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Abstract—A computer configuration design problem where the objective is to
configure a parallel processor to do processing in a cost effective manner is
examined. The application envisioned is a specialized on-line service that rents
time on its machine. The combinatorial optimization problem involved is examined
analytically and a heuristic algorithm for its solution is provided. Lessons learned in
this work appear in the conclusion.
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1 INTRODUCTION

OVER the past several decades, a great deal of research has been
performed on the performance evaluation of computer systems.
Today, because of the declining cost of computer hardware and the
interest in electronic commerce and on-line services, the economics
or cost evaluation of networked computation is as deserving of
attention as are performance issues. In this paper, we examine a
computer configuration design problem that has implications for
the leasing of networked computer time.

We envision a scenario where a specialized on-line service
wishes to rent time on a high performance parallel machine to
users. The question to be investigated is how the parallel processor
configuration should be optimized so that, in some sense, the
parallel processor can solve a submitted problem at minimal
monetary cost to both the service, and by implication, to the user.

A number of deliberate choices were made regarding the
features of this problem:

e  single level tree (star) topology,
e divisible load,
e  linear costs for communication and computation.

Generally, these choices were made for analytical tractability.
The divisible load model in particular has, over the years, seen its
tractability proven [1] and well models problems involving data
parallelism. In spite of these innocuous choices, the related
mathematics is substantive. A secondary reason for the choices is
that they allow a comparison with earlier published work by some
of the authors [4], considering computation costs only, in bus
networks.

With these choices we seek, in this paper, to optimize the choice
of which of a set of processors to connect to which of the tree
network’s links. This is a combinatorial optimization problem we
call the “processor arrangement” problem. Unfortunately we have
not been successful in devising a simple condition to implement an
optimal processor arrangement profile (i.e., pairing of processors
to links). Instead, expressions of moderate complexity for
determining how to improve a given profile will be presented. A
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heuristic algorithm based on combinatorial local search principles
will also be described.

One more choice regarding the problem discussed in this paper
requires some explanation. In this work, there are two objective
functions to be optimized: the finish (solution) time and the total
processing and transmission cost. It is well-known that there are
several approaches to solve such multiple objective function
optimization problems. The approach taken here is to find the
minimal cost processor arrangement profile given that, for any
profile, finish time is minimized using the methodology of [1]. That
is, for each possible arrangement of processors, load is allocated so
that all processors stop computing at the same time instant and
finish time minimized for that specific arrangement profile. While
other approaches are certainly possible, we believe that the
proposed approach is a natural one for a first study.

The paper is organized as follows: The model and load
distribution scheme are presented in Section 2. In Section 3,
processor arrangement and monetary cost models are discussed.
Adjacent processor swapping is also discussed in this section. Cost
efficient processor arrangements and the necessary cost improve-
ment conditions in a single-level tree network are developed in
Section 4. The heuristic cost efficient processor arrangement
algorithm and its performance evaluation are discussed in
Section 5. Finally, the conclusion and lessons learned appear in
Section 6.

2 MoODEL, NOTATION, AND LOAD DISTRIBUTION

In this section, some necessary modeling, notation, and load
distribution equations and their background are discussed.

2.1 Model Descriptions

A single-level tree network where the root processor is equipped
with a front-end processor for communications off-loading is
considered. The presence of the front-end processor means that the
root can compute and communicate simultaneously. A single-level
tree network with (IV + 1) processors and (V) links is shown in
Fig. 1. All the processors are connected to the root processor, py, via
communication links. Associated with the links and processors are

Aol
€, Cyye

the associated linear cost coefficients ,cy and
eyl b, ..., ey, respectively. The root processor, assumed to be
the only processor at which the load arrives, partitions the total
processing load into (V + 1) fractions, keeps its own fraction «ay,
and distributes the other fractions oy, as,...,ay to the children
processors pi, ps, . .., pn, respectively, and sequentially. We do not
consider strategies of multiinstallment load distribution [1]. Each
processor begins computing immediately after receiving its
assigned fraction of load and continues without any interruption
until all of its assigned load fraction has been processed. It is
assumed that, compared to the size of the data, the time to report
solutions back to the root is negligible.
Let:

a;: The load fraction assigned to the ith link-processor pair.

w;: The inverse of the computing speed of the ith processor.

z;: The inverse of the link speed of the ith link.

