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Optimizing Computing Costs
Using Divisible Load Analysis

Jeeho Sohn, Thomas G. Robertazzi, Senior Member, IEEE,
and Serge Luryi, Fellow, IEEE

Abstract —A bus oriented network where there is a charge for the amount of divisible load processed on each processor is
investigated. A cost optimal processor sequencing result is found which involves assigning load to processors in nondecreasing
order of the cost per load characteristic of each processor. More generally, one can trade cost against solution time. Algorithms are
presented to minimize computing cost with an upper bound on solution time and to minimize solution time with an upper bound on
cost. As an example of the use of this type of analysis, the effect of replacing one fast but expensive processor with a number of
cheap but slow processors is also discussed. The type of questions investigated here are important for future computer utilities that
perform distributed computation for some charge.

Index Terms —Bus network, computer utility, cost, divisible load, load sharing.

——————————   ✦   ——————————

1 INTRODUCTION

HE emergence of distributed computing as a viable
technology and the decreasing pricing of computer

power leads to the possible emergence of computer
“utilities” in the near future. These utilities would charge
customers for distributed access to computer resources. To
some extent, current computer service leasing companies
embody this approach. An important question for the util-
ity then becomes the management of computer resources to
provide low cost service. In this spirit, this paper provides
an approach to determine the minimum cost manner in
which load should be divided among processors that a
customer is being charged for access to.

There are many possible ways to classify load sharing
problems. One of them is the classification by the type of
load (job) submitted to the system. This leads to indivisible
load theory and divisible load theory. An indivisible load (or
job) is a load that cannot be divided so that all of the load
must be processed by one processor. There has been inten-
sive work on indivisible load theory by many parallel and
distributed system researchers [1], [2], [3], [4], [5], [6], [7],
[8], [9], [10], [11], [12], [13]. Only more recently has there
been interest in multiprocessor scheduling with loads that
need to be assigned to more than one processor [14], [15],
[16]. A divisible load (or job) is a load that can be arbitrarily
partitioned in a linear fashion and can be distributed to
more than one processor to achieve a faster solution time.
Applications include both multiprocessor scheduling and
distributed systems. It is particularly suited to the process-
ing of very long linear data files, such as occur in signal and
image processing, experimental data processing, Kalman
filtering, cryptography, and genetic algorithms.

Optimal load sharing for divisible loads was first con-
sidered for linear daisy chain networks in [17]. Related re-
sults later appeared for tree networks [18], bus networks
[19], [20], hypercubes [34], and two-dimensional meshes
[35]. There was also work on asymptotic results [21], [23],
[28], closed form solutions [22], time-varying models [26],
multiple job submission [25], load distribution sequences
[27], [29], [30], [31], [33], the modeling of fixed communica-
tion delays [36], and real time systems [37]. The first book-
length treatment of divisible load analysis appears in [45].

All of this prior work on divisible load analysis is based
on the simplifying premise that, for an optimal allocation of
load, all processors must stop processing at the same time.
Intuitively, this is because, otherwise, some processors
would be idle while others were still busy. An analytic
proof for bus networks that, for a minimal solution, time all
processors must finish computing at the same time is
shown in [24], [32]. Previous proofs were heuristic.

There is a fairly large literature on economic models for
computer and telecommunication networks. A representative
sample appears in [39], [40], [41], [42], [43], [44]. But, until
now, there has been no research in divisible load theory on
the effect of computing cost. When investigating the role of
computing cost, it is apparent that the user should be able to
trade cost against solution time. That is, very fast solutions
are more expensive than slower solutions. Put another way, a
faster processor usually has a more expensive computing
cost and a slower processor has a less expensive computing
cost in practical situations. Thus, when each processor has a
different computing cost, the total computing cost for a given
workload depends on how much each processor is used and
for how long. This paper will first examine the minimal total
computing cost scheme, which does not sacrifice the proc-
essing finish time and, then, discuss the case for further re-
ducing the total computing cost with some degradation in
processing finish time.

