
I. INTRODUCTION

Processor Equivalence for Daisy
Chain Load Sharing Processors

THOMAS G. ROBERTAZZI, Senior Member, IEEE
SUNY at Stony Brook

A linear daisy chain of processors where processor load is

divisible and shared among the processors is examined. It is

shown that two or umre processors can be collapsed into a single

equivalent processor. This equivalence allows a characterization

of the nature of the minimal time solution, a simple method to

determine when to distribute load for linear daisy chain networks

of processors without front end communication subprocessors

and closed form expressions for the equivalent processing speed

of in f i t e ly large daisy c h a h of processors.

Manuscript received October 31, 1991; revised September 11, 1992.

IEEE Log NO. T-AES/29/4/10988.

This research was supported by the National Science Foundation
under Grant NCR-8703689 and by the SDIOAST and managed by
the US. Office of Naval Research under Grants N0001485-KO610
and N00014-91J4063.

Author’s address: Dept. of Electrical Engineering, SUNY at Stony
Brook, Stony Brook, NY 11794.

0018-9251/931$3.00 @ 1993 IEEE

Parallel computation has been of great interest in
recent years. A parallel machine consists of a number
of processors and an interconnection network to tie
them together. This work examines a specific parallel
processing problem on a specific architecture that
allows the study of the integration of communication
and computation. While these two issues are often
studied separately, a combined study is rare.

The situation to be considered involves a linear
daisy chain of processors, as is illustrated in Fig. 1.
A single “problem” (or job) is solved on the network
at one time. It takes time w;T,, to solve the entire
problem on processor i. Here wi is inversely
proportional to the speed of the ith processor and
Tcp is the normalized solution time when wi = 1.
It takes time z;Tcm to transmit the entire problem
representation (data) over the ith link. Here zi is
inversely proportional to the channel speed of the ith
link and T,, is the normalized transmission time when
z; = 1.

I w 1
1

1 3 4

Fig. 1. Linear chain of processors.

It is assumed that the problem representation can
be divided amongst the processors. Thus the problem
representation is said to be “divisible”. That is,
fraction a; of the total problem is assigned to the ith
processor so that its computing time becomes a; w;Tcp.
It is desired to determine the optimal values of the
0;s so that the problem is solved in the minimum
amount of time. The situation is nontrivial as there
are communication delays incurred in transmitting
fractional parts of the problem representation to each
processor from the originating processor.

There is a good deal of literature on scheduling
and load sharing in multiprocessors [5-7, 14-21].
However most work to date assumes that a job can
be assigned to at most one processor. Only recently
has there been interest in multiprocessor scheduling
with jobs that need to be assigned to more than one
processor [22-241. In this work, one has a single job
that can be arbitrarily partitioned among a number
of processors. The framework being described is
particularly germane to processing involving large data
files (so that communication delay is nonnegligible),
such as sensor data processing, signal processing,
image processing, and Kalman filtering, where the data
can be divided among multiple processors.

Two cases are considered: processors that
have front end communications subprocessors for
communications off-loading so that communication
and computation may proceed simultaneously,

1216 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 29, NO. 4 OCTOBER 1993

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 10, 2008 at 21:16 from IEEE Xplore. Restrictions apply.

p2+a3+a41z, T~~
Communication 1 Computation

Processor 1

at “I Tcp

Processor 1

Processor 2

- ~ - I ”I. .

1 Communication I Computation

Rocessor 4 -~ - Communication -1 Computation

0, W. Tcp

Fig. 2 Timing diagram: Network with front-end communications
subprocessors.

~(a,+a.ta.lz. Trm

(a,+a41z2 Tcm
I I Communlcation I Computation Rocessor 2

I
0 2 W2Tcp

Processor 31-

h,)z, Tcm
I 1 Canmunicution 1 Computation

a3 1 3 TCD

Communication
I I Computation
Q4 w4 Tcp

PrccasxK 4

Fig. 3. Timing diagram: Network without frontend
communications subprocessors.

and processors without front end communications
subprocessors so that communication and computation
must be performed at separate times.

of four processors with front-end communications
subprocessor (as in Fig. 1) is illustrated in Fig. 2.
There is one graph for each processor. The horizontal
axis is time. The upper half of each graph indicates
communication time and the lower half indicates
computation time. It is assumed that the problem
(load) originates at the left most processor.

At time 0, processor 1 can start working on its
fraction, a1, of the problem in time alwlTcp. It
also simultaneously communicates the remaining
fraction of the problem to processor 2 in time
(a2 + a3 + a4)z1Tcm. Processor 2 can then begin
computation on its fraction of the problem (in time
a2w2Tc,) and communicates the remaining load to
processor 3 in time (a3 + a4)z2Tcm. The process
continues until all processors are working on the
problem.