T.,: Computing intensity constant: The entire load is processed in
w; Ty, seconds by the ith processor.

Tem: Communication intensity constant: The entire load can be
transmitted in z;,7,,, seconds over the ith link.

Ty: The finish time: Time at which the last processor ceases
computation.

Then, ow; T, is the time to process the fraction «; of the entire
load on the ith processor. Note that the units of «;w; T, are [load] x
[sec/load] x [dimensionless quantity] = [seconds]. Likewise,
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Fig. 1. Single level tree network: normal case.

;2 T, is the time to transmit the fraction «; of the entire load over
the ith link. Note that the units of «;2;7,,, are [load] x [sec/load] x
[dimensionless quantity] = [seconds].

2.2 Optimal Finish Time Load Distribution

An equal division of load among processors does not in general
give a minimum processing finish time, even in a homogeneous
network. Instead, it is intuitive that, to minimize the processing
finish time, the load distribution should be such that all processors
finish computing at the same time. Otherwise, the processing
finish time could be reduced by transferring some fractions of load
from busy processors to idle processors. Formal proofs of this
argument in the case of linear, bus, and tree networks appear in [1].
However, under certain sets of network parameters, in order to
minimize the processing finish time, it is not necessary that all
processors have to be utilized. In [1], conditions are found which
determine which processors should be used to process the arriving
load in the case of a single-level tree network. Still, the processors
with nonzero assigned load have to finish computing at the same
time. In this paper, it is assumed that all processors in the network
are utilized.

2.3 Fundamental Recursive Equations

The timing diagram of the process of load distribution in a single
level tree network is given by Fig. 2. In this figure, each of the
N + 1 processors has a graph associated with it. Communication to
and from each processor appears above the time axis and
computation by each processor appears below the time axis.
Fig. 2 shows the sequential distribution of load fractions, each
processor commencing computation upon receiving its load
fraction and all processors stopping at the same time. Again, it is
assumed that solutions are small enough in comparison with the
data that their transmission time back to the root is negligible.

In [4], simple conditions were found for cost optimization for a
single level tree network when only computation costs were taken
into account. One might think that when communication costs are
included that the communication and computation costs on each
branch might be collapsed into a single equivalent cost. In fact,
though, there are dependencies between the timing of events that
make the actual situation more complex. For instance, the second
link cannot receive load until the transport of load over the first
link is complete. However, all of these dependencies can be taken
into account through a series of chained linear equations. As
discussed in Section 2.2, since all processors must stop computa-
tion at the same instant in order to achieve a minimum finish time,

one can set up a series of chained linear equations reflecting this
and all other timing relationships. These equations can be solved

for the fractions of load, «;s, to be assigned to the processors:
awiTy = a1 zi1 Tem + aiiwip1 Ty i=0,.,N-1. (1)

However, rather than solving a set of linear equations, it is
simpler to chain the equations together recursively to yield:

i
Qi1 :kioz; = <Hl€j>(¥0 7 ZO,‘..,Nf 1, (2)
J=0
where
i1
= Wte ... N-1
21',+1Tcm + wi+1Tcp
The normalization equation is given as,
(Jzo-‘r(l]-’-...—ﬁ-(lj\;:l. (3)

With the normalization equation, one can then resolve the
recursive equations (2) to obtain the closed-form expression of all
as as given below. In the following, w;T;, is the time for the ith
processor to process the entire load. Likewise, 2T, is the time to
communicate the entire load over the ith link. Naturally, (2T, +
w;T,,) is the time for the ith processor to receive and process the
entire load. For 1 <n < N, one finds:

1 n—1 N
Qay = 5 H (wtﬂp) H (Zy‘,TLm + U}iTc[))> (4)
i=0 i=n+1

where

D = (Z,jT,;m + wiTcp)

N n—1 N
+ Z <H(wiT(zp) H (ZiTrzm + w'i,Tcp)> .
n=1

=0 i=n+1

=

I
_

(5)

3 PROCESSOR ARRANGEMENT AND MONETARY COST

The nature of processor arrangement and a set of linear equations
to model processing and transmission monetary costs are
presented below. Also discussed are basic swapping relations that
could be used in a heuristic algorithm.
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Fig. 2. Timing diagram: normal case.

3.1 Processor Arrangement

Processor arrangement in general involves a permutation of the
order of processors (in a single level tree network, here) to receive
fractions of load from the root processor while maintaining the
original arrangement of links in a network throughout the course
of the processor arrangement. A processor arrangement deter-
mines which processor is connected to I,l,...,Iy. It does not
change the order (I, l, . .., lx) of dispatching fractions of load from
the root processor to links. In this paper, a single level tree network
can be represented by an ordered set as follows:

™= {pO7 (ll7p1)7 ey (ljvpj)v (lj+17pj+1)7 ey (lepN)}'

This ordered set is referred to as a processor arrangement
profile. Therefore, a processor arrangement is a mechanism to
change from one processor arrangement profile to another
processor arrangement profile. We seek a processor arrange-
ment profile to minimize the sum of the processing and
transmission costs given that, for each possible processor
arrangement profile, finish time is minimized using the
methodology of Section 2.2 and [1]. Our goal in this and the
next section is to determine if there are simple conditions for

creating an efficient or optimal arrangement profile of the
processors in this sense.

3.2 Link-Processor Monetary Cost

The link-processor monetary cost for processing a fraction of load
at any processor is defined as the monetary cost incurred from
utilizing the processor and its corresponding link in order to
process the associated fraction of load. Therefore, the link-
processor cost consists of two major parts: The one incurred by
communication over the link and the other incurred by the
processor. Throughout this paper, it is assumed that the cost
coefficients associated with links and processors are static. They do
not change with either the level of load in progress or the time
when the job arrives. This monetary cost is defined only in terms of
accounting for the duration during which the resource is busy
serving the assigned divisible load. The link-processor cost is thus
a monotonic increasing function of the service duration and,
moreover, is a linear, regular, and additive function. For
0<n<N,let

cb: the computing cost per second of utilizing the nth processor.
c,: the communication cost per second of utilizing the nth link.
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cLw,: the computing cost per load of utilizing the nth processor.
¢!, z,: the communication cost per load of utilizing the nth link.
(cPw, + cl z,): the processing cost per load of the nth link-processor

pair.

3.3 Total Monetary Cost

Total monetary cost is a cost incurred for a network to process an
entire load. It is a linear addition of all individual link-processor
costs incurred by utilizing individual link-processor pairs. This
individual cost depends on the assigned fraction of load, which in
turn is determined by a processor arrangement profile (by
“profile,” we mean a specific arrangement of processors). There-
fore, this total cost depends on the processor arrangement profile.
Expressions for the cost of processing and transmission for each
link-processor pair are given by (6) and (7) and an expression for

the total processing cost is given by (8).

01) = Cg’w(anp (6)

C, = CilznTum + CfllwnTcp ,n=1,...,N (7)
N

Ctntal = aOCO + Z anOn- (8)

n=1

By substituting oy and all o, from the previous section into (8), one
obtains the expression for total cost that explicitly shows the jth

and the (j + 1)st link-processor pairs as:

N
Ctutal =5 {H 21 r[cm + IUiTcp)(CSwOﬂtp)
j—1 [n—1 N
(wiTcp) H (ZiTcm + wiiz—‘ap)(cl ZTLTL’HL + prn cp)

i=0 i=n+1

N
(wiTcp) H (Zi,Tcm + wiTcp)(CszTcm + wa]Tpp)

i=j+1

+

(]

=1

<.

