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Abstract—In cloud computing, with full control of the underlying infrastructures, cloud providers can flexibly place user jobs on suitable
physical servers and dynamically allocate computing resources to user jobs in the form of virtual machines. As a cloud provider,
scheduling user jobs in a way that minimizes their completion time is important, as this can increase the utilization, productivity, or profit
of a cloud. In this paper, we focus on the problem of scheduling embarrassingly parallel jobs composed of a set of independent tasks
and consider energy consumption during scheduling. Our goal is to determine task placement plan and resource allocation plan for
such jobs in a way that minimizes the Job Completion Time (JCT). We begin with proposing an analytical solution to the problem of
optimal resource allocation with pre-determined task placement. In the following, we formulate the problem of scheduling a single job
as a Non-linear Mixed Integer Programming problem and present a relaxation with an equivalent Linear Programming problem. We
further propose an algorithm named TaPRA and its simplified version TaPRA-fast that solve the single job scheduling problem. Lastly,
to address multiple jobs in online scheduling, we propose an online scheduler named OnTaPRA. By comparing with the start-of-the-art
algorithms and schedulers via simulations, we demonstrate that TaPRA and TaPRA-fast reduce the JCT by 40%-430% and the
OnTaPRA scheduler reduces the average JCT by 60%-280%. In addition, TaPRA-fast can be 10 times faster than TaPRA with around
5% performance degradation compared to TaPRA, which makes the use of TaPRA-fast very appropriate in practice.
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1 INTRODUCTION

In recent years, we have witnessed a dramatic increasing
use of cloud computing techniques as it enables on-demand
provisioning of computing resources and platforms for
users [1]. In a cloud system, users can easily access the
required computing resources, while the underlying infras-
tructure (i.e., data centers composed of physical servers,) is
hidden from them and user jobs are executed on Virtual
Machines (VMs) whose location is unknown from these
users. By deploying the applications or executing the jobs
in a cloud, cloud users are able to avoid the cost and
responsibility of purchasing, setting up, and maintaining
the hardware and software infrastructures and thereby focus
more on their missions [2].

In contrast to cloud users’ unawareness of the infras-
tructures hidden behind the cloud, cloud providers have
full control of the infrastructure. By widely using modern
virtualization techniques, cloud providers can flexibly place
jobs on suitable physical servers and dynamically allocate
computing resources to user jobs in the form of VMs while
keeping the provisioned VMs isolated and interference free
from each other. As a large number of user jobs can be simul-
taneously executed in a cloud, one of the cloud provider’s
important responsibilities is to properly schedule these jobs
and determine an appropriate sharing of resources among
these user jobs.

As a cloud provider, scheduling user jobs in a way that
minimizes their completion time is very important: With
smaller job completion times, the cloud can execute more
user jobs; For public clouds, this means generating more
profit, while for private clouds, this means higher through-
out and therefore usually higher productivity. However,
scheduling jobs while minimizing their completion time can
be a challenging problem in clouds.

Fig. 1. Job Execution Model.

In this paper, we study the job scheduling problem and
focus on scheduling embarrassingly parallel jobs which are
composed of a set of independent tasks with very minimal
or no data synchronization. A large number of applications
belong to this type of jobs. Examples include distributed re-
lational database queries, Monte Carlo simulations, BLAST
searches, parametric studies, and image processing applica-
tions such as ray tracing [3]. To execute an embarrassingly
parallel job, each of its tasks is placed on a physical server
and executed in a VM created for that task. The completion
time of this job is the completion time of the last finished
task, i.e., the makespan of that set of tasks. Fig. 1 shows the
execution model of an embarrassingly parallel job. Schedul-
ing such a job includes determining a task placement plan
that indicates the servers to execute each task in the job
and a resource allocation plan that indicates the amount of
computing resources allocated to each task.

To schedule embarrassingly parallel jobs with the goal
of minimizing the Job Completion Time (JCT), we need to
answer three questions:
1) How to optimally allocate computing resources to a job

with pre-determined task placement plan?
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2) How to place tasks and allocate resources for one job?
3) How to address multiple jobs in online scheduling?
Naturally, these three questions are in a progressive relation-
ship. By answering the previous question, we essentially
reduce the complexity of the later question. While several
approaches has been proposed to schedule independent
tasks in data centers [4]–[11], none of them consider task
placement and resource allocation together. Motivated by
this, in this paper, we focus on the problem of scheduling
embarrassingly parallel jobs and propose solutions to the
three questions shown above.

Moreover, we consider the energy consumption for
executing a job during the scheduling procedure. Along
with the rapidly increasing number of cloud users, more
and more large-scale data centers comprising tens of thou-
sands of servers are built recently, which leads tremendous
amount of energy consumption with huge cost [12]. High
energy consumption also reduces system reliability and has
negative impacts on the environment [13]. Consequently,
reducing the total energy consumption of a cloud is highly
desirable. While some approaches [14]–[16] with the objec-
tive of reducing the total energy consumption of a cloud
have been proposed, in this paper, we focus on scheduling
jobs with the goal of minimizing their completion time but
constrain the total energy consumed for executing a job.

In summary, our main contributions include
• We formally define the problem of scheduling embarrass-

ingly parallel jobs. We derive a job energy consumption
model based on the existing VM power model proposed
by other researchers and then formulate the energy con-
sumption constraint. We also formulate the resource avail-
ability constraints which limit the amount of resources
that can be used by a job. (Section 3)

• We formulate the problem of optimal resource allocation
with pre-determined task placement (OptRA) as a convex
optimization problem and present an analytical solution
of this problem. (Section 4.1)

• We study the problem of scheduling a single embar-
rassingly parallel job (SJS) and formulate it as a Non-
linear Mixed Integer Programming (NLMIP) problem. We
propose a relaxation in which the tasks are assumed to be
divisible and transform it to a Linear Programming (LP)
problem. (Section 4.2)

• We propose an algorithm named Task Placement and
Resource Allocation (TaPRA) and its simplified version
TaPRA-fast that solve the SJS problem based on the solu-
tion of the relaxed problem. (Section 4.3)

• We propose an online scheduler named OnTaPRA to
address multiple jobs in online scheduling. The OnTaPRA
scheduler periodically schedules all jobs in the waiting
queue by using Shortest Job First (SJF) scheduling policy.
For work conservation, it distributes residual capacity of
servers to running tasks. (Section 5)

• We evaluate the performance of the proposed TaPRA algo-
rithm and OnTaPRA scheduler through simulations. In of-
fline simulations, we compare the TaPRA algorithm with
some existing algorithms. The simulations results show
that the TaPRA and TaPRA-fast algorithm can achieve
40%-430% smaller JCT than the existing algorithms. In
online simulations, we compare the OnTaPRA scheduler
with some existing schedulers. The simulations results

Fig. 2. Example of scheduling a embarrassingly parallel job in cloud.

show that the OnTaPRA scheduler can achieve 60%-280%
smaller average JCT that the existing schedulers. In ad-
dition, the results also show that TaPRA-fast can be 10
times faster than TaPRA with around 5% performance
degradation compared to TaPRA, which makes the use
of TaPRA-fast very applicable in practice (Section 6)

1.1 An Example

To illustrate the job scheduling problem, consider the ex-
ample shown in Fig. 2, in which we need to schedule an
embarrassingly parallel job composed of four tasks (t1, t2,
t3, t4) onto three servers (s1, s2, s3) in a data center. Let the
available computing resources (for example, the number of
CPU cores) on three servers be (35, 10, 30) and load of the
four tasks be (100, 200, 400, 500). 1 We further consider a re-
source availability constraint: the total computing resources
allocated to this task set in each rack cannot exceed 30. Fig. 2
also shows two schedules: Schedule A with JCT of 33.33
and Schedule B with JCT of 20. Schedule B has smaller JCT
because it proportionally allocates computing resources to
tasks. In this way, the maximum task execution time, i.e.,
the JCT, is efficiently reduced. From this example, we can
see that task placement plan and resource allocation plan
together determine the JCT. We can achieve the minimum
JCT only if we find out the optimal solution on both of them.