This paper is organized as follows: Definitions, the load
sharing problem for the determination of the optimal load
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allocation found in earlier works, and existing load sharing
theory for the minimal processing finish time as a function of
the speed of the load origination processor are presented in
Section 2. The optimal sequence of processors yielding the
minimal computing cost is discussed in Section 3, and nu-
merical methods for further reducing the computing cost are
proposed in Section 4. Performance evaluation results appear
in Section 5. Finally, this paper concludes with Section 6.

2 PRELIMINARIES

The network model to be considered here consists of N
processors interconnected through a bus type communica-
tion medium, as in Fig. 1. Any one of N processors can re-
ceive a new arriving load and distribute this workload to
the other processors in order to obtain the benefits of par-
allel processing. Without loss of generality, it will be as-
sumed that the load is delivered to the first processor (P1)
and this processor becomes the load origination processor.
Each processor is interfaced with the network via a front-
end communication processor for communications off-
loading. That is, the processors can communicate and com-
pute at the same time [45].

The following notations will be used throughout this
paper:

an: The fraction of the entire processing load that is as-
signed to the nth processor (Pn).

wn: The inverse of the computing speed of Pn.
Z: The inverse of the channel speed of the bus.
Tcp: The size of the normalized computational load in time,

i.e., the time that it takes for Pn to process (compute) the
entire load when wn = 1.

Tcm: The size of the normalized communication load in
time, i.e., the time that it takes to transmit the entire set
of data over the bus when Z = 1.

Tn: The time for Pn to complete receiving the corresponding
fraction (an) of load from the load origination processor
(P1).

Tf : The finish time of the entire processing load, assuming
that the load is completely delivered to the origination
processor at time zero.

The timing diagram for this distributed system is de-
picted in Fig. 2. In this timing diagram, communication
time appears above the axis and computation time appears
below the axis.

At time T1 = 0, the load origination processor (P1) keeps
the first fraction of the workload (a1) for its own computa-
tion, which will take a time of Tf to finish, and simultane-
ously transmits the second fraction of the workload (a2) to
P2 in time T2 - T1. Note that, as P1 has a front-end processor
for communications off-loading, it may both compute and
communicate at the same time. When the transmission of
the second fraction of the workload is finished at time T2, P2
starts computing the received workload and P1 begins
transmission of the third fraction of the workload of P3 in
time T3 - T2. This procedure continues until the last proces-
sor. For (finish time) optimality, all the processors must
finish computing at the same time. Intuitively, this is be-
cause, otherwise, the processing finish time could be re-
duced by transferring load from busy processors to idle
ones.

Based on the above description, one can construct the
following N -1 equations by equating the computation time
of Pn with the transmission time plus the computation time
of Pn+1.

Tf - Tn = (Tn+1 - Tn) + (Tf - Tn+1) n = 1, 2, º, N - 1.   (1)

Fig. 1. Distributed computing system consisting of N processors
equipped with front-end processors connected through a bus.

Fig. 2. Timing diagram of N bus interconnected processors with load origination at P1.
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Here, the computation time of Pn and the transmission time
of Pn+1 are:

Tf - Tn = anwnTcp            n = 1, 2, º, N        (2)

Tn+1 - Tn = an+1ZTcm n = 1, 2, º, N - 1.          (3)

Then, (1) can be rewritten using (2) and (3) as:

anwnTcp = an+1ZTcm + an+1wn+1Tcp   n = 1, 2, º, N - 1.    (4)

These equations can be solved
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There are N - 1 equations and N unknowns (an, n = 1, 2,
º, N). An additional equation is called a normalization
equation, which states that the sum of all the allocation
fractions should sum to one.
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By putting together (5) and (7), one can find the optimal
fraction of the workload that minimizes the total processing
finish time. The closed-form expressions are:
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Note that this solution is a product form solution. It is
interesting that this deterministic model has such a solu-
tion, as product form solutions are usually associated with
stochastic queuing and Petri networks. It is not clear at this
time whether this similarity is more than coincidental.