A similar, but not identical, situation for a linear
daisy chain network with processors that do not have
front-end communication subprocessors is illustrated
in Fig. 3. Here each processor must communicate the
remaining load to its right neighbor before it can begin
computation on its own fraction.

A timing diagram for a linear daisy chain network

In [l] recursive expressions for calculating the
optimal ais were presented. These are based on the
simpwing premise that for an optimal allocation
of load, all processors must stop processing at the
same time. Intuitively this is because otherwise some
processors would be idle while others were still busy.
Analogous solutions have been developed for tree
networks [2] and bus networks [3, 41. The equivalence
of first distributing load either to the left or to the
right from a point in the interior of a linear daisy
chain is demonstrated in [lo]. Optimal sequences of
load distribution in tree networks are described in
[S, 9, 111. Closed form solutions for homogeneous bus
and tree networks appear in [13].

The concept of collapsing two or more processors
and associated links into a single processor with
equivalent processing speed is presented here. This
allows a complete proof (an abridged one appears
in [l]) that for the optimal, minimal time solution all
processors must stop at the same time. Moreover,
for the case without front end communications
subprocessors, it allows a simple algorithm, described
in Section 111, to determine when it is economical to
distribute load amongst multiple processors. Finally, in
Section IV, the notion of equivalent processors enables
the derivation of simple closed-form expressions for
the equivalent speed of a linear daisy chain network
containing an infinite number of processors. This
provides a limiting value for the performance of this
network architecture and load distribution sequence
P11.

I I . EQUIVALENT PROCESSORS

Consider a linear daisy chain network of N
processors as in Fig. 1. Two adjacent processors may
be combined into a single “equivalent” processor
that presents operating characteristics to the rest of
the network that are identical to those of the original
two processors. Two cases, processors with and
without front-end communication subprocessors, are
considered.

at the left-most processor (processor 1). If the load
originates at an interior processor one can use the
same methodology to collapse the processors to the
left and the right of the originating processor into
equivalent processors and then collapse the remaining
three processors into a single equivalent processor.

In both cases it is assumed that the load originates

A. Front End Communications Subprocessors

We start with the N - 1st and Nth processors, as
illustrated in Fig. 4. The figure begins at the moment
when the load has finished being transmitted to the
N - 1st processor from the N - 2nd processor. As
in [l], the N - 1st processor keeps & N - I fraction of
what it receives and transmits the remaining 1 - & ~ - 1

ROBERTAZZI: PROCESSOR EQUIVALENCE FOR DAISY CHAIN LOAD SHARING PROCESSOR 1217

-~ -

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 10, 2008 at 21:16 from IEEE Xplore. Restrictions apply.

'N

pN s
fraction to the Nth processor. The total load received

the N - 1st Processor from the N - 2nd is (O N - 1 +
a ~) . The time each is active, from the figure, is

nus one can recursively show that for a network of
N processors the optimal solution occurs when all
processors stop at the same time.

B. No Front-End Communications Subprocessor

T N - 1 = & N - I (~ N - I + ~ N) W N - I T ~ ~ (1)

TN = (1 - & N - ~) (Q N - ~ + a N) Z N - l T c m

+ (1 - ~ N - I) (~ N - I + (Y N) w N T ~ ~ .

when both processors stop at the same time, the
possibilities T N - ~ 2 TN and T N - ~ 5 TN must be
examined. If T N - ~ 2 TN, simple algebra results in

(2) Again, consider the N - 1st and Nth processors
in a linear chain. Fig. 5 starts from the moment when
load has finished being transmitted from the N - 2nd
to the N - 1st processor. Again, as in [l], the N - 1st
processor keeps & ~ - l fraction of what it receives and
transmits the remaining 1 - & ~ - 1 fraction to the Nth
processor. From Fig. 5, the time each is active is

To prove that the minimal time solution occurs

(3)
ZN-1Tcm + W N T c p

W N - 1 T c p + Z N - l T c m + W N T c p
A N - 1 2

TN-I = (l - & N - l) (a N - l a N) Z N - l T c m

(6)

minTSo1 = (min&N-l)(aN-l + C Y N) W N - ~ T ~ ~ (4) + (1 - G N - I) (Q N - I + ~ N) w N T ~ ~ (7)

with equality occurring when both processors stop at
the same time. Minimizing the solution time, Tsol = + & N - I (Q N - I + Q N) w N - ~ T ~ ~
TN- 1, clearly requires TN = (l - d N - l) (o N - l + @ N) Z N - l T c m