However, when the problem scale is large in practice,
there exists a vast amount of possible task placement plans
and for each placement plan there are very many ways to
allocate resources. Searching for the optimal solution in such
a huge solution space is not an easy problem to solve. This
problem becomes even more complex, when we consider
the energy consumption limitation.

2 RELATED WORK

A significant amount of research has focused on task/job
scheduling and resource allocation in clouds. In this section,
we discuss some of the research works that we consider
most relevant to our problem from the following aspects:
(1) Approaches focusing on scheduling performance, like

1. We temporarily omit the meaning of quantified computing power
and task load and simply assume that the execution time of a task is
inversely proportional to the amount of resources allocated to the task.
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response time, makespan, and completion time; (2) Energy-
aware scheduling approaches which set the scheduling goal
as minimizing energy consumption or consider the energy
consumption during scheduling; (3) Online scheduling ap-
proaches which focus on proposing an online scheduler or
scheduling policy.

Approaches Focusing on Scheduling Performance. This
type of approaches mainly focus on optimizing the time-
related performance, like response time, makespan or com-
pletion time [4]–[11]. Comprehensive surveys about task
scheduling and resources scheduling in this category can
be found in [4], [5]. Zuo et al. [6] propose a multi-objective
Ant Colony Algorithm to solve the task scheduling prob-
lem. This algorithm considers the makespan and the user’s
budget costs as constraints of the optimization problem.
Tang et al. [8] propose a self-adaptive scheduling algorithm
for MapReduce jobs. The algorithm decides the start time
point of each reduce task dynamically according to each
job context, including the task completion time and the
size of map output. Tsai et al. [9] propose a hyper-heuristic
scheduling algorithm which dynamically determines which
low-level heuristic is to be used in find better candidate
solutions for scheduling tasks in cloud. Verma et al. [10]
propose an improved Genetic Algorithm which uses the
outputs of Max-Min and Min-Min as initial solutions to
scheduling independent tasks. Gan et al. [11] propose a
Genetic Simulated Annealing algorithm to optimize the
makespan of a set of tasks, in which Simulated Annealing is
used to optimize each offspring generated by the Genetic al-
gorithm. However, all these proposed approaches consider
the computing resources allocated to each task as static.
Without benefiting from dynamic resource allocation, the
efficiency of these approaches in solving the task scheduling
problem may be diminished.

Energy-aware Task Scheduling. Energy-aware task
scheduling has also been given great attention [16]–[21].
Shen et al. [17] propose a genetic algorithm to achieve adap-
tive regulations for different requirements of energy and
performance in cloud tasks. In this algorithm, two fitness
functions for energy and task completion time are designed
for optimizations. Zhao et al. [18] propose an energy and
deadline aware task scheduling method which models the
data-intensive tasks as binary trees.The proposed method
aims to schedule Directed Acyclic Graph (DAG)-like work-
flows. In contrast, in this paper, we focus on embarrassingly
parallel jobs composed of independent tasks. Hosseinimot-
lagh et al. [19] propose a VM scheduling algorithm that
allocates resources to VMs in a way that the optimal energy
level of the host of those VMs is reached. The proposed algo-
rithm assumes that the VMs are pre-mapped onto a host and
focuses on allocating resources to the VMs. In contrast to this
algorithm, our algorithms determine the task placement.
Wu et al. [20] develop a scheduling algorithm for the cloud
datacenter with a DVFS technique. The algorithm schedules
one job at a time and does not consider about co-scheduling
between jobs. In addition, this algorithm pre-defines several
frequency ranges with corresponding voltage supply and
determines a specific range for the job. Mhedheb et al. [16]
propose a thermal-aware VM scheduling mechanism that
achieves both load balance and temperature balance with

the final goal of reducing energy consumption. Mhedhed et
al. analyze the impact of VM migration on energy consump-
tion and utilize the VM migration technique in the proposed
mechanism to lower the host temperature. Xiao et al. [21]
propose a system that dynamically combine VMs running
different types of workloads together to improve the overall
utilization of resources and reduce the number of running
servers, which reduces the energy consumption. The goal of
these introduced energy-aware approaches is to minimize
the energy consumption in clouds. In contrast, in this paper,
we consider the energy consumption as a constraint and set
our goal as minimizing the job completion time.

Online Scheduling. How to address multiple tasks/jobs in
online scheduling is also an important question which has
attracted a lot attention [13], [22]–[25] Shin et al. [22] modify
the conservative backfilling algorithm by utilizing the earli-
est deadline first and largest weight first policies to address
the waiting jobs according to their deadline. The objective
of this algorithm is to guarantee the job deadline while
improving resource utilization, which is different from the
our objective in this paper. Zhu et al. [13] design a rolling-
horizon scheduling architecture for real-time task schedul-
ing in clouds, which includes an energy consumption model
and an energy-aware scheduling algorithm. However, in the
proposed architecture, the tasks are scheduled separately.
In contrast, in this paper, we addresses tasks belonging to
one job together to minimize the job compltion time. Liu
et al. [23] propose an online scheduler that allows VMs to
obtain extra CPU shares when blocked by I/O interrupted
recently and thereby reduces the energy-efficiency losses
caused by I/O-intensive tasks. Ge et al. [25] propose an GA-
based task scheduler which evaluates all the waiting tasks
and uses a genetic algorithm to schedule these tasks with
the goal of achieving better load balance.

3 PROBLEM DEFINITION

In this paper, we consider scheduling jobs composed of in-
dependent tasks in a data center comprising heterogeneous
servers. To schedule such a job, we are required to place
each of its tasks onto a server and launch a VM with certain
amount of computing capacity to execute that task. We now
introduce input, output, objective function and constraints
considered in the problem.

3.1 Input

The input contains user jobs submitted by users at different
times and a data center with a set of heterogeneous servers
used to execute those jobs.

Job. A job J comprise a set of independent tasks. It is
defined as J = {T1, T2, . . . , TN} in which Ti is the ith
independent task of that job. The load Loadi of the task
Ti is defined as the execution time of Ti, when it is placed
on a unit-efficiency server and executed on a VM with unit
computing capacity.

Data Center. The data center used to execute user jobs is
defined as DC = {S1, S2, . . . , SM} in which Sj is the jth
server in the data center. The available computing resources
of server Sj is denoted by Csj .



4

Due to the heterogeneity of servers, different severs may
have different efficiencies of executing the same task [26].
To model such heterogeneity, we denote the efficiency of
executing task Ti on server Sj by λij (λij ∈ (0, 1]). Corre-
spondingly, when a task Ti is placed on a server Sj with
efficiency λij and executed on a VM with computing power
cti , the execution time of Ti, denoted by etti , is

etti =
Loadi
λijcti

. (1)

3.2 Output
For each input job, the output contains a task placement
plan and a resource allocation plan.
Task placement plan. A task placement plan indicates the
servers to execute the input job’s tasks. We use binary
variables xij to present such a plan. Specifically, if task Ti is
placed on server Sj , the value of xij is 1; otherwise its value
is 0.
Resource allocation plan. A resource allocation plan in-
dicates the amount of computing resources allocated to
each task, i.e., the computing capacity allocated to the VM
created to execute the tasks. We denote the set of VMs
by VM = {VMt1 , . . . , V MtM }, where VMti is the VM
created to execute task Ti, and denote the resource allocation
plan by ~c = {ct1 , . . . , ctN } in which cti is the amount of
computing resources allocated to VMti .