Finally, the processing finish time Tf is:

Tf = a1w1Tcp. (11)

These equations also happen to model the case when a
control processor, which does no computing of its own,
distributes the load to the other processors. In this case, the
order of load distribution does not affect the finish time.
However, the network structure in this paper is different.
Here, the load origination processor does compute. In this
case, the processing finish time, described in the above
equations, can be further reduced by a special investigation
of the relationship between the processing finish time and
the inverse speed of the load origination processor (w1). It
can be shown that the processing finish time can be re-
duced by carefully choosing the load origination processor.

Once a set of N inverse processor speeds, S(w) = {w1, w2,
º, wN}, is given, the processing finish time for the type of
network being discussed here depends on the speed of the

load origination processor (w1). The finish time is minimized
[20] when w1 is chosen to be the smallest (that is, the highest
speed) in the set S(w). As an example, the processing finish
time for a three processor network is then [19], [20]:
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w T ZT w T ZT w T

ZT ZT w w w T w w w w w w T

cp cm cp cm cp

cm cm cp cp

1 2 3
2

1 2 3 1 2 2 3 3 1
2

+ +

+ + + + + +

4 94 9
2 7 2 7 2 7

. (12)

For general N processors case, the finish time is given by:
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The denominator of Tf is independent of switching any wi
with any other wj (i, j = 1, 2, º, N and i π j). Only the nu-
merator is dependent on switching w1 with any other wk
(k = 2, 3, º, N) and is minimized when w1 is chosen to be
the smallest (i.e., fastest) wi.

Equation (13) will be used in the next section. Note that,
as shown in the Appendix, the processing finish time is
independent of the load distribution sequence to the proc-
essors. That is, no matter whether the load origination
processor transmits the workload to the next fastest proces-
sor first or to the slowest processor first, the processing fin-
ish time remains the same. The processing finish time de-
pends only on the speed of the load origination processor
and is minimized when P1 is chosen to be the fastest proc-
essor among all the processors in the distributed computing
system. Note that, in this paper, we do not consider deliv-
ering the load in installments to each processor as in [30].

3 MINIMIZING THE TOTAL COMPUTING COST

If the computing “costs” for the processors are not identi-
cally valued, the total computing cost for the entire work-
load varies and depends on how much of the workload is
processed in each processor. Intuitively, if the cheaper
processors are more utilized than the more expensive proc-
essors, then the total computing cost will be reduced. In
order to minimize the total computing cost, therefore, the
cheaper processors should be more utilized. This leads to a
special arrangement for the sequence of the processors (or
the sequence of the load distribution).

Let us denote the set Q(1,2,º,N) as an ordered set of N
processors. The set Q(1,2,º,N) determines the sequence of
load distribution. For instance, for the set Q(2,3,1), P2 is the
load origination processor and P3 is the processor which
receives the workload from P2 first, and P1 receives the
workload from P2 second.

The notation cn will be used for the computing cost of Pn
whose unit is “cost per second.” The unit of the inverse com-
puting speed of the nth processor, wn, is “second per load”
since wn is defined as the inverse of the computing speed.
Recall that Tcp is the size of the normalized computational
load in time (see the previous section). Then, the unit of
cnwn becomes the “cost per load.” Now ancnwnTcp represents
the computing “cost” of Pn for the fraction of workload
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received from the load origination processor. Let us denote
the notation Ctotal for the total computing cost for the entire
workload, and the expression for this is:

C c w Ttotal n n n cp
n

N

=
=

Âa
1

.       (14)

The optimal sequence of processors Q(1,2,º,N) which mini-
mizes (14) is described in the following theorem. Note the
abuse of notation, we use the sequence 1,2 ... N irrespective
of P1, P2 ... PN.

LEMMA 1. If Ctotal(Q(1,2,º,j,j+1,º,N)) is less than or equal to
Ctotal(Q(1,2,º,j+1,j,º,N)), then cjwj £cj+1 wj+1.

PROOF. For the general N processors case, the fractions of
the workload are
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where, from (13),
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Again, D is not changed by switching any set of wi
with any other wj (i, j = 1, 2, º, N and i π j).