-

so that the optimal value of & ~ - l occurs for equality
in (3). The quantity (Q N - ~ + a ~) is not involved in the
minimization since the value of & ~ - 1 is unaffected by
the total load, ((Y N - ~ + CYN), delivered to the N - 1st
processor. Put another way, the optimization involves
the fraction of load being allocated between P N - 1

and P N , not the total load allocated to these two
processors. The other half of the proof, for T N - ~ 5 TN,
is similar.

communications subprocessors can be replaced by a
single processor with equivalent speed constant:

The two processors with front-end (fe)

(5)
Here & ~ - l is given by (3) with equality. The

solution time is divided by the normalized computation
time to yield the equivalent speed constant. Thus,
starting with the N - 1st and Nth processors, the
entire linear chain of processors can be collapsed,
two at a time, into a single equivalent processor.

Once again, to prove that the minimal time solution
requires both processors to stop at the same time, the
cases T N - ~ 2 TN and T N - ~ 5 TN can be considered.
For T N - ~ 2 TN, simple algebra results in

with equality occurring when both processors stop
at the same time. From (6) the solution time can be
rewritten as

TsoI = T N - 1 = (a N - 1 + a N) z N - l T c m

4- & N - I (~ N - I Q N) (w N - ~ T ~ ~ - Z N - l T c m) .

(9)

The sign of the term (w N - ~ T ~ ~ - Z N - ~ T ~ ~) now
becomes important. If it is positive, minimizing Tsol

is equivalent to minimizing & ~ - l and the optimal
solution occurs at equality for (8). In other words, if
W N - ~ T ~ ~ > Z N - ~ T ~ ~ , communication is fast enough
relative to computation that the distribution of load is
economical. Again, ((Y N - ~ + O N) is not involved in the
minimization.

1218 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 29, NO. 4 OCTOBER 1993

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 10, 2008 at 21:16 from IEEE Xplore. Restrictions apply.

On the other hand, if (wN-lTcp - Z N - l T c m)

is negative, then minimizing Tsol is equivalent to
maximizing & ~ - 1 at & ~ - 1 = 1. That is, communication
speeds are slow relative to computation speed so that it
is more economical for processor N - 1 to process the
entire load itself rather than to distribute part of it to
processor N .

The case where T N - I 5 TN proceeds along similar
lines. Again, the ability to collapse processors into
equivalent processors allows one to extend the proof
that two processors must stop at the same time for a
minimal time solution to N processors.

Ill. WHEN TO DISTRIBUTE L O A D

A practical problem for the case without front-end
communications subprocessor is to compute the
equivalent computation speed of a linear daisy chain
network when, in fact, the optimal solution may
not make use of all processors, because of too slow
communication speeds. Again, if the load originates at
the left-most processor, this can be done by collapsing
the processors, two at a time, from right to left in
Fig. 1, into a single equivalent processor. However,
when loolung at two adjacent processors, say the i - 1st
and the ith (where the ith is an equivalent processor
for processors i, i + 1,. . .), one must determine whether
or not it is economical to distribute load. That is,
one seeks the faster of either the solution with
both processors, Tboth, or with just the single i - 1st
processor, Tsingle:

Tboth = (1 - 6 ' - 1) (0 ; - 1 + O ;) Z ; - l T c m

+ &i-l(ai-l + a;)wi-lTcp (10)

(11) Tsingie = (ai-1 + ai)wi-lTcp*

Here fraction 6ipl of the total load, (ai-1 +ai),
is assigned to processor i - 1 and fraction 1 - 4; is
assigned to processor i. If Tshgie < Tboth then the ith
processor is removed from consideration and the
equivalent processing speed constant, with no front
end (nfe) communication subprocessor, is

If Tsingle > Tboth then load distribution is economical
and the two processors are collapsed into a single
equivalent processor with speed constant:

From (8):

Note that in (13) factors of (ai-1 + ai) cancel in
the numerator and denominator.

By keeping track of whch of (10) and (11) is
smaller, it is possible to determine whch processors
to remove from the final network.

to the situation when the load originates at a processor
which is located in the interior of the network. The
parts of the network to the left and to the right of the
originating processor can be collapsed, into equivalent
processors, following the previous procedure. The
remaining three processors (left, originating, right)
can then be further collapsed into a single equivalent
processor. Naturally, it must be checked whether the
inclusion of the left and/or right equivalent processor
leads to a faster solution.