3.3 Objective

Single job scheduling. When scheduling a single job, our
objective is to determine a task placement plan and a re-
source allocation plan while minimizing the job completion
time (JCT). Because a job is not completed until all its tasks
finish, the JCT essentially equals the completion time of the
last finished task. Let the completion time of task Ti be etti ,
based on Equation (1), the objective function is

Minimize max
i=1,...,N

{
etti

∣∣ etti =
Loadi∑M

j=1 xijλijcti

}
. (2)

Online scheduling. In online scheduling, multiple jobs ar-
rive in a time sequence and we are required to schedule all
these jobs. In this situation, our objective is to minimize the
average completion time of these jobs, i.e., the average JCT.

3.4 Constraints
3.4.1 Task Placement Constraints
Because each task should be placed on only one server, we
have the following constraint:

M∑
j=1

xij = 1, i = 1, . . . , N. (3)

3.4.2 Resource Availability Constraints
When allocating resources to the tasks of a job, there may
be limitations on the total amount of computing resource
that can be allocated to that job on a server or a subset of
servers. Such constraints are usually enforced by system ad-
ministrator to maintain proper sharing of resources among

TABLE 1
List of constants and variables.

Constants
Name Description
J the input embarrassingly parallel job
Ti the ith independent task of job J

Loadi the load of the task Ti
Sj the jth server in the data center
Csj the available computing resource on server Sj

VMti the VM executing task Ti
αV Mti

the power model constant of VMti

λij the efficiency of executing task Ti on server Sj

Ajk the coefficient in the kth availability constraint for Sj

Bk the total allowed resources in the kth availability constraint
Xij the determined placement between task Ti and server Sj

EMAX the maximum allowed energy consumption
Variables

Name Description
xij the placement relationship between task Ti and server Sj

cti the amount of computing resources allocated to Ti
csj the total amount of resources allocated to the job on Sj

etti the completion time of task Ti
lij the load of sub-task Tij
ctij the amount of resources allocated to sub-task Tij

multiple jobs belong to different users. We can formulate
these constraints as

M∑
j=1

Ajk

N∑
i=1

xijcti ≤ Bk, k = 1, . . . , R. (4)

where
∑N
i=1 xijcti is the total computing capacity allocated

to the input jobs on server Sj ;Ajk is the coefficient in the kth
constraint; Bk is the total resources allowed to be allocated
in the kth constraint.

3.4.3 Energy Consumption Constraints

As the energy cost can contribute a significant part of
operating cost of a data center [12], the system administrator
may also limit the total amount of energy that can be
consumed by a job. To formulate this energy consumption
constraint, we first consider the VM power model and
energy consumption model.

VM Power Model. Power modeling for VMs in data centers
has attracted significant attention [27]–[30]. While both lin-
ear and non-linear power model are proposed, the linear
model is the most widely used method in the estima-
tion of power consumption [30], whose accuracy has been
proved [27]–[29]. The linear VM power model have also
been used in many existing task scheduling and resource
allocation approaches [2], [13], [17], [31].

In the linear model, the total power consumption Ps of
a physical server is composed of the static power Pstatic
and the dynamic power Pdynamic. While Pstatic is usually
constant regardless of whether VMs are running or not, as
long as the server is turned on, Pdynamic is consumed by
VMs running on the server. Suppose that n VMs are running
on a server, then the server power consumption Ps is

Ps = Pstatic +

n∑
i=1

PVMi
, subject to

n∑
i=1

cVMi
≤ Cs, (5)

in which Cs is the total computing capacity of the server;
PVMi

and cVMi
are the power consumption and the com-

puting capacity of VM i. PVMi
can be further decomposed
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into power of components such as CPU, memory, disk and
IO devices [28], thus it can be calculated as

PVMi
= PCPUVMi

+ PMemory
VMi

+ PDiskVMi
+ P IOVMi

. (6)

In this paper, we mainly focus on the power consumption
of CPU utilized by a VM, because the CPU utilization of a
VM is directly related to the execution time of tasks running
on that VM. Therefore, we approximate the VM power
consumption by the CPU power consumption of a VM,
following similar setting in existing work [2]. A utilization
based VM power model then is

PVMi
= PCPUVMi

= αVMi
· cVMi

, (7)

where PVMi is the power consumption of VMi, cVMi is the
amount of computing resources allocated to the VM and
αVMi is model specific constant, following similar model
proposed in previous work [28], [30].

Based on the VM power model (7), the energy consumed
by VM VMti , denoted by EVMti

, is

EVMti
= PVMti

·etti = αVMti
cti ·etti =

αVMti
Loadi∑M

j=1 xijλij
. (8)

Let Etotal denote the total energy consumption of the input
job and EMAX denote the maximum energy consumption
allowed, the energy consumption constraint is

Etotal =

N∑
t=1

EVMti
=

N∑
i=1

αVMti
Loadi∑M

j=1 xijλij
<= EMAX . (9)

4 SCHEDULING A SINGLE JOB WITH INDEPEN-
DENT TASKS

In this section, we focus on scheduling a single job. We start
from its sub-problem: Optimal Resource Allocation with
Pre-determined Task Placement (OptRA).

4.1 Optimal Resource Allocation with Pre-determined
Task Placement (OptRA)
In the OptRA problem, the task placement plan has already
been determined, i.e., the value of xij is known. For conve-
nience and clarity, we use Xij to indicate the determined
task placement plan. Our goal is to allocate computing
resources to these tasks while minimizing the JCT.

With the determined task placement, the objective (2)
becomes

Minimize max
i=1,...,N

etti ∣∣ etti =

Loadi∑M
j=1Xijλij

cti

 . (10)

The resource availability constraints (4) become

N∑
i=1

M∑
j=1

XijAjkcti ≤ Bk, k = 1, . . . , R. (11)

We can then formulate the OptRA problem as
OptRA

Minimize max
i=1,...,N

{
etti

∣∣ etti =
Lti
cti

}
, (12)

Subject to

N∑
i=1

Pikcti ≤ Bk, k = 1, . . . , R, (13)

cti ≥ 0, i = 1, . . . , N, (14)

Lti =
Loadi∑M
j=1Xijλij

, Pik =

M∑
j=1

XijAjk. (15)

Remarks:

• While Lti and Pik are used to simplify the formulation
of the problem, Lti also stands for the equivalent load
of Ti considering the execution efficiency of the server
on which Ti is placed; Pik is the coefficient of Ti in the
kth availability constraint.

• Task placement constraints (3) and energy consumption
constraints (9) are not included in OptRA, as they
are only related with the variable xij whose value is
already determined in the above problem.

We observe that the constraints (13) and (14) are all affine
on cti . Meanwhile, the function etti is convex, because its
second derivative is nondecreasing when ci is larger than 0.
Therefore, according to [32], the objective function, i.e., the
pointwise maximum function of etti , is also a convex func-
tion. As a result, OptRA is a convex optimization problem.

4.1.1 Analytical Solution

While existing convex optimization algorithms [32] can be
used to solve the OptRA problem, we develop an analytical
solution which is more efficient. Specifically, we define a
vector ~c∗ = {c∗1, c∗2, . . . , c∗N} with

c∗i = min
k∈Ri

{
Lti∑N

j=1 PjkLtj
Bk

}
, i = 1, . . . , N, (16)

where Ri is the set of constraints in which the coefficient
of variable ci is not zero. We now show that this vector ~c∗

is an optimal solution of the OptRA problem. We have the
following lemma and theorem.

