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A linear daisy chain of processors where processor load is 

divisible and shared among the processors is examined. It is 

shown that two or umre processors can be collapsed into a single 

equivalent processor. This equivalence allows a characterization 

of the nature of the minimal time solution, a simple method to 

determine when to distribute load for linear daisy chain networks 

of processors without front end communication subprocessors 

and closed form expressions for the equivalent processing speed 

of in f i t e ly  large daisy c h a h  of processors. 
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Parallel computation has been of great interest in 
recent years. A parallel machine consists of a number 
of processors and an interconnection network to tie 
them together. This work examines a specific parallel 
processing problem on a specific architecture that 
allows the study of the integration of communication 
and computation. While these two issues are often 
studied separately, a combined study is rare. 

The situation to be considered involves a linear 
daisy chain of processors, as is illustrated in Fig. 1. 
A single “problem” (or job) is solved on the network 
at one time. It takes time w;T,, to solve the entire 
problem on processor i. Here wi is inversely 
proportional to the speed of the ith processor and 
Tcp is the normalized solution time when wi = 1. 
It takes time z;Tcm to transmit the entire problem 
representation (data) over the ith link. Here zi is 
inversely proportional to the channel speed of the ith 
link and T,, is the normalized transmission time when 
z; = 1. 
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Fig. 1. Linear chain of processors. 

It is assumed that the problem representation can 
be divided amongst the processors. Thus the problem 
representation is said to be “divisible”. That is, 
fraction a; of the total problem is assigned to the ith 
processor so that its computing time becomes a; w;Tcp. 
It is desired to determine the optimal values of the 
0;s so that the problem is solved in the minimum 
amount of time. The situation is nontrivial as there 
are communication delays incurred in transmitting 
fractional parts of the problem representation to each 
processor from the originating processor. 

There is a good deal of literature on scheduling 
and load sharing in multiprocessors [5-7, 14-21]. 
However most work to date assumes that a job can 
be assigned to at most one processor. Only recently 
has there been interest in multiprocessor scheduling 
with jobs that need to be assigned to more than one 
processor [22-241. In this work, one has a single job 
that can be arbitrarily partitioned among a number 
of processors. The framework being described is 
particularly germane to processing involving large data 
files (so that communication delay is nonnegligible), 
such as sensor data processing, signal processing, 
image processing, and Kalman filtering, where the data 
can be divided among multiple processors. 

Two cases are considered: processors that 
have front end communications subprocessors for 
communications off-loading so that communication 
and computation may proceed simultaneously, 
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Fig. 2 Timing diagram: Network with front-end communications 
subprocessors. 
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Fig. 3. Timing diagram: Network without frontend 
communications subprocessors. 

and processors without front end communications 
subprocessors so that communication and computation 
must be performed at separate times. 

of four processors with front-end communications 
subprocessor (as in Fig. 1) is illustrated in Fig. 2. 
There is one graph for each processor. The horizontal 
axis is time. The upper half of each graph indicates 
communication time and the lower half indicates 
computation time. It is assumed that the problem 
(load) originates at the left most processor. 

At time 0, processor 1 can start working on its 
fraction, a1, of the problem in time alwlTcp. It 
also simultaneously communicates the remaining 
fraction of the problem to processor 2 in time 
(a2 + a3 + a4)z1Tcm. Processor 2 can then begin 
computation on its fraction of the problem (in time 
a2w2Tc,) and communicates the remaining load to 
processor 3 in time (a3 + a4)z2Tcm. The process 
continues until all processors are working on the 
problem. 

A similar, but not identical, situation for a linear 
daisy chain network with processors that do not have 
front-end communication subprocessors is illustrated 
in Fig. 3. Here each processor must communicate the 
remaining load to its right neighbor before it can begin 
computation on its own fraction. 