Note that the above procedure can also be applied

IV. INFINITE N U M B E R O F PROCESSORS

A difficulty with the linear network daisy chained
architecture is that as more and more processors are
added to the network, the amount of improvement
in the equivalent speed of the network approaches
a saturation limit. Intuitively, this is because of
the overhead in communicating the problem
representation down the linear daisy chain in what is
essentially a store and forward mode of operation.

equivalent processing speed of an infinite number of
homogeneous processors and links. These provide a
limiting value on the performance of this architecture.
The technique is similar to that used for infinitely sized
electrical networks to determine equivalent impedance.

Let the load originate at a processor at the left
boundary of the network (processor 1). The basic idea
is to write an expression for the speed of the single
equivalent processor for processors 1,2 . . . CO. This is a
function of the speed of the single equivalent processor
for processors 2,3. . . CO. However these two speeds
should be equal since both involve an infinite number
of processors. One can simply solve for this speed.

Consider, first, the case where each processor
has a front-end communication sub-processor. Let
w; = w and z; = z. Let the network consist of PI and
an equivalent processor for processors 2,3.. .CO. Then:

-

It is possible to develop simple expressions for the

(15) - b1w. eq

But from (3) with equality, and making the above
assumption,

zp + w&
,+,fe - W

e q - w + z p + w &

where p = Tcm/TCp. Solving for wFq results in

(17)
- z p + J / (Z ~) ~ + 4wzp

2
WFq =

The solution time for such an infinite network is

In a similar manner, an expression for the
simply given by Tsoi = wkTcp.

equivalent processing speed of a linear daisy chain

1219 ROBERTAZZI: PROCESSOR EQUIVALENCE FOR DAISY CHAIN LOAD SHARING PROCESSOR

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 10, 2008 at 21:16 from IEEE Xplore. Restrictions apply.

network with an infinite number of processors with
no front-end communication subprocessors can be
determined. Again, the load originates at processor 1
at the left boundary of the daisy chain.

wnfe = m. eq

The solution time for t h s infinite network is simply

This last expression is somewhat intuitive. Doubling
given by Tsol = w$Tcp.

w and z doubles w::. Doubling either w or z alone
increases w$ by a factor of 4. These results agree
very closely with numerical results presented in [l]. It
is straightforward to show that w& < w::. Thus, in this
limiting case, solution time is always reduced through
the use of front-end processors.

calculate the limiting performance of an infinite sized
daisy chain when the load originates at a processor at
the interior of the network (with the network having
infinite extent to the left and the right). Expressions
(17) or (18) can be used to construct equivalent
processors for the parts of the network to the left and
right of the originating processor. The resulting three
processor system can then be simply solved [l, 121.

It is also possible to use the above results to

V. CONCLUSION

The concept of collapsing two or more processors
into an equivalent processor has been shown to be
useful in examining a variety of aspects related to these
linear daisy chain networks of load sharing processors.
Expressions for the performance of infinite chains
of processors are particularly useful as if one can
construct a finite-sized daisy chain that approaches
the performance of a hypothetical infinite system,
one can feel comfortable that performance cannot be
improved further for this particular architecture and
load distribution sequence [ll].

REFERENCES

PI

121

131

141

1220

Cheng, Y.-C., and Robertazzi, T. G. (1988)
Distributed computation with communication delays.
IEEE Transactions on Aerospace and Electronic Systems, 24
(Nov. 1988), 700-712.

Distributed computation for a tree network with
communication delays.
IEEE Transactions on Aerospace and Electronic Systems, 26
(May 1990), 511-516.

Distributed computation for a bus network with
communication delays.
Proceedings of the 1991 Conference on Information
Sciences and Systems, The Johns Hopkins University,
Baltimore MD (Mar. 1991), 709-714.

Bataineh, S., and Robertazzi, T. G. (1991)
Bus oriented load sharing for a network of sensor driven
processors.
IEEE Transactions on Systems Man & Cybernetics; Special
Issue on Distributed Sensor Nets, 21 (Sept. 1991).

Cheng, Y.-C., and Robertazzi, T. G. (1990)

Bataineh, S., and Robertazzi, T. G. (1991)

h u n g , J. Y.-T., and Young, G. H. (1989)
Minimizing schedule length subject to minimum flow time.
SL4M Journal on Computing, 18 (Apr. 1989), 314-326.

Coffman, Jr., E. G., Gavey, M. R., and Johnson, D. S. (1978)
An application of bin paclung to multiprocessor
scheduling.
SIAM Journal on Computing, 7 (Feb. 1978).

Algorithms minimizing mean flow time: Schedule length
properties.
Acta Informatica, 6 (1976), 1-14.