Lemma 1. Assume that for the vector ~c∗ defined in Equa-
tion 16, task p has the largest finish time, i.e., et∗p = Ltp/c

∗
p =

maxi=1,...,N{et∗i }. Also assume that c∗p obtains the minimum
value when constraint u is considered,

c∗p = min
k∈Rp

{
Ltp∑N

j=1 PjkLtj
Bk

}
=

Ltp∑N
j=1 PjuLtj

Bu. (17)

then every ci subjected to constraint u, i.e., Piu 6= 0, obtains the
minimum value when constraint u is considered, i.e.,

c∗i = min
k∈Ri

{
Lti∑N

j=1 PjkLtj
Bk

}
=

Lti∑N
j=1 PjuLtj

Bu. (18)

Proof. To begin with, assume that there exists a variable
c∗q with Pqu 6= 0, which gets the minimum value when
constraint v (other than constraint u) is considered, i.e.,

c∗q = min
k∈Rq

{
Ltq∑N

j=1 PjkLtj
Bk

}
=

Ltq∑N
j=1 PjvLtj

Bv. (19)
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Next, we define c′q as

c′q =
Ltq∑N

j=1 PjuLtj
Bu. (20)

Based on Equations (19) and (20), we have

et′q =
Ltq
c′q

<
Ltq
c∗q

= et∗q . (21)

On the other hand, based on Equation (17), we have

et∗p =
Ltp
c∗p

=

∑N
j=1 PjuLj

Bu
=
Ltq
c′q

= et′q. (22)

Now using the Inequality (21) and Equation (22), we get

et∗p = et′q < et∗q , (23)

which conflicts with the assumption that et∗p =
maxi=1,...,N{et∗i }. Therefore, there does not exist a variable
c∗q and a constraint v that satisfies the Equation (19). As a
result, we have proved the lemma.

Theorem 1. The vector ~c∗ defined in Equation 16 is an optimal
solution of the OptRA problem.

Proof. Assume that et∗p = Ltp/c
∗
p = maxi=1,...,N{et∗i } and

c∗p obtains the minimum value when constraint u is consid-
ered. Then, according to Lemma 1, there exists

c∗i =
Lti∑N

j=1 PjuLj
Bu, ∀i that Pju 6= 0. (24)

Based on this equation, for every i with Piu 6= 0, we have

et∗i =
Lti
c∗i

=

∑N
j=1 PjuLtj

Bu
=
Ltp
c∗p

= et∗p. (25)

Now assume that instead of ~c∗, a vector ~c′ is the optimal
solution of the problem. Also assume that et′q = Ltq/c

′
q =

maxi=1,...,N{et′i}. Together with Equation (25), we have

et′i ≤ et′q < et∗p = et∗i , ∀i that Piu 6= 0. (26)

Naturally, we have

c′i > c∗i , ∀i that Piu 6= 0. (27)

On the other hand, from Equation (24), we can get

N∑
i=1

Piuc
∗
i = Bu. (28)

Putting Inequity (27) and Equation (28) together, we have

N∑
i=1

Piuc
′
i > Bu, (29)

which conflicts with the assumption that ~c′ is a feasible solu-
tion. As a result, there does not exist a feasible solution that
is better than ~c∗. Therefore, the vector ~c∗ defined in Equation
(16) is an optimal solution of the OptRA problem.

Note that the analytical solution (16) has important
usage when scheduling a single job. It essentially reduces
the dimension of the problem: For any determined task
placement plan, we can use Equation (16) to calculate the
corresponding optimal resource allocation plan.

4.2 Formulation of the Single Job Scheduling Problem
and Its Solvable Relaxation
We now study the Single Job Scheduling (SJS) problem in
which we are required to determine the task placement
plan and resource allocation plan for an input job. The task
execution model of the input job has been shown in Fig. 1.

Based on the objective and constraints introduced in
Section 3, the SJS problem can be formulated as

SJS

Minimize max
i=1,...,N

{
etti

∣∣ etti =
Loadi∑M

j=1 xijλijcti

}
, (30)

Subject to

N∑
i=1

αVMti
Loadi∑M

j=1 xijλij
≤ EMAX , (31)

M∑
j=1

Ajk

N∑
i=1

xijcti ≤ Bk, k = 1, . . . , R, (32)

M∑
j=1

xij = 1, i = 1, . . . , N, (33)

xij = 0 or 1, i = 1 . . . , N, j = 1, . . . ,M, (34)
cti ≥ 0, i = 1, . . . , N. (35)

Remarks:
• The objective (30) and constraints (31)-(33) are formally

defined in Section 3.
• Constraints (34) and (35) are domain constraints.
Naturally, the SJS problem is a NLMIP problem which is

hard to solve directly. To solve this problem, we first propose
a solvable relaxation and then determine a solution of the
SJS problem based on the solution of the relaxation.

4.2.1 A Relaxation of the SJS problem and An Equivalent
Linear Programming Problem
Because the SJS problem is a NLMIP problem, a straightfor-
ward relaxation is relaxing the binary variable xij to a real
variable. However, due to the term xijcti , this relaxation is
a NLP problem which is still hard to solve.

To obtain a solvable relaxation, we assume that the
tasks of the input job are divisible [33]–[35] and each task
Ti is divided into M sub-tasks and placed on M servers
respectively. Let tij denote the sub-task of Ti placed on
server Sj and let lij denote the load of tij . A VM is then
created for each sub-task placed on each server. Fig. 3 shows
this execution model.

Furthermore, let VMtij denote the VM created by server
Sj to execute sub-task tij and let ctij denote the amount
of resources allocated to VMtij . The SJS problem is now
relaxed to a problem of determining the value of lij and
ctij with the goal of minimizing the JCT. We name this new
problem as SJS-Relax-Divisible.

The execution time of sub-task tij , denoted by ettij , is

ettij =
lij

λijctij
. (36)
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Fig. 3. Job Execution Model for SJS-Relax-Divisible.

The energy consumed for executing tij is

Etij = PVMtij
·ettij = αVMtij

ctij ·ettij = αVMtij
· lij
λij

. (37)

The total resources allocated by server Sj , i.e., csj , is

csj =

N∑
i=1

ctij . (38)

Based on the above equations, the SJS-Relax-Divisible
problem can be formulated as
SJS-Relax-Divisible

Minimize max
i=1,...,N
j=1,...,M

{
ettij

∣∣ ettij =
lij

λijctij

}
, (39)

Subject to

N∑
i=1

M∑
j=1

αVMtij
· lij
λij
≤ EMAX , (40)

M∑
j=1

Ajk

N∑
i=1

ctij ≤ Bk, k = 1, . . . , R, (41)

M∑
j=1

lij = Loadi, i = 1, . . . , N, (42)

ctij ≥ 0, lij ≥ 0, i = 1, . . . , N, j = 1, . . . ,M. (43)

Remarks:
• The objective (39) is to minimize the maximum exe-

cution time of all sub-tasks, which also minimizes the
completion time of the input job.

• Constraints (40) and (41) are energy consumption con-
straints and resource availability constraints.

• Constraints (42) ensure that the total load of all sub-
tasks of Ti equals to the load of task Ti, and constraints
(43) are domain constraints.

We observe that in the SJS-Relax-Divisible problem, all
constraints are affine and the objective is the pointwise
maximum of NM ratios of affine functions. Therefore, this
problem is a Generalized Linear Fractional Programming
(GLFP) problem, which can be solved as a sequence of LP
feasibility problems [32].

However, solving a GLFP problem can be time-

consuming as it needs to solve a set of LP feasibility
problems. To avoid this, we further transform the SJS-Relax-
Divisible problem into an equivalent LP problem.

An Equivalent LP Problem: SJS-Relax-LP. The transforma-
tion starts from defining variable T as the JCT, i.e.,

T = max
i=1,...,N
j=1,...,M

{
lij

λijctij

}
. (44)

Substituting T into the objective function, we have

Minimize T

T ≥ lij
λijctij

, i = 1, . . . , N, j = 1, . . . ,M. (45)

Further define variable pij as

pij = ctij · T, (46)

and then reformulate the constraints (45) as

λij · pij ≥ lij , i = 1, . . . , N, j = 1, . . . ,M. (47)

On the other hand, by substituting pij into constraints (41),
we have

M∑
j=1

Ajk

N∑
i=1

pij ≤ Bk · T, k = 1, . . . , R. (48)

Integrating all transformations shown above together, we
obtain an equivalent problem, named SJS-Relax-LP, as
shown below.