The total computing cost is, from (14), then
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Consider two arbitrary adjacent processors, Pj and
Pj+1, and let their positions in the sequence be inter-
changed. In the following, it will be shown that, if
Ctota l(Q (1 ,2 ,º , j , j+1 ,º ,N ))  is less than or equal to
Ctotal(Q(1,2,º,j+1,j,º,N)), then cjwj £ cj+1wj+1.
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After some cancellations, the only remaining terms
are

(ZTcm + wj+1Tcp)cjwj + wjTcp ◊ cj+1wj+1 £
(ZTcm + wjTcp)cj+1wj+1 + wj+1Tcp ◊ cjwj.

Further cancellation brings

cjwj £ cj+1wj+1.

This proves Lemma 1 and leads to the next lemma. �

LEMMA 2. The total computing cost for the bus network of this
paper, Ctotal, is minimized over all load distribution se-
quences only if the sequence of the load distribution is ar-
ranged to satisfy the following condition:

c1w1 £ c2w2 £ � £ cNwN.     (22)

PROOF. A proof by contradiction will be given. Suppose that
one has N processors in some load distribution se-
quence other than (22) that minimizes cost over all
load distribution sequences. Assume that the cnwn n =
1, 2 ... N are not all identically valued. Then, there is at
least one pair of adjacent processors such that cjwj >
cj+1wj+1. But, this fact and the presumed cost minimi-
zation of the indicated sequence contradict Lemma 1.�

THEOREM 1. The total computing cost for the bus network of this
paper, Ctotal, is uniquely minimized over all load distribu-
tion sequences if and only if the sequence of the load distri-
bution is arranged to satisfy the following condition:

c1w1 £ c2w2 £ � £ cNwN.     (23)

PROOF. The “only if” part of the proof is supplied by
Lemma 2. For the “if” part, one can show that, if cjwj £
cj+1wj+1, then Ctotal(Q(1,2,º,j,j+1,º,N)) is smaller than
Ctotal(Q(1,2,º,j+1,j,º,N)) by running the above proof of
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Lemma 1 in the reverse direction. This mainly in-
volves doing equivalent algebraic manipulations to
both sides of the equations until it is shown that
Ctota l(Q (1 ,2 ,º , j , j+1,º ,N )) is less than or equal to
Ctotal(Q(1,2,º,j+1,j,º,N)).

For any initial load distribution sequence, by con-
tinuing to interchange selected adjacent processors one
can lower or, at least, maintain at the same level, the
overall cost. This can be done constructively by inter-
changing the lowest cost per load processors with its
(their) left neighbor(s) until it (they) can not be moved
further “left”. That is, until it (they) are at the lowest
possible index. One then repeats this procedure with
the second lowest cost per load processor(s) and so on
... One eventually reaches the sequence

c1w1 £ c2w2 £ � £ cNwN.

Since the above series of transformations can be
done starting from any initial load distribution se-
quence, we have found the unique load distribution
sequence for which cost can not be further reduced. �

In other words, the processor with the lowest computing
cost per load should be assigned to the load origination
processor (P1) and the processor with the second lowest
computing cost per load should receive the workload ear-
lier than any other processors, and the last portion of the
load should be delivered to the most expensive processor.

Note that a simplified proof for the N = 3 processor case
appears in [38].

4 FURTHER REDUCING THE TOTAL COMPUTING
COST

The total computing cost Ctotal can be further reduced as
low as

C c w Ttotal n N n n cp=
=
min

,1,2 �

.        (24)

But, there is a significant difference if one reduces Ctotal to
be less than that found in the previous section. The proc-
essing finish time Tf will increase. The timing diagram for

this situation appears in Fig. 3. It is easy to see that it is pos-
sible to algorithmically minimize the cost subject to a
bound on the delay. First, arrange the processors such that
c1w1 £ c2w2 £ � £ cNwN is satisfied. Note that it is assumed
that the “cheapest” processor receives the workload from
the outside environment and becomes the load distribution
processor. Next, increase the processing finish time by al-
lowing some delay t. The new processing finish time is

T Tf
new

f= + t .    (25)

Increase a1 until a1w1Tcp reaches Tf
new  while decreasing aN

by the same amount. The idea is that if a greater portion of
the workload is processed in the cheaper processor than in
the more expensive processor, the total computing cost Ctotal

will be reduced. The procedure is repeated for the next
processor. That is, increase a2, a3, º, while decreasing aN.

