2003 Conference on Information Sciences and Systems, The Johns Hopkins University, March 12-14, 2003

Optimality for Staggered Scheduling

Kwangil Ko*,
Thomas Robertazzi*
and Larry Wittie**
*Dept. of Electrical and Computer
Engineering,

**Dept. of Computer Science,
Stony Brook University,
Stony Brook, NY 11794

e-mail: tom@ece.sunysb.edu

Abstract —

Staggered scheduling is compared to “arbitrary”
scheduling using matrix based techniques. It is shown
that staggered scheduling always has a smaller solu-
tion time compared to any other possible arbitrary
schedule for the same sequence of load distribution
and solution reporting. This work is significant in us-
ing the arbitrary schedule concept in much the same
way as the general distribution is used in queueing
theory.

I. INTRODUCTION

Over the past 15 years there has been a good amount of re-
search [1],[2] on divisible load scheduling. A divisible load is a
computation and communication load that can be arbitrarily
partitioned among processors and links. Such loads arise in
data intensive computing, grid computing and metacomput-
ing. A generally linear theory has been developed that pro-
vides tractable analytic solutions for optimal load allocation
for a given scheduling strategy and interconnection network.

In this paper staggered scheduling is compared to “arbi-
trary” scheduling using matrix based techniques. Here stag-
gered scheduling means that a computational load is well
scheduled so as to minimize communication delay (this is elab-
orated on in the paper). It is proved that staggered schedul-
ing always has a smaller solution time compared to any other
possible arbitrary schedule for the same sequence of load dis-
tribution and solution reporting. This work is novel and sig-
nificant in using the arbitrary schedule concept for schedul-
ing, in much the same way the general distribution is used in
queueing theory. It is also novel in its use of a matrix based
analytical methodology. A final novel feature of this work is
the optimization of solution reporting sequence back to the
load originating processor.

An earlier work on divisible load scheduling optimality is
[3].
This work is done in the context of divisible load modeling
in a single level tree network with sequential load distribution
and sequential solution reporting.

II. ARBITRARY LOAD SCHEDULING

In this section load scheduling which is not necessarily op-
timal, called arbitrary load scheduling, is discussed. The com-
putation of finish time is obtained when arbitrary load is dis-
tributed to each processor. In arbitrary load scheduling, the
load is not scheduled to each processor but allocated arbitrar-
ily; that is, we allow any possible load fraction allocation to

processors as long as a specified sequence of load distribution
and solution reporting is kept. We use the word “arbitrarily”
in the same sense as a M/G/1 queue has a “general” solution.
That is, any scheduling policy may be substituted for an ar-
bitrary scheduling and the results still hold. The following
notation will be used throughout this paper:

e p;: The ith processor.

e a;: The fraction of the entire processing load assigned
to the it* processor.

e w;: A constant inversely proportional to the computa-
tion speed of the i*" processor.

e 2;: A constant inversely proportional to the channel
speed of the i*" link

e Tcp: Computing intensity constant. The entire load is
processed in w;T,, seconds by the i*" processor.

e T,: Communication intensity constant. The entire
load can be transmitted in 2;Ten seconds over the it*
link.

e T2 Solution reporting communication intensity con-
stant. The entire solution report can be transmitted in
210! seconds over the i** link.

Assume that there are (M +1) processors named as follows:

P= {po,pl,pz," 9 Piyc 7pM}

An arbitrary load distribution is defined as an (M + 1) tuple,
a, given by the fractions of the total load allocated to each
processor, p; for i =0,1,2,---, M and selected arbitrarily.

a=(607a11a27'“7ai7"'7aM) (1)
Here, the tilde is used to denote an arbitrary schedule. Fur-
ther, the load is normalized.

Y a=1 (2)
i=0

Fig. 1 shows a timing diagram for arbitrary load distri-
bution. The computation takes place over a single level tree
network where each processor is equipped with a front-end
processor for communication off-loading. The use of front end
processors for communication off-loading means that commu-
nication and computation can proceed simultaneously for each
processor. In the diagram computation time appears above
each axis and communication time appears below each axis.

sol sol sol sol
42, Ty 002y Ty | 0523 T o 002, Ty | (o2, Toionz Ty | oz, Toy) jonzsTey
oW, T,
P
! Communication |
Delay Time l
ke ke
T ™
42l %z e
il aIWITcp
Communication
Idle Time
sol
7T 07,
" (X’ZWZTcp
sol
7237, 73Ty
Py
(X3W3Tcp
sol
%z,T oy 02, T
P
4 (X4W4TCP

Figure 1: Timing Diagram for Arbtrary Scheduling of
Homogeneous Single Level Tree Network.

Without loss of generality, it is assumed that load is dis-
tributed from originator (root) processor, po. As soon as each
child processor completely receives its assigned segment of the
load it begins processing that segment. After each processor
finishes this computation it requires the use of its link for a pe-
riod of time to broadcast the result of its computation back to
the originator. It is assumed that the scheduling must be done
in such a way that only one processor transmits at one time
and processors have sufficient time to perform their computa-
tions before transmitting their results. Thus, in the diagram
processor 1’s solution reporting is delayed until processor 2
reports its solution. Also note the presence of idle time after
processor 1 reports its solution as processors 3 and 4 are still
computing.

The originator processor, po distributes fractions to M pro-
cessors from p; to par in sequence. For simplicity we do not
consider multi-installment load distribution strategies as in
[2]. Processors start to process their fractions as soon as pro-
cessors receive their fraction. For example, the i** processor
waits until the previous processors receive their fractions, and
then starts to receive its fraction, o;. After this reception, the
ith processor can processes its fraction.

First, it is necessary to calculate the time that it takes
for the i*" processor to receive the fraction of the arbitrarily
scheduled load, a;, and to process this load. That time is
defined as Trpp; (the “rp” stands for receive and process).

3
Topps = 0% Tom + GiwiTeyp 3)
j=1

Note that the above expressions do not include solution
reporting time. The first term and the second term in equation
(3) are the reception time and computation time for the "
processor, respectively.

However, processors finish processing in some arbitrary or-
der as shown in Fig. 1. The reporting order is not pre-
determined but depends on T’y p; for i =1,2,---, M. The so-
lution for the i** processor can be sent to the originator proces-

sor after ﬁp,pi. The processors are assumed to send their solu-
tions back to the root in the order of finishing their work under

arbitrary scheduling. Thus, sorting {ﬂp,pi 11=1,2,--+, M}
is needed to determine the solution reporting order in the case
of arbitrary load scheduling. The result of ascending order

sorting {ﬁp,m 1 =1,2,---, M} can be represented by:
Tsﬂ;ort) = {TT(;), . .’TT(;), e ,Tr(%)’ . .Tg’\/[)} (4)

Here for i < j: o
TS < T (5)

a(sort)

Further, is the wversion of the
m(sort)

{@; :i=1,2,---, N} with respect to Trj

Slsom) — {a<