SJS-Relax-LP

Minimize T (49)

Subject to

λij · pij ≥ lij , i = 1, . . . , N, j = 1, . . . ,M, (50)
N∑
i=1

M∑
j=1

αVMtij
· lij
λij
≤ EMAX , (51)

M∑
j=1

Ajk

N∑
i=1

pij ≤ Bk · T, k = 1, . . . , R, (52)

M∑
j=1

lij = Loadi, i = 1, . . . , N, (53)

ctij ≥ 0, lij ≥ 0, i = 1, . . . , N, j = 1, . . . ,M. (54)

Naturally, the SJS-Relax-LP problem is a Linear Program-
ming problem as its objective function and all constraints
are linear. Therefore, it can be efficiently solved by linear
programming algorithms.

4.3 The Task Placing and Resource Allocation (TaPRA)
Algorithm and Its Simplified Version: TaPRA-fast

Based on the relaxation SJS-Relax-LP, we propose an algo-
rithm, called Task Placing and Resource Allocation (TaPRA),
to solve the SJS problem.

The TaPRA algorithm has three phases. In the first phase,
TaPRA obtains a solution of the SJS-Relax-LP problem; in
the second phase, it determines an initial solution of the SJS
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Algorithm 1 The TaPRA Algorithm
1: function TAPRA(Ajk,Bk,Loadi,EMAX )

Phase I:
2: Solve SJS-Divisible and get {lij , pij}

Phase II:
3: for each Ti ∈ J do
4: u← argmaxk=1,...,M{lik};
5: xij ← 1 if j == u; otherwise, xij ← 0;
6: end for
7: Get {cti , etti} using Equation (16); Update Etotal;
8: if Etotal > EMAX then call REC;

Phase III:
9: while true do

10: Tmax ← {Ti | etti == JCT};
11: for each Ti ∈ Tmax do
12: TMvalid ← {all valid TMij};
13: if TMvalid == ∅ then continue;
14: TMiu ← argminTMij∈TMvalid

{new etti};
15: Perform TMiu and update {cti , etti}; break;
16: end for
17: if no task movement is performed then break;
18: end while
19: return xij and cti
20: end function

problem based on the solution of the SJS-Relax-LP problem;
in the last phase, it utilizes a local search procedure to
further optimize the obtained initial solution. Algorithm 1
shows the pseudocode of TaPRA.

We now introduce the details of each phase.
Phase I: Solve the relaxed problem. The TaPRA algorithm
starts from solving the relaxed LP problem SJS-Relax-LP. Let
the solution of SJS-Relax-LP be T , lij , and pij .

Phase II: Obtain an initial solution of the SJS problem.
In this phase, TaPRA obtains an initial solution of the SJS
problem from the solution of SJS-Relax-LP in two steps:

• First, it determines the value of variable xij , i.e., ob-
taining the task placement plan. Specifically, for each
task Ti, TaPRA selects sub-task tiu that gets the largest
portion of Ti and assigns task Ti to server su. Such
assignment can be presented as

xij =

{
1, if j = argmax

k=1,...,M

{
lik
}

0, otherwise
, i = 1, . . . , N.

(55)

The intuition is that if a server gets a larger portion
of task Ti, the result may be “closer” to the optimal
solution by assigning Ti to that server.

• Second, the TaPRA algorithm determines the value of
cti , i.e., the resource allocation plan. Because the task
placement has been determined in the first step, the SJS
problem is naturally reduced to the OptRA problem.
Therefore, the TaPRA algorithm simply utilizes Equa-
tion (16) to determine the value of cti .

However, in some cases, the assignment (55) may lead
to a violation of the energy consumption constraint (31),
because the server that gets the largest percentage of a task
may not be the one with the highest efficiency to execute that
task, i.e., consumes the least energy to execute that task.

Algorithm 2 Reduce Energy Consumption (REC)
1: function REC(xij ,cti ,Ajk,Bk,Loadi,EMAX ,Etotal)
2: while Etotal > EMAX do
3: List H ← {};
4: for each ti ∈ J & each Sj ∈ DC do
5: TMij ← {Ti, ssrci , sj ,∆Eij ,∆JCTij};
6: if ∆Eij < 0 then add TMij into H;
7: end for
8: TMuv ← argminTMij∈H{∆JCTij};
9: xu,ssrcu ← 0 and xuv ← 1;

10: Get {cti , etti} using Equation (16); Update Etotal;
11: end while
12: end function

To resolve the problem, the TaPRA algorithm utilizes
a procedure called Reduce Energy Consumption (REC)
to reduce total energy consumption by performing task
movement. A task movement is moving a task from one
server to another server and is defined by TMij =
{Ti, ssrci , sj ,∆Eij ,∆JCTij}, where task Ti is moved from
the original server ssrci to server Sj ; ∆Eij and ∆JCTij
are the difference of total energy consumption and JCT
respectively between the two task placements. The REC
procedure runs in iterations. In each iteration, it finds out
all task movements that can reduce the total energy con-
sumption and performs the one with the smallest ∆JCTij .
If the new task placement satisfies the energy consumption
constraint, the REC procedure stops; otherwise, it starts the
next iteration. Algorithm 2 describes the REC procedure.

Phase III: Local search. In this phase, the TaPRA algorithm
utilizes a local search procedure to further improve the
initial solution obtained in phase II.

In this local search procedure, TaPRA runs in iterations.
In each iteration, it starts with identifying all tasks with the
largest execution time and putting them into a set named
Tmax. Subsequently, TaPRA iteratively considers each task
in the set Tmax. For each task Ti ∈ Tmax, the TaPRA algo-
rithm calculates all valid task movements (i.e., the energy
consumption constraint is not violated and the execution
time of Ti is reduced after performing the movement.)
and put them into a set TMvalid; it then selects the task
movement which reduces the execution time of task Ti
most; in the following, TaPRA performs the selected task
movement and update xij and cti . If a task movement is
performed, the TaPRA algorithm starts a new iteration of
phase III.

If the TaPRA algorithm cannot improve the execution
time of any tasks in Tmax in some iteration, it then finishes
and returns the current solution xij and cti , as it cannot
improve the JCT anymore.

4.3.1 TaPRA-fast: A Simplified Version of TaPRA

The TaPRA algorithm begins with solving the SJS-Relax-
LP problem which is a LP problem. When the problem’s
scale is large enough, solving this problem can be time-
consuming. On the other hand, we observe that the local
search procedure in the TaPRA algorithm can be used to
optimize any feasible schedules. With such observations, we
propose TaPRA-fast, a simplified version of TaPRA with less
time complexity.
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Algorithm 3 Online scheduler: OnTaPRA
1: procedure ONTAPRA(Current time curT )
2: Add all jobs arriving at curT to Qwait;
3: Tfinish ← all tasks finishing at curT ;
4: if Tfinish 6= ∅ then
5: Release all computing resources allocated to Tfinish;
6: Call the DRC procedure;
7: end if
8: if curT mod ∆Tschedule == 0 then
9: Release resource allocated in last DRC call;

10: Use a scheduling policy to schedule jobs in Qwait;
11: Call the DRC procedure;
12: end if
13: end procedure

TaPRA-fast has two phases: First, it obtains an initial
solution; Second, it utilizes the local search procedure used
in the TaPRA algorithm to optimize the initial solution. To
obtain an initial solution, the TaPRA-fast algorithm places
each task Ti on the server with the highest efficiency on exe-
cuting this task, i.e., λij . Subsequently, TaPRA-fast calculates
cti and JCT based on the determined task placement.