If aN becomes zero, then set aN = 0 and the load will be not
delivered to the most expensive processor. Go to the next

most expensive processor and decrease aN-1. If aN-1 be-

comes zero too, then decrease aN-2, and so forth.
The above algorithm is given for purposes of exposition.

For implementation, two numerical algorithms will be pre-
sented in the following. The first algorithm, the cost mini-
mizer, finds an, which minimizes the total computing cost

further when the processing finish time is bounded by Tf
new .

The second algorithm, the finish time minimizer, finds an,
which minimizes the processing finish time with a bound
on the total computing cost, namely Cgiven.

4.1 Cost Minimizer
The objective function is as follows:

OBJECTIVE: min
T Tf f

new£
Cost

Assume that the ciwis are in nondecreasing order. Also,
initially assume that all ais are zero. The algorithm is:

Fig. 3. Timing diagram of N bus interconnected processors for further reducing the total computing cost Ctotal by increasing the processing finish
time.
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and an+1 = an+2 = � = aN = 0.

As can be seen, this algorithm essentially allocates load
for each processor in turn (from least expensive to most
expensive in terms of cost/load), up to the upper bound on
finish time until all the load has been allocated. Thus, the
finish time constraint is satisfied while cost is minimized.

4.2 Finish Time Minimizer
The objective function is:

OBJECTIVE: min
C C f

given

T
£

One can develop an algorithm for this problem by first
ordering the processors in terms of nondecreasing com-
puting cost per load (c1w1, c2w2, ... ciwi ... cNwN). Then, it is
clear that, for the subset of i = 1, 2, ... r processors, finish
time (from (8)-(11)) is a decreasing function of r. One must
find the maximal value of r such that the total cost is (just)
below the desired threshold value, Cgiven. This can be done
efficiently using a classical optimization technique such as
binary search. That is, one first checks if cost is below the
threshold for r/2. Depending on the result, one then checks
if cost is below the threshold for either r/4 or 3r/4 and so
on ... Once the correct value of r is found, if equality of the
bound is desired, one can use the first r + 1 processors and
increase the finish time so that Ctotal just equals Cgiven.

5 RESOURCE MANAGEMENT EVALUATION

Based on the previous results, a number of computer re-
source management results were obtained via simulation
for three cases. The first case is the one described in Sec-
tions 2 and 3, namely, finding the optimal sequence of
processors for the minimal processing finish time and the
minimal total computing cost when all the processors finish
computing at the same time. Next, some performance ob-
servations are described for further reducing the computing
cost when the processing finish time is delayed, as dis-

cussed in Section 4. In the final case, we investigate the use
of this methodology to ascertain whether performance can
be improved by replacing one fast but expensive processor
with a number of cheap but slow processors.

5.1 Optimal Sequencing
Table 1 is obtained for the values of Z = Tcm = Tcp = 1, w1 = 1,
c1 = 10, w2 = 2, c2 = 3, w3 = 3, and c3 = 1. For these values, the
fastest processor has the most expensive computing cost
and the slowest processor has the cheapest computing cost.
A number of basic points are raised in a consideration of
this table. Apparently, the odd numbered examples (rows)
are not of concern since, in these examples, Ctotal is higher
than that in the even numbered examples for the same Tf. In
Example 1, the processing finish time Tf is the smallest,
while the total processing cost Ctotal is the highest. On the
other hand, the largest Tf occurs in Example 6, yet Ctotal is
the lowest. Here, one thus has a choice between a smaller
processing finish time or a smaller total computing cost. If
one wants a smaller processing finish time, regardless of the
total computing cost, sequence, Q(1,3,2) will be an appropriate
choice. The sequence Q(3,2,1) is suitable when a smaller total
computing cost is desirable, but a smaller processing finish
time is not required. By choosing the sequence Q(2,3,1), a
moderate processing finish time and a moderate total com-
puting cost will be achieved.

