (29), we have,
∫ u(αi

m
)

l(αi
m
)

xfx(ζ)dζ =

∫ l(αi

m
)+|αi

m
|

l(αi
m
)

2x2dx

=
6|αi

m|2l(αi
m) + 6|αi

m|l2(αi
m) + 2|αi

m|3

3

(36)

and
∫ u(αi

m
)

l(αi
m
)

fx(x)dx =

∫ l(αi

m
)+|αi

m
|

l(αi
m
)

2x dx

= 2|αi
m|l(αi

m) + |αi
m|2.

(37)
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Fig. 10. Comparison of expected time to find a single signature between sequential distribution and distribution based on load classification

based on the probability distribution on single level tree network,wi = 1, zi = 0.2, Tcp = 1, Tcm = 1.

By using the calculated values from the above tables, we plotthe expected search time using the usual sequential

distribution in the DLT literature and when the load is classified by probability mass in Fig. 10. As shown in the

figure, when the load is classified by the probability mass andscheduled with consideration of the starting time of

each processor the expected time to find signatures is faster. The finish time of computation is shown in the plot

for comparison.

Similar curves for a linear daisy chain of processors as in Figure 10 could be produced using equations (23)

through (37).

V. GREEDY PROCESSING: ARBITRARY DENSITIES

A. Greedy Load Rearrangement Procedure

In this section, we present a greedy procedure to distributeload based on the distribution of a single signature as

introduced in the previous section. We assume that the probability distribution of the location of a single signature

is known. In this approach, the load is rearranged first in order of the likelihood of finding the signature. Fig. 11

describes the procedure. As shown in Fig. 11(a) and Fig. 11(b), the load is sliced into equal sized bins. Practically
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(a) Sequential load distribution.
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(b) Load partitioned intoB bins.
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F(1)

F(B-1)

F(B)

F(2)

(c) Bins arranged in the order of the

contained probability mass.

1

F

(d) Probability mass approximation for

βi.

Fig. 11. Greedy rearrangement of loads based on ranking.

bins can be rearranged by a server that feeds load to a number of parallel processors according to an a priori

known pattern (distribution) of signature location(s). The choice of bin size should take into account the number

of processors available, the desired solution time and the saturating nature of the search time curves. These bins

are arranged in decreasing order of probability mass (see Fig. 11(c)). A further approximation step (Fig. 11(d)) is

described in the next subsection. Note that once we get as faras the steps of Fig. 11(c) and 11(d) then the results

of the previous section apply.

To be specific,we denoteB the total number of bins and, therefore, the normalized sizeof each bin is1/B. In

the next step, shown in 11(b), the probability mass of each bin is calculated as,

Fn =

∫ bn

bn−1

fx(x)dx, (38)

whereFn denotes the probability mass ofnth bin andbn = n ∗ 1
B . Once the mass of each bin is calculated the

load is sliced and rearranged in the order of the decreasing magnitude of the probability mass as shown in Fig.

11(c). We call this the sorted load.

Finally, the load is distributed according to pre-calculated{βi}. Once the load is sorted according to the probability

mass in the previous step, the range and the size of{βi} does not vary for a given network model with the same

system parameters independently from the probability distribution of signatures. For example, the range and size of
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β0 β1 β2 β3 β4

|βi| 0.0701154 0.0944847 0.0872806 0.0554162 0.692703

u(βi) 0.0701154 0.1646 0.251881 0.307297 1

TABLE VII

|βi| AND UPPER BOUNDARIES OFβi WITH L INEAR DAISY CHAIN NETWORK FORSCALED NORMAL DISTRIBUTION WITH w = 1, z = 0.1,

Tcm = Tcp = 1

{βi} can be calculated for the linear daisy network withw = 1, z = 0.1 andTcm = Tcp = 1 as shown in TABLE

VII. The size ofβi are obtained using (23), (24) and (25). The range ofβi is taken from the beginning of the sorted

load. Therefore, the upper boundaries shown in TABLE VII arethe values in the sorted load, not in the original

load.