5 ONLINE SCHEDULING

In the previous section, we have studied how to schedule a
single job composed of a set of independent tasks with the
goal of minimizing its completion time and have proposed
algorithms to solve this problem.

However, in practice, jobs arrive the system in a time
sequence and in a long term view, our goal is to minimize
the average JCT of all arrived jobs. With this goal, it may be
inefficient to address each of the arrived jobs individually.
Motivated by this, we propose an online scheduler named
OnTaPRA, which periodically schedules all arrived jobs
together. Algorithm 3 shows the main logic of OnTaPRA.
Online Scheduler: OnTaPRA. The OnTaPRA scheduler
puts each arrived job into a waiting queue Qwait and keeps
track of the waiting time of each job in Qwait.

The OnTaPRA scheduler periodically schedule all jobs in
the waiting queue together. To schedule the jobs in Qwait,
the OnTaPRA scheduler uses a scheduling policy named
Shortest Job First (SJF) which is introduced later. While
all scheduled jobs are placed on corresponding servers
according their task placement plan, those jobs that fail to
be scheduled stay in Qwait.

After the jobs in the waiting queue are scheduled and
placed on the servers, there may be residual computing ca-
pacity on those servers. These residual resources are actually
wasted, as no job can utilize these computing resources until
the next call of scheduling algorithm. To follow the work
conservation rule, the OnTaPRA scheduler further uses a
procedure named Distribute Residual Capacity (DRC) to
temporarily distribute the residual computing capacity of
each server to the tasks running on that server. In this way,
all computing resources of a server will be in use as long
as there are tasks running on it. On the other hand, in the
next round of scheduling, that residual capacity temporarily
distributed will be recollected and treated as the available
capacity of the servers. The details of the DRC procedure
are introduced later.

Algorithm 4 The SJF Scheduling Policy
1: procedure SJF(Current Waiting Queue Qwait)
2: Qnewwait ← ∅;
3: while Qwait 6= ∅ do
4: Perform the MAR test;
5: if test fails then Add Qwait to Qnewwait; break;
6: for each job Jk ∈ Qwait do
7: Calculate {xkij , ckTi

, JCTk} using TaPRA;
8: if fails then Move Jk from Qwait to Qnewwait;
9: end for

10: Ju ← argminJk∈Qwait
{JCTk};

11: Execute Ju; Remove Ju from Qwait;
12: end while
13: Qwait ← Qnewwait;
14: end procedure

Algorithm 5 The DRC procedure
1: procedure DRC
2: for each server Sj ∈ DC do
3: Cresisj ← residual capacity of Sj ;
4: Tsj ← tasks on Sj ; Lsj ← total load of Tsj ;

5: for each Ti ∈ Tsj do cti ← cti + Cresisj · Lti

Lsj
;

6: end for
7: end procedure

Moreover, whenever a task finishes, the computing re-
source allocated to that task will be released and temporarily
distributed to other tasks on the same server by using the
DRC procedure.

Scheduling Policy: Shortest Job First (SJF). The OnTaPRA
scheduler uses the Shortest Job First (SJF) scheduling policy
to address all jobs in Qwait. (Line 10 of Algorithm 3).

The SJF scheduling policy runs in iterations. In each
iteration, the SJF policy begins with a test named Minimum
Available Resource (MAR) which checks the total amount
of available computing capacity in the data center (denoted
by Ctotalavai ). If Ctotalavai is lower than a certain percentage (de-
noted by Max Percent) of the total computing capacity of
all servers (denoted byCtotalDC ), i.e., if the following condition
is satisfied:

Ctotalavai ≤Max Percent · CtotalDC , (56)

the test fails and the SJF policy stops scheduling all jobs
current in Qwait. The intuition here is that when the amount
of available resource is small, a job may get little resource
allocated and thereby have a extremely long completion
time. In such cases, it may be a better choice to keep the
job waiting until more resources become available.

If the SJF policy passes the MAR test, it sorts the jobs
in Qwait in the decreasing order of their waiting time and
calculates the JCT by using the TaPRA algorithm for each job
Ji. If a job cannot be scheduled, that job is moved to a new
waiting queueQnewwait. Subsequently, the job with the smallest
JCT is executed according to its schedule and removed from
Qwait. In the following, SJF updates the available computing
capacity of the servers and starts a new iteration. Once the
waiting queue Qwait becomes empty, the SJF scheduling
policy set the new waiting queue Qnewwait as current Qwait
and finishes. Algorithm 4 shows the SJF scheduling policy.
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Work Conservation: Distribute Residual Capacity (DRC).
The DRC procedure iterates all servers. For each server Sj ,
the residual capacity of Sj is proportionally distributed to
all tasks running on Sj according the load of those tasks.

Because the residual resource is not utilized by any
job, by distributing these resources, we essentially avoid
resource wastage, improve the system utilization, and fur-
ther accelerate the job completion. On the other hand, such
distribution of resource is temporary: Once new jobs arrive,
the distributed resource is recollected and can be allocated
to newly arrived jobs. Note that current virtualization tech-
niques already support dynamic scaling of CPU and RAM
for VMs [36]. Algorithm 5 shows the DRC procedure.

6 PERFORMANCE EVALUATION

6.1 Performance of the TaPRA Algorithm

In this section, we evaluate the TaPRA algorithm through
offline simulations. In the following, we present our simu-
lation setup, evaluation metrics, comparing algorithms and
simulation results.

6.1.1 Simulation Setup
In each single run of the simulation, we randomly generate
an input job, a set of servers, and a set of scheduling
constraints. The TaPRA algorithm is then called to schedule
the job on the given servers.

Job. We randomly generate an input job with N indepen-
dent tasks. The load Loadi of each task Ti follows a uniform
distribution in the range of (0, 3600] seconds.

Data Center. For the data center, we use a FatTree [37]
architecture. A y-array FatTree architecture contains y pods.
Each pod contains y/2 racks and each rack has y/2 servers.
As a result, there are in a total of y3/4 servers.

In the simulation, we modeled the available resource of
each server Sj , i.e., Csj , by the number of virtual CPUs
(vCPUs) that can be hosted by that server. Specifically, Csj
follows a uniform distribution between 0 and 10 vCPUs.

The efficiency matrices λij follows a uniform distribu-
tion in the range of [0.1, 1]. Because it is unlikely that the
execution efficiency of a task is lower than 0.1 in a modern
data center environment, we exclude the range (0, 0.1) from
the possible value of execution efficiency, following similar
setups found in existing work [26].

Resource Availability Constraints. A y-array FatTree archi-
tecture contains y pods. We generate one resource availabil-
ity constraint for each pod.

Specifically, for pod k, we denote the set of servers in
this pod by SPodk . For each server Sj ∈ SPodk , we set the
coefficient AjPodk as 1; for all other servers, we set AjPodk
as 0. Subsequently, we calculate the total available resources
in pod k, denoted by CPodk , using the following equation

CPodk =
∑

Sj∈SPodk

Csj . (57)

We then generate the following constraint for pod k

M∑
j=1

AjPodk

N∑
i=1

xijcti ≤ BPodk = βpod · CPodk , (58)

where βpod is a constant belonging to (0, 1]. Using this way,
we generate y constraints corresponding to y pods.

Following a similar approach, we generate y2/2 + 1 con-
straints for the y2/2 racks plus the whole data center in the
y-array FatTree architecture. Therefore, we have 1+y+y2/2
resources availability constraints for each single run of the
simulation. In the simulations, we set βDC , βpod and βrack
as 0.2, 0.2 and 0.3 respectively.
Energy Consumption Constraint. To generate the maxi-
mum energy consumption EMAX , we first calculate the
total task load Loadtotal, which equals to

∑N
i=1 Loadi. Fur-

thermore, we set the constant αVMi as 1 for each VMi.
Because the execution efficiency is no larger than 1,

according to Equation 9, the minimum possible energy
consumption equals to Loadtotal. We then determineEMAX

by using a uniform distribution in [Loadtotal, 1.1·Loadtotal].
Each data point in our simulation results is an average

of 50 simulations performed on an Intel 2.5 GHz processor.