5.2 Further Reducing the Total Computing Cost
Two plots, Fig. 4 and Fig. 5, are obtained from the two algo-
rithms, the cost minimizer (minimizing the total computing
cost with a bound on processing finish time) and the finish
time minimizer (minimizing the processing finish time with
a bound on total computing cost), respectively. In both
cases, Z = Tcm = Tcp = 1, w1 = 1, c1

3
2= , w2 = 2, c2 = 1, w3 = 3,

and c3
3
4= . Again, for these values, the faster processor has

the more expensive computing cost and the slower proces-
sor has the cheaper computing cost.

In Fig. 4, each point in the most upper curve represents
the lowest possible total computing cost for the corre-
sponding processing finish time. As shown in this figure,
the total computing cost is monotonically decreasing as the
processing finish time increases, which means that the
lower the total computing cost is, the greater the processing
finish time is, and vice versa.

TABLE 1
PROCESSING FINISH TIME AND TOTAL COMPUTING COST

FOR SIX CASES OF SEQUENCES

Case Sequence Tf Ctotal

1 Q(1,2,3) 0.667 8.333

2 Q(1,3,2) 0.667 8.167

3 Q(2,1,3) 0.889 7.445

4 Q(2,3,1) 0.889 6.667

5 Q(3,1,2) 1.000 7.000

6 Q(3,2,1) 1.000 6.333
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Fig. 4. The total computing cost and as, according to the cost mini-
mizer algorithm.

Fig. 5. The processing finish time and as, according to the finish time
minimizer algorithm.

In Fig. 5, processing finish time and the processor load
fractions are plotted versus the total computing cost for
finish time minimization with an upper bound on total
computing cost (using an algorithm in [38] producing
equivalent results to those of the algorithm in this paper). In
the diagram, Tf = a1 for this parameterization (w1 = Tcp = 1)
from (11). Also, in this diagram, a simple minimal finish
time solution, without regard to cost, occurs at Ctotal = 1.689
and Tf = 0.674. Cost can be reduced to a minimal value of
Ctotal = 1.5 with a corresponding increase in finish time at
Tf = 1.0 and a1 = 1.0. That is, only processor 1, the most cost
effective of the processors in terms of ciwi, is used.

5.3 Splitting Processors
An important question in current computer architecture and
microelectronics is whether it is better to design a system
using one very fast but expensive processor or to use many
cheap but slow processors instead. This question arises, for

instance, when one considers fast but expensive semicon-
ductor technologies, such as gallium arsenide in relation to
the more traditional silicon implementations of computers.
The methodology developed here can be used as a tool to
answer questions of this type. Three example cases will be
presented in this regard. For all cases, Z = Tcm = Tcp = 1.

Fig. 6 depicts the case when one replaces (splits) one fast
but expensive processor (w1 = 1, c1 = 1) with N cheap but

slow processors (wn = N, cn N= 1 ). Note that all the proces-

sors have the same computing cost per load, i.e., cnwn = 1
for all n, including the original processor, in order to pre-
serve fairness. That is, if one splits one processor into N
processors, then the computing speed of each one of N
processors becomes N times slower and the computing cost
of each one of N processors becomes N times cheaper.
When one fast but expensive processor is used, the total
computing cost is

Ctotal = a1c1w1Tcp = 1,

(a)

(b)

Fig. 6. (a) Replacing one processor with N cost equivalent processors.
(b) The total computing cost and processing finish time against the
number of splits (processors).
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since a1 = c1w1 = Tcp = 1. The total computing cost when N
cheap but slow processors are used is

C c w Ttotal n n n cp
n

N

n
n

N

= = =
= =

Â Âa a
1 1

1,

since cnwn = Tcp = 1 for all n. Thus, the total computing cost
is unchanged with respect to the number of splits, or more
explicitly, the number of cost equivalent processors, as
shown in Fig. 6b. This is, thus, a cost conservative splitting of
the fast processor. However, the processing finish time be-
comes larger as one increases the number of cost equivalent
processors. Since the computing speed of the load origina-
tion processor also becomes N times slower when the proc-
essor is split to N cost equivalent processors, the processing
finish time increases as the number of splits increases.