B. Approximation of Expected Signature Search Time

Fig. 11(d) illustrates the approximated probability mass assigned to the portion of load with the same ranking.

Since the exact distribution for a portion of the load with the same ranking is not specified, the actual calculation

of the expected search time can only be approximated. The approximated value of the expected time of signature

search time is given as,

Ê[X] =

N
∑

i=1

Si−1 + Si

2
∗ F̂βi (39)

whereF̂i denotes the approximated probability mass calculated for{βi}.

F̂βi = F(k−1)
(bk − l(βi))

1/B
+

p
∑

j=k

F(k) + F(p+1)
(u(βi)− bp)

1/B
(40)

Here bk−1 ≤ l(βi) ≤ bk and bp < u(βi) ≤ bp+1. Here the b’s are the integration limits of equation (38). Here

F(k) is the probability mass of thekth bin after sorting.

Intuitively, this equation shows that the approximated expected signature search time is the weighted sum of the

mid points of processing time of{βi} with their approximated probability masses.

VI. EVALUATION AND ANALYSIS

As an example, assume that the distribution of the location of signature time is given as a truncated normal

distribution on the range[0, 1] centered at the1/2. The distribution can be written as,

f(x;µ, σ, a, b) =
1
σφ(

x−µ
σ )

Φ( b−µ
σ )− Φ(a−µ

σ )
(41)
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Fig. 12. Greedy rearrangement of loads based on ranking for a truncated normal distribution.

Hereφ(·) is the probability density function of the standard normal distribution, andΦ(·) is its cumulative distribution

function. Also,a andb denote the limits of the range of truncation, andµ denotes the average andσ is the standard

deviation value. Witha = 0, b = 1 andµ = 1/2,

f(x; 1/2, σ, 0, 1) =
1
σφ(

x−1/2
σ )

Φ( 1
2σ )− Φ(− 1

2σ )
, (42)

This distribution is shown in Fig. 12(a). Following the procedure presented in the previous section, the load is

sliced into bins as shown in Fig. 12(b) and rearranged based on the probability mass of the bins as shown in Fig.

12(c). The figures are based on 30 bins being used. Finally, the approximated probability mass ofβi is plotted in

Fig. 12(d).

Fig. 13(a) shows the expected signature search time with andwithout load arrangement procedure with various

standard deviations,σ. The figure was computed using (39) and (40) and the definitionof speedup. Fig. 13(b)

shows the performance improvement in terms of percentage, where the speed up is defined as the ratio of signature

search time on one processor to signature search time onN processors. Naturally speedup is greater than one but
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(b) Speed up of signature search time.

Fig. 13. Performance improvement (%) through greedy load rearrangement for variousσ.

is often less thenN because of inefficiencies in parallel processing. “Speedup” is a common parallel processing

advantage performance metric. As shown in the figures, as theprobability of finding a signature is concentrated in

a smaller area (lowerσ value) the performance gain increases.

VII. C ONCLUSION AND FUTURE WORK

In the first part of this work, closed form solutions of the expected search time of thekth signature ofK signatures,

with a uniform distribution of signature locations, are derived. In the latter part, with a prior knowledge of the

signature distribution, it is shown that the expected time of finding a single signature can be improved and a greedy

procedure to speed up the signature search time and a simulation result are presented. With highly concentrated

distributions, the improvement in the speed of finding a signature is shown to be significant. As extensions of this

work one can examine how database operations can be mapped todivisible load scheduling and investigate how a

knowledge of input data can be used to create distribution strategies that improve performance.

The trend in data processing is the use of parallel processing to speed execution even to the level of a single

machine (i.e. multicore architectures). Thus for radar, sensor and image data processing, the use of divisible load
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theory leads to a better quantitative understanding of processing performance and processing options. Thus the

result in this paper should be of interest for quite some time.
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