6.1.2 Evaluation Metrics
We use three metrics to evaluate our algorithms.
JCT. Because minimizing JCT for the input job is our objec-
tive, JCT is the most important metric.
Total allocated resources (vCPUs). This metric is the sum of
the resources allocated to each task of the input job, which
is also the total number of vCPUs allocated to the input
job, according to our simulation setup. This metric shows
how well an algorithm utilizes the available resources and
is useful when analyzing the simulation results.
Running time. Running time of an algorithm is also impor-
tant. It gives a sense of the scalability of that algorithm.

6.1.3 Comparison Algorithms
We compare our algorithms with three other algorithms.
Min-Min. The Min-Min algorithm is a classic scheduling
algorithm. It runs in iterations. In each iteration, for each
unplaced task, it calculates the expected JCT of placing
that task on each server and adds the placement with the
minimum expected JCT into a set M. Subsequently, Min-
Min selects and performs the placement with the smallest
minimum expected JCT. It then starts a new iteration until
all the tasks are placed.
MM-GA. Kumar et al. [10] proposed an improved genetic
algorithm to schedule a set of independent tasks with the
goal of minimizing the makespan. In that algorithm, the
scheduling results of Max-Min and Min-Min are added into
the initial population of the genetic algorithm. We use a
modified version of this algorithm in which only the result
of Min-Min is added into the initial population and we name
this algorithm as MM-GA.
GSA. Gan et al. [11] proposed a genetic simulated annealing
(GSA) algorithm which merged simulated annealing into a
genetic algorithm. In each generation, the GSA algorithm
generates a set of offspring using crossovers and mutations
and then uses a simulated annealing procedure to further
optimize those offspring.

Note that the above three algorithm are modified to
consider the energy consumption constraint. Specifically,
if a schedule generated by these algorithms violates the
energy consumption constraint, the REC procedure is called
to reduce the energy consumption for that schedule.



11

(a) JCT (b) Total allocated resources (c) Running time

Fig. 4. Performance of TaPRA when scheduling a job with different numbers of tasks on a FatTree data center with 128 servers.

(a) JCT (b) Total allocated resources (c) Running time

Fig. 5. Performance of TaPRA when scheduling a job with 100 tasks on a FatTree data center with different numbers of servers.

6.1.4 Evaluation Results of TaPRA and TaPRA-fast

Performance with Increasing Number of Tasks. In this
simulation, we study how TaPRA and TaPRA-fast performs
as the number of tasks in the job J increases from 40 to 200.
We use a 8-array FatTree data center containing 128 servers.

Fig. 4(a) shows the JCT generated by each algorithm.
While the JCT generally increases along with the expansion
of the input job, TaPRA generates the smallest JCT. When
the input job contains 200 tasks, the JCT of TaPRA is 100%
smaller than that of Min-Min, 50% smaller than that of MM-
GA, and 30% smaller than that of GSA. Meanwhile, TaPRA-
fast generates almost the same JCT compared to TaPRA.
Fig. 4(b) shows that the amount of resources allocated by
each algorithm. We observe that when the number of tasks
is small, TaPRA and TaPRA-fast allocate the largest amount
of resources. When the number of tasks becomes large,
all of the algorithms allocate similar amount of resources,
however, TaPRA and TaPRA-fast generate much smaller JCT
than Min-Min, MM-GA, and GSA. This observation shows
that TaPRA and TaPRA-fast utilizes the available resources
more efficiently. We attribute this to the analytical solution
(16) proposed for the OptRA problem, which is used by
TaPRA and TaPRA-fast to optimally allocate resource for
any given task placement plan.

At last, Fig. 4(c) shows the algorithm running time.
TaPRA and TaPRA-fast have much smaller running time
than other algorithms. Specifically, when the job contains
100 tasks, the running time of TaPRA and TaPRA-fast is
about 6 seconds, while that of GSA is 180 seconds and that
of Min-Min and MM-GA is around 4500 seconds.

Performance with Increasing Number of Servers. In this
simulation, we demonstrate how our algorithms perform as
the number of servers in the FatTree data center increases
from 54 to 432, i.e., the number of pods increases from 6 to
12. We fix the number of tasks in the job at 100.

Fig. 5(a) shows the JCT of TaPRA and TaPRA-fast We can
see that the JCT of TaPRA is similar to that of TaPRA-fast,
80% smaller than that of GSA, 260% smaller than that of
MM-GA, and 430% smaller than that of Min-Min. Fig. 5(b)
shows the total amount of resources allocated by each
algorithm. We observe that when the size of the data center
is small, all algorithms allocate similar amount of resources,
but when the data center becomes larger (containing more
servers), TaPRA and TaPRA-fast allocate more resources
than other algorithms. When the data center contains 432
servers, TaPRA and TaPRA-fast allocate around 15% more
resources than GSA and about 40% more resoureces than
Min-Min and MM-GA. One possible reason is that TaPRA
and TaPRA-fast are able to generate better task placement
plan with more available resources to be allocated.

At last, Fig. 5(c) shows the algorithm running time.
When the data center contains 12 pods (i.e., 432 servers),
the running time of TaPRA is 33 seconds, while that of
TaPRA-fast, GSA, Min-Min, and MM-GA is 15 seconds, 1000
seconds, 4700 seconds, and 4800 seconds respectively.

Summary. In offline simulations, we examine the perfor-
mance of TaPRA and TaPRA-fast when scheduling a single
input job. Generally, TaPRA and TaPRA-fast are able to place
tasks in a way that more resources can be allocated and are
able to utilize the allocated resources better. Benefiting from
these properties, TaPRA and TaPRA-fast reduce the JCT
by 40%-430% compared to the state-of-the-art algorithms.
Moreover, the running time of these two algorithms are
about 30 times faster than GSA and more than 200 times
faster than Min-Min and GSA, which makes them more
applicable in practice.

6.2 Performance of the OnTaPRA Scheduler

In this section, we examine the performance of the On-
TaPRA scheduler through online simulations.
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(a) JCT.

(b) Running time.

Fig. 6. Performance of the OnTaPRA scheduler.

6.2.1 Simulation Setup
An online simulation starts from an initial state without
any ongoing job. Subsequently, jobs start to arrive and the
scheduler is called to schedule those jobs. Jobs stop arriving
at a certain time. Once all jobs are scheduled, the online
simulation finishes.
Data Center. A 6-array FatTree architecture with 54 servers
is used in the simulation. The initial computing capacity of
each server is 10 vCPUs.
Jobs. Jobs arrive at a rate following a Poisson distribution
with µ = 0.15/second and stop arriving at 3600 seconds.

Based on statistics of traces of workloads running on an
12000-server Google compute cell over a period approxi-
mately a month long, in May 2011 [38], we set the number
of tasks in a job using a Weibull distribution [39] with scale
parameter A = 0.5 and scale parameter B = 0.8. The
maximum number of tasks in a job is set to 70. The task
load follows a uniform distribution in (0, 1000] seconds.
The efficiency matrices λij are generated using the same
approach used in the offline simulations.
Constraints. The resources availability constraints and en-
ergy consumption constraints of a job Ji are generated
whenever the scheduler is to schedule that job, using the
same approach used in the offline simulations. Specially, we
set βDC , βpod, and βrack as 0.2, 0.2, and 0.3 respectively.

Each data point in the results is an average of 10 simula-
tions performed on an Intel 2.5GHz processor.