Kim, H. J., Jee, G.-I., and Lee, J. G.
Optimal load distribution for tree network processors.
To be published.

Closed-form solutions for optimal processing time in
distributed single-level tree networks with communication
delays.
To be published.

Distributed computation in a linear network: Closed form
solutions and computational techniques.
To be published.

A new strategy of load distribution in a distributed
single-level tree network with communication delays.
To be published.

Ultimate performance limits for networks of load sharing
processors.
In Proceedings of the 1992 Conference on Information
Sciences and Systems, Princeton University, Princeton, NJ,
Mar. 1992, 794-799.

Bataineh, S., and Robertazzi, T G. (1992)
Closed form solutions for bus and tree networks of
processors load sharing a divisible job.
Technical Report 627, SUNY at Stony Brook College of
Engineering and Applied Science, May 27, 1992. Available
from the author.

GAMMON: A load balancing strategy for local computer
systems with multiaccess networks.
IEEE Transactions on Computers, C-38 (Aug. 19891,
1098-1 109.

Assignment Problems in Parallel and Distributed
Computing.
Boston: Kluer Academic Publishers, 1987.

Lo, V. M. (1988)
Heuristic algorithms for task assignment in distributed
systems.
IEEE Transactions on Computers, C-37 (Nov. 1988),
1384-1397.

Ramamritham, K., Stankovic, J. A., and Zhao, W. (1989)
Distributed scheduling of tasks with deadlines and
resource requirements.
IEEE Transactions on Computers, C-38 (Aug. 1989),
11 1c1122.

Load sharing in distributed real-time systems with state
change broadcasts.
IEEE Transactions on Computers, C-38 (Aug. 1989),
1124-1142.

Multiprocessor scheduling with the aid of network flow
algorithms.
IEEE Transactions on Software Engineering, SE-3 (Jan.

Coffman, Jr., E. G., and Sethi, R. (1976)

Bharadwaj, V., Ghose, D., and Mani, V.

Mani, V., and Ghose, D.

Bharadwaj, V., Ghose, D., and Mani, V.

Bataineh, S., and Robertazzi, T. G. (1992)

Baumgartner, K. M., and Wah, B. W. (1989)

Bokhari, S. H. (1987)

Shin, K. G., and Chang, Y:C. (1989)

Stone, H. S. (1977)

1977), 85-93.

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 29, NO. 4 OCTOBER 1993

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 10, 2008 at 21:16 from IEEE Xplore. Restrictions apply.

1201 Mirchandaney, R., Towsley, D., and Stankovic, J. A. (1989)
Analysis of the effects of delays on load sharing.
IEEE Transactwns on Computers, C-38 (Nov. 1989),
1513-1525.

Optimal load balancing in a multiple processor system
with many job classes.
IEEE Transactwns on Sofhvare Engineering, SE-11 (May
1985), 4914%.

Complexity of scheduling parallel task systems.
SL4M Journal on Discrete Mathematicr, 2 (Nov. 1989),
473-487.

[21] Ni, L. M., and Hwang, K. (1985)

[22] Du, J., and h u n g , J. Y.-T. (1989)

[23] Blazewicz, J., Drabowski, M., and Weglarz, J. (1986)
Scheduling multiprocessor tasks to minimize schedule
length.
IEEE Transactions on Computers, C-35 (May 1986),
389-393.

Zhao, W., Ramamritham, K., and Stankovic, J. A. (1987)
Preemptive scheduling under time and resource
constraints.
IEEE Transactwns on Computers, C-36 (Aug. 1987),
949-960.

[24]

Thomas G. Robertazzi (S’75-M81--SM’91) received the B.E.E. degree from
the Cooper Union, New York, NY, in 1977 and the Ph.D. degree in electrical
engineering from Princeton University, Princeton, NJ, in 1981.

During 1982-1983 he was an Assistant Professor of Electrical Engineering
at Manhattan College, Riverdale, NY. Since 1983 he has taught and conducted
research at the Electrical Engineering Department of the State University of
New York at Stony Brook, where he is presently an Associate Professor. During
the Fall of 1990, Prof. Robertazzi was a Visiting Research Scientist at Columbia
University’s Center for Xlecommunications Research.

communication and computer systems. Dr. Robertazzi has been a member of the
INFOCOM Technical Program Committee since 1989.

His research interests are in the area of the performance evaluation of

ROBERTAZZI: PROCESSOR EQUIVALENCE FOR DAISY CHAIN LOAD SHARING PROCESSOR 1221

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 10, 2008 at 21:16 from IEEE Xplore. Restrictions apply.