J’_
=

Il
o

N
+ (thvzp) H (ziTcm + wiT'(:p)( ]+1Z}+1Tcm + cp 1wj+chp)

i=j+2

n—1
H wiTey)
i=0

-

M

N
+ H Zsz:m + wiTup)(cIn,ZnTcm + Cz;;wnTcp)

i=n+1

I

2

n=j
)

The total cost can be put in a relatively simple form as
Chotal = % Thus, the corresponding numerator, N, is the collection
of terms within the curly brace. The corresponding denominator,

D, with the terms due to the jth and the (j+ 1)st link-processor

pairs explicitly shown, is

}_

i1
(ZiT(:m + wiTBp)(Zchm + ijcp)(Zj+1Tcnz + wj+1Tcp)

D=

i

I
_

N

H (ZiTcm + wiTcp)
i=j+2

j=1 [n—1 i—1
+ Z <H Z /1_[ (Z’iTcm + wiT(‘P)(Zchm —+ ijcp)

n=1 \i=0 i=n+1

N
(Zj+1rfcm, + U}j+lir(:p) : H (Zirfcm, + w[ﬂ:p))

i=j+2

<.
|
N

(sz(p)(UM lT(p)(ZjJrlTpm + “]}+1T(p) H 2iTem + w; Tz’p)
i=j+2

+

, Id

[V

i- N
+ | [ (w0iTep) (w1 Tep) (wTep) H (ziTom + wiTyy)
i i=j+2

N n—1 N
+ Z (H “7t cp H (Ziﬂtm, + IIUZTcp)> .
0

n=j+2 i=n+1

I
=3

(10)

3.4 Adjacent Pairwise Processor Swapping
Adjacent pairwise processor swapping refers to a physical
interchange of two processors in an adjacent link-processor pair
of the current processor arrangement profile, keeping all other
link-processor pairs in their respective positions. Consider a
processor arrangement profile called the “current” processor
arrangement profile, as shown in Fig. 1. A swapped processor
arrangement profile is a profile obtained by implementing a single
adjacent pairwise processor swap of one of the adjacent processor
pairs of the current profile, a swap of p; and pj;. Pairwise
swapping is of interest as a building block for a heuristic algorithm
for this problem (see Section 5).

In the ordered set representation, a current profile and an
associated swapped profile can be expressed respectively as,

m={po, (li,p1),---,(;,05), li+1,pj11), (L2, Djs2), - - (v, PN)}
(11)

7 ={po, (1, p1),- .., (s pjw)s (g1, 25), (L2, jsa) - - - (Iv, o) 3
(12)

4 CoST EFFICIENT PROCESSOR ARRANGEMENT

In an attempt to aid algorithm development, conditions are sought
under which swapping adjacent processors lowers the total
monetary cost. For brevity, we summarize the theorem'’s develop-
ment (see [2], [3] for an extended development). One can develop
expressions for Cj,,,, the total monetary cost under an adjacent
processor swapping. As with Ciyu, C,,, can be expressed as a
rational function. Then:

N N,
’ ¥ s
ota - 1
Ctotal Cf tal = Dﬂl D7T ( 3)
NyD; — N, Dy
—_r7r "mrm 14
DD, (14)

The conditions under which N, and N, and D, and D, are
greater than, less than, or equal to each other can be developed.
This leads to conditions under which the difference in C,,, and
C} s €an be determined from a number of conditions. Finally, one
has:

Theorem 1. In a single-level tree network, if one of the following
conditions is satisfied, then the total cost of the adjacent pairwise
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swapped processor arrangement profile Cy,,,, (m( is less

Pl~-~-,p/\l<Pjv~wP:‘\"))
than the total cost of the current processor arrangement profile

C’,,o,,al(mmV_,J,/)p]“?___‘p‘\,))for 1 < j < N. Otherwise,

total \" (p1,.eesPjit1PjyeesPN)

is greater than or equal to

Chotal (W(m yoeesDjsPj Ly PN) )-

1. (Zj+1 — zj)(wj — ij) =0 and (w]' — wj+l)(zj+lcé+1 —
D
7€) > zj (Wi g — wic))