6.2.2 Evaluation Metrics
Average Online JCT. The online JCT (JCTon) of a job Ji
is the length of the time period between the arriving time
and the completion time of that job. It composed of the total
waiting time of this job (denoted by JWT ) and the offline
JCT (JCToff ) generated by the scheduling algorithm, i.e.,

JCTon = JWT + JCToff . (59)

Total Running Time. Total running time is the running time
of a scheduler from the beginning of a simulation to the end.

6.2.3 Comparison Schedulers and Algorithms
We compare OnTaPRA with three other schedulers.
FCFS. The First Come First Serve (FCFS) scheduler is a clas-
sic scheduler which is still widely used in many scheduling
systems because it is easily deployed and runs fast. In our
simulations, whenever a job arrives the system, the FCFS
scheduler address all waiting jobs in the decreasing order of
their waiting time. If a job cannot be scheduled, it stays in
the waiting queue; otherwise, it is executed according to the
scheduling result. If the FCFS scheduler is DRC enabled, it
then uses the DRC procedure to allocate residual capacity.
Smallest Load First (SLF). The SLF scheduler periodically
address the jobs in Qwait in the increasing order of their
total load. We believe that generally a job’s completion
time is positively related to its total load, i.e., a small total
load means a short JCT. Therefore, the SLF scheduler may
be a good approximation of the SJF scheduling policy. By
comparing to the SLF scheduler, we can better examine the
performance of the OnTaPRA scheduler. The SLF scheduler
can use the DRC procedure to allocate residual capacity.
Largest Load First (LLF). The LLF scheduler is a scheduler
that periodically addresses the jobs in the waiting queue in
the descending order of their total load, which is opposite
to the SLF scheduling policy used in the OnTaPRA sched-
uler. The LLF schedule can also use the DRC procedure to
allocate residual capacity.
Comparison Algorithms. To make the comparison more
comprehensive, each scheduler uses four different algo-
rithms to schedule the arrived jobs, including TaPRA,
TaPRA-fast, MM-GA and GSA. Min-Min is not included as
MM-GA is guaranteed to be no worse than Min-Min.

6.2.4 Evaluation Results of OnTaPRA
Fig. 6 shows the simulation results of each combination of
schedulers and scheduling algorithms. Note that the MM-
GA and GSA algorithms are not used by OnTaPRA, as
their running time is relatively large; when using them, the
running time of OnTaPRA is too large to be practical. To



13

examine the impact of the DRC procedure, we also perform
simulations for each scheduler without the DRC procedure.
In Fig. 6, the term “NDRC” appended after the scheduler
name indicates that the scheduler is DRC disabled.

Fig. 6(a) shows the average JCT generated by each sched-
uler and Fig. 6(b) shows the running time of each scheduler.
Based on the results, we have several observations:
Impact of Schedulers. Generally, the OnTaPRA scheduler
generates the smallest average JCT. In the DRC enabled
simulations, when using TaPRA or TaPRA-fast, the average
JCT generated by OnTaPRA is about 60% smaller compared
to the SLF and FCFS scheduler and about 170% smaller
than the LLF scehduler. When compared to other schedulers
using MM-GA or GSA, OnTaPRA reduces the average JCT
by 100%-280%. In the DRC disabled simulations, when
using TaPRA or TaPRA-fast, OnTaPRA generates 5%, 80%,
and 234% smaller average JCT compared to SLF, FCFS, and
LLF respectively.

We can also see that when using TaPRA or TaPRA-fast,
while SLF performs similar to FCFS and about 80% better
than LLF in DRC enabled simulations, it performs 80%
better than FCFS and 225% better than LLF. But when using
MM-GA or GSA, SLF performs worse than FCFS and LLF in
DRC enabled simulations. These results show that the per-
formance of SLF can be impacted by the DCR procedure and
the scheduling algorithm. Whereas, the OnTaPRA scheduler
always performs the best.
Impact of Scheduling Algorithm. Generally, TaPRA and
TaPRA-fast show better performance than MM-GA and
GSA, while TaPRA is about 5% better than TaPRA-fast. In
DCR enabled simulations, TaPRA and TaPRA-fast reduces
the average JCT by nearly 80% and 140% compared to MM-
GA and GSA in the SLF and FCFS scheduler respectively,
while in the LLF scheduler, TaPRA and TaPRA-fast performs
actually worse than MM-GA and GSA. We attribute this
to the better performance of TaPRA and TaPRA-fast on
allocating resources because of which the LLF scheduler
allocates most of the available resources to the larger jobs
and therefore increases the completion time of the jobs with
smaller load. We have similar observation in DRC disabled
observations: TaPRA and TaPRA-fast performs 40%-150%
better than MM-GA and GSA in the SLF and FCFS sched-
ulers but worse than MM-GA and GSA in the LLF scheduler.

However, we can also see that the LLF scheduler per-
forms worst among all schedulers; whereas, the OnTaPRA
scheduler with TaPRA or TaPRA-fast performs the best.
Impact of the Distribute Residual Capacity (DRC) Pro-
cedure. The DRC procedure temporarily distributes the
residual capacity of servers to the running tasks to accel-
erate the completion of running jobs. We can see that the
DCR procedure has signification impact on the average JCT.
Without the DCR procedure the average JCT generated by
OnTaPRA, SLF, FCFS, and LLF is increased by 70%, 15%,
110%, and 120% respectively.
Scheduler Running Time. Fig. 6(b) shows the overall run-
ning time of each scheduler. Generally, the running time
of using TaPRA and TaPRA-fast is much smaller than using
MM-GA and GSA, which confirms our observation in offline
simulations. Meanwhile, when using TaPRA or TaPRA-
fast, the running time of OnTaPRA is larger than other

schedulers, because of the higher complexity of OnTaPRA.
Furthermore, the running time of using TaPRA-fast is about
10 times faster than using TaPRA in all schedulers.

Summary. In online simulations, we demonstrate the perfor-
mance of the OnTaPRA scheduler and the TaPRA/TaPRA-
fast algorithms. The results show that: (a) the OnTaPRA
scheduler with TaPRA/TaPRA-fast has the best perfor-
mance: it reduces the average JCT to 60%-280% compared
by existing schedulers; (b) the proposed DRC procedure
has great impact on the average JCT: without this proce-
dure, the average JCT can be increased by up to 120%; (c)
while TaPRA-fast performs 5% worse than TaPRA, when
using TaPRA-fast, the running time of OnTaPRA is 10 times
smaller than using TaPRA, which makes OnTaPRA+TaPRA-
fast an very applicable choice in practice.

7 CONCLUSION

In this paper, we focused on the problem of scheduling
embarrassingly parallel jobs in cloud, in which there is a
need to determine the task placement plan and the resource
allocation plan for jobs composed of independent tasks with
the goal of minimizing the Job Completion Time (JCT). We
first studied how to optimally allocate resources with pre-
determined task placement and proposed an analytical solu-
tion. In the following, we formulate the problem of schedul-
ing a single job (SJS) as a NLMIP problem and present an
relaxation with an equivalent Linear Programming problem.
We further propose an algorithm named TaPRA and its
simplified version: TaPRA-fast that solve the SJS problem.
At last, to address multiple jobs in online scheduling, we
propose an online scheduler named OnTaPRA.

We evaluated the performance of the TaPRA and TaPRA-
fast algorithms and the OnTaPRA scheduler by comparing
them with the state-of-the-art algorithms and schedulers in
offline and online simulations. The simulation results show
that: (a) TaPRA and TaPRA-fast reduce the JCT by 40%-430%
compared to the state-of-the-art algorithms and their run-
ning time is more than 30 times smaller. (b) The OnTaPRA
scheduler when using TaPRA/TaPRA-fast reduces the aver-
age JCT by 60%-280% compared to exsiting schedulers. (c)
TaPRA-fast can be 10 times faster than TaPRA with around
5% performance degradation compared to TaPRA, which
makes the use of TaPRA-fast very applicable in practice.
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