A timing diagram for a linear daisy chain network 

In [l] recursive expressions for calculating the 
optimal ais were presented. These are based on the 
simpwing premise that for an optimal allocation 
of load, all processors must stop processing at the 
same time. Intuitively this is because otherwise some 
processors would be idle while others were still busy. 
Analogous solutions have been developed for tree 
networks [2] and bus networks [3, 41. The equivalence 
of first distributing load either to the left or to the 
right from a point in the interior of a linear daisy 
chain is demonstrated in [lo]. Optimal sequences of 
load distribution in tree networks are described in 
[S, 9, 111. Closed form solutions for homogeneous bus 
and tree networks appear in [13]. 

The concept of collapsing two or more processors 
and associated links into a single processor with 
equivalent processing speed is presented here. This 
allows a complete proof (an abridged one appears 
in [l]) that for the optimal, minimal time solution all 
processors must stop at the same time. Moreover, 
for the case without front end communications 
subprocessors, it allows a simple algorithm, described 
in Section 111, to determine when it is economical to 
distribute load amongst multiple processors. Finally, in 
Section IV, the notion of equivalent processors enables 
the derivation of simple closed-form expressions for 
the equivalent speed of a linear daisy chain network 
containing an infinite number of processors. This 
provides a limiting value for the performance of this 
network architecture and load distribution sequence 
P11. 

I I .  EQUIVALENT PROCESSORS 

Consider a linear daisy chain network of N 
processors as in Fig. 1. Two adjacent processors may 
be combined into a single “equivalent” processor 
that presents operating characteristics to the rest of 
the network that are identical to those of the original 
two processors. Two cases, processors with and 
without front-end communication subprocessors, are 
considered. 

at the left-most processor (processor 1). If the load 
originates at an interior processor one can use the 
same methodology to collapse the processors to the 
left and the right of the originating processor into 
equivalent processors and then collapse the remaining 
three processors into a single equivalent processor. 

In both cases it is assumed that the load originates 

A. Front End Communications Subprocessors 

We start with the N - 1st and Nth processors, as 
illustrated in Fig. 4. The figure begins at the moment 
when the load has finished being transmitted to the 
N - 1st processor from the N - 2nd processor. As 
in [l], the N - 1st processor keeps & N - I  fraction of 
what it receives and transmits the remaining 1 - & ~ - 1  
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'N 

pN s 
fraction to the Nth processor. The total load received 

the N - 1st Processor from the N - 2nd is ( O N - 1  + 
a ~ ) .  The time each is active, from the figure, is 

nus one can recursively show that for a network of 
N processors the optimal solution occurs when all 
processors stop at the same time. 

B. No Front-End Communications Subprocessor 

T N - 1  = & N - I ( ~ N - I  + ~ N ) W N - I T ~ ~  (1) 

TN = (1 - & N - ~ ) ( Q N - ~  + a N ) Z N - l T c m  

+ (1 - ~ N - I ) ( ~ N - I  + ( Y N ) w N T ~ ~ .  

when both processors stop at the same time, the 
possibilities T N - ~  2 TN and T N - ~  5 TN must be 
examined. If T N - ~  2 TN,  simple algebra results in 

(2) Again, consider the N - 1st and Nth processors 
in a linear chain. Fig. 5 starts from the moment when 
load has finished being transmitted from the N - 2nd 
to the N - 1st processor. Again, as in [l], the N - 1st 
processor keeps & ~ - l  fraction of what it receives and 
transmits the remaining 1 - & ~ - 1  fraction to the Nth 
processor. From Fig. 5, the time each is active is 

To prove that the minimal time solution occurs 

(3) 
ZN-1Tcm + W N T c p  

W N - 1 T c p  + Z N - l T c m  + W N T c p  
A N - 1  2 

TN-I  = ( l - & N - l ) ( a N - l  a N ) Z N - l T c m  

(6) 

minTSo1 = (min&N-l)(aN-l + C Y N ) W N - ~ T ~ ~  (4) + (1 - G N - I ) ( Q N - I  + ~ N ) w N T ~ ~  (7) 

with equality occurring when both processors stop at 
the same time. Minimizing the solution time, Tsol = + & N - I ( Q N - I  + Q N ) w N - ~ T ~ ~  
TN- 1, clearly requires TN = ( l - d N - l ) ( o N - l  + @ N ) Z N - l T c m  