2 (g1 —z)(wj —wia) #0 and  (w; — wis1) (2, —

2i¢) 2 zjn (Wi djyy — wid)) + A

3. (Zj+1 — Z]')(’wj — w‘jﬂ) < 0 and Ctotal > E[\)[::g::;
NN
4. (Zj+1 - Zj)(wj - wj+1) > 0 and Céotal < W

Note that, in (2):

j—1
aCy+ Y knCh

n=1

1
A —d{}(zj = 2zj1)(wj — wj+1)|

}- (15)

While it is always possible that additional work may result in
simpler conditions than these for deciding when making a
processor swap is cost effective, our feeling is that it would be
difficult to simplify the analytical conditions above.

We now turn our attention to a heuristic algorithm for solving
this problem.

5 HEURISTIC PROCESSOR ARRANGEMENT ALGORITHM

In this section, a heuristic algorithm to solve the processor
arrangement problem efficiently is described.

One can use the conditions of Theorem 1 as the basis of a simple
greedy algorithm implementing adjacent pairwise swapping for
the processor arrangement problem. However, a simple greedy
implementation has a fairly large tendency (as high as 18 percent
in our runs, see [2], [3]) to converge to locally optimal solutions.

In order to improve the performance of a processor arrange-
ment algorithm, four main actions were taken. First, several initial
processor arrangement profiles, which serve as starting points, are
generated. Second, the extent of a neighborhood is enlarged to
cover neighborhoods other than that obtained by adjacent
processor pairwise swapping. In this case, the cost of a profile is
evaluated using (9) and (10). Third, a greedy strategy is applied to
select the best processor arrangement profile. Finally, a restart
searching strategy is used to determine a pair of processors to start
over with after a new processor profile has been obtained.

Experimental results [2], [3] demonstrate that the probability of
the heuristic greedy algorithm converging to a suboptimal solution
is extremely small (on the order of 1 in 1,000 in our runs).
Moreover, the few suboptimal solutions found are very close to the
optimal solution in terms of cost. They are mostly within 1 percent
of an optimal solution with the maximum observed deviation
being about 5 percent from an optimal solution.

One problem we did encounter was an inability to solve
problems with more than 20 or so child processors due to
numerical difficulties (the costs of the current and swapped
profiles tended to be equal to the limits of machine precision,
making it not possible to make swapping decisions).

Finally, the computational efficiency of our algorithm can be
empirically bounded by O(N'®) for N up to 20. This is consistent
with the results in [5].

6 CONCLUSIONS AND LESSONS LEARNED

A number of lessons can be drawn from this work:

1. Complex mathematics: Setting up a cost-based computer
configuration design problem, even with generic assump-
tions, of linearity, load divisibility, and star topology, leads
to a fairly complex exercise in algebra.

2. No simple conditions: In an earlier work for a bus network
with only computation costs (not communication costs) [4],
relatively simple conditions for optimal load distribution
were found. The expressions in this paper, where
communication costs are considered, lack that absolute
simplicity. It is always possible that additional work may
result in simpler optimal load distribution conditions.
Based on our experience on this problem though, we think
this would be difficult.

3. Combinatorial algorithms possible: Our experience indicates
that efficient, if not always optimal, solutions can be
produced using combinatorial optimization algorithms.
While a special purpose heuristic algorithm was presented
in this paper, the use of other combinatorial approaches,
such as tabu search, simulated annealing, and genetic
algorithms, is possible. One problem we did encounter
was an inability to solve problems with more than 20 or so
child processors due to numerical difficulties.

4. Computer Configuration Possible: Using combinatorial opti-
mization techniques creating efficient cost-based computer
configuration designs is feasible for small N.

5. Open Question: An open question is efficient configuration
design for large networks.

All in all this is an interesting problem area as it involves an
integration of cost and performance issues.
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