The next situation studied is when there are two proces-
sors with different costs per load. Which one is better to
(cost conservatively) split for better performance? Two ex-
amples are presented in Figs. 7 and 8 to demonstrate the
types of comparisons that can be performed. For all cases,
w1 = c1 = 1 and w2 = 2. Note, in both of these cases, if P2 is
split, then P1 processes load first, followed by the split P2
processors. Alternately, if P1 is split, the split P1 processors
process load first, followed by the P2 processor. Fig. 7 illus-
trates a case where P2 is twice as expensive in cost per
load compared to P1 (though P1 is faster). This choice of

parameters is included to demonstrate the flexibility of the
cost modeling. As shown in Fig. 7b, splitting the cheaper
cost per load processor (P1) allows for less total computing
cost, while splitting the more expensive cost per load proc-
essor (P2) results in a higher total computing cost.

The underlying explanation for this behavior is as fol-
lows: In this example, cost is inversely proportional to
computing speed (as c1 = c2 = 1.0). The load allocation
equations, which are only based on finish time, automati-
cally allocate most of the load to the fastest (cheapest) proc-
essors and allocate very little load to the slower (more ex-
pensive) processors. Thus, a split of P1, the cheapest proces-
sor, allows a better subset of very cheap processors to be
created. This leads to the lowest cost solution.

Fig. 8 shows the total computing cost when the cost per
load of P1 and P2 are reversed with respect to that of Fig. 7.
Note that, here, the slower processor is also the less expen-
sive one. The computing cost per load of P2 is less than that
of P1, so splitting P2 produces the lower total computing
cost.

6 CONCLUSIONS

In this paper, the optimal load distribution sequencing of
bus network processors processing a divisible load was
examined. It was found that a minimal total computing cost

(a)

(b)

Fig. 7. (a) Splitting P1 and/or P2 into a number of cost equivalent proc-
essors when the cost per load of P1 is less than that of P2. (b) The total
computing cost Ctotal against the number of splits.

(a)

(b)

Fig. 8. (a) Splitting P1 and/or P2 into a number of cost equivalent proc-
essors when the cost per load of P1 is higher than that of P2. (b) The
total computing cost Ctotal against the number of splits.
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can be obtained by arranging the sequence of processors
such that the cheaper processors receive the workload ear-
lier than the more expensive processors do. Here, cost is
defined in terms of cost per load, cnwn. But, two factors, the
processing finish time and the total computing cost, were
found to involve a trade-off between each other. Algo-
rithms to optimize such trade-offs were presented.

It was demonstrated that one can investigate questions
of the cost and performance of different configurations of
processors. This includes questions of whether small num-
bers of high performance/cost processors or large numbers
of lower performance/cost processors are a better archi-
tectural choice.

Most importantly, this work demonstrates the tractability
of solving cost oriented models using divisible load analysis.
Divisible load analysis is, thus, a viable tool for the design of
algorithms and policies for future computer utilities.

APPENDIX

THEOREM 2. For the network of this paper with a given set of
inverse processor speeds, S(w) = {w1, w2, º, wN}, the proc-
essing finish time is minimized if

w1 = min(w1, w2, º, wN).       (28)

PROOF. The same abuse of notation as in Theorem 1 is
maintained. For the general N processors case, the
first fraction of the workload is, from (9),

a1 = [1 + k1 + k1k2 + � + (k1k2 � kN-1)]
-1, (29)

where

k
w T

ZT w T n Nn
n cp

cm n cp
= + = -

+1
1 2 1, , ,� .    (30)

The processing finish time is now
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Again, the denominator of Tf is independent of
switching any wi with any other wj (i, j = 1, 2, º, N
and i π j). Only the numerator is dependent on
switching w1 with any other wk (k = 2, 3, º, N) and is
minimized when w1 is chosen to be the smallest wi. �

Note that a simplified proof for the N = 3 processor case
appears in [38].
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