- 

so that the optimal value of & ~ - l  occurs for equality 
in (3). The quantity ( Q N - ~  + a ~ )  is not involved in the 
minimization since the value of & ~ - 1  is unaffected by 
the total load, ( ( Y N - ~  + CYN),  delivered to the N - 1st 
processor. Put another way, the optimization involves 
the fraction of load being allocated between P N - 1  

and P N ,  not the total load allocated to these two 
processors. The other half of the proof, for T N - ~  5 TN,  
is similar. 

communications subprocessors can be replaced by a 
single processor with equivalent speed constant: 

The two processors with front-end (fe) 

(5) 
Here & ~ - l  is given by (3) with equality. The 

solution time is divided by the normalized computation 
time to yield the equivalent speed constant. Thus, 
starting with the N - 1st and Nth processors, the 
entire linear chain of processors can be collapsed, 
two at a time, into a single equivalent processor. 

Once again, to prove that the minimal time solution 
requires both processors to stop at the same time, the 
cases T N - ~  2 TN and T N - ~  5 TN can be considered. 
For T N - ~  2 TN,  simple algebra results in 

with equality occurring when both processors stop 
at the same time. From (6) the solution time can be 
rewritten as 

TsoI = T N - 1  = ( a N - 1  + a N ) z N - l T c m  

4- & N - I ( ~ N - I  Q N ) ( w N - ~ T ~ ~  - Z N - l T c m ) .  

(9) 

The sign of the term ( w N - ~ T ~ ~  - Z N - ~ T ~ ~ )  now 
becomes important. If it is positive, minimizing Tsol 

is equivalent to minimizing & ~ - l  and the optimal 
solution occurs at equality for (8). In other words, if 
W N - ~ T ~ ~  > Z N - ~ T ~ ~ ,  communication is fast enough 
relative to computation that the distribution of load is 
economical. Again, ( ( Y N - ~  + O N )  is not involved in the 
minimization. 
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On the other hand, if (wN-lTcp - Z N - l T c m )  

is negative, then minimizing Tsol is equivalent to 
maximizing & ~ - 1  at & ~ - 1  = 1. That is, communication 
speeds are slow relative to computation speed so that it 
is more economical for processor N - 1 to process the 
entire load itself rather than to distribute part of it to 
processor N .  

The case where T N - I  5 TN proceeds along similar 
lines. Again, the ability to collapse processors into 
equivalent processors allows one to extend the proof 
that two processors must stop at the same time for a 
minimal time solution to N processors. 

Ill. WHEN TO DISTRIBUTE L O A D  

A practical problem for the case without front-end 
communications subprocessor is to compute the 
equivalent computation speed of a linear daisy chain 
network when, in fact, the optimal solution may 
not make use of all processors, because of too slow 
communication speeds. Again, if the load originates at 
the left-most processor, this can be done by collapsing 
the processors, two at a time, from right to left in 
Fig. 1, into a single equivalent processor. However, 
when loolung at two adjacent processors, say the i - 1st 
and the ith (where the ith is an equivalent processor 
for processors i, i + 1,. . .), one must determine whether 
or not it is economical to distribute load. That is, 
one seeks the faster of either the solution with 
both processors, Tboth, or with just the single i - 1st 
processor, Tsingle: 

Tboth = (1 - 6 ' - 1 ) ( 0 ; - 1  + O ; ) Z ; - l T c m  

+ &i-l(ai-l + a;)wi-lTcp (10) 

(11) Tsingie = (ai-1 + ai)wi-lTcp* 

Here fraction 6ipl of the total load, (ai-1 +ai), 
is assigned to processor i - 1 and fraction 1 - 4; is 
assigned to processor i. If Tshgie < Tboth then the ith 
processor is removed from consideration and the 
equivalent processing speed constant, with no front 
end (nfe) communication subprocessor, is 

If Tsingle > Tboth then load distribution is economical 
and the two processors are collapsed into a single 
equivalent processor with speed constant: 

From (8): 

Note that in (13) factors of (ai-1 + ai) cancel in 
the numerator and denominator. 

By keeping track of whch of (10) and (11) is 
smaller, it is possible to determine whch processors 
to remove from the final network. 

to the situation when the load originates at a processor 
which is located in the interior of the network. The 
parts of the network to the left and to the right of the 
originating processor can be collapsed, into equivalent 
processors, following the previous procedure. The 
remaining three processors (left, originating, right) 
can then be further collapsed into a single equivalent 
processor. Naturally, it must be checked whether the 
inclusion of the left and/or right equivalent processor 
leads to a faster solution. 

Note that the above procedure can also be applied 

IV. INFINITE N U M B E R  O F  PROCESSORS 

A difficulty with the linear network daisy chained 
architecture is that as more and more processors are 
added to the network, the amount of improvement 
in the equivalent speed of the network approaches 
a saturation limit. Intuitively, this is because of 
the overhead in communicating the problem 
representation down the linear daisy chain in what is 
essentially a store and forward mode of operation. 

equivalent processing speed of an infinite number of 
homogeneous processors and links. These provide a 
limiting value on the performance of this architecture. 
The technique is similar to that used for infinitely sized 
electrical networks to determine equivalent impedance. 

Let the load originate at a processor at the left 
boundary of the network (processor 1). The basic idea 
is to write an expression for the speed of the single 
equivalent processor for processors 1,2 . .  . CO. This is a 
function of the speed of the single equivalent processor 
for processors 2,3. .  . CO. However these two speeds 
should be equal since both involve an infinite number 
of processors. One can simply solve for this speed. 

Consider, first, the case where each processor 
has a front-end communication sub-processor. Let 
w; = w and z; = z. Let the network consist of PI and 
an equivalent processor for processors 2,3.. .CO. Then: 

- 

It is possible to develop simple expressions for the 

(15) - b1w. eq 

But from (3) with equality, and making the above 
assumption, 

zp + w& 
,+,fe - W 

e q -  w + z p + w &  

where p = Tcm/TCp. Solving for wFq results in 

(17) 
- z p  + J / ( Z ~ ) ~  + 4wzp 

2 
WFq = 

The solution time for such an infinite network is 

In a similar manner, an expression for the 
simply given by Tsoi = wkTcp.  

equivalent processing speed of a linear daisy chain 
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network with an infinite number of processors with 
no front-end communication subprocessors can be 
determined. Again, the load originates at processor 1 
at the left boundary of the daisy chain. 

wnfe = m. eq 

The solution time for t h s  infinite network is simply 

This last expression is somewhat intuitive. Doubling 
given by Tsol = w$Tcp. 

w and z doubles w::. Doubling either w or z alone 
increases w$ by a factor of 4. These results agree 
very closely with numerical results presented in [l]. It 
is straightforward to show that w& < w::. Thus, in this 
limiting case, solution time is always reduced through 
the use of front-end processors. 

calculate the limiting performance of an infinite sized 
daisy chain when the load originates at a processor at 
the interior of the network (with the network having 
infinite extent to the left and the right). Expressions 
(17) or (18) can be used to construct equivalent 
processors for the parts of the network to the left and 
right of the originating processor. The resulting three 
processor system can then be simply solved [l, 121. 

It is also possible to use the above results to 

V. CONCLUSION 

The concept of collapsing two or more processors 
into an equivalent processor has been shown to be 
useful in examining a variety of aspects related to these 
linear daisy chain networks of load sharing processors. 
Expressions for the performance of infinite chains 
of processors are particularly useful as if one can 
construct a finite-sized daisy chain that approaches 
the performance of a hypothetical infinite system, 
one can feel comfortable that performance cannot be 
improved further for this particular architecture and 
load distribution sequence [ll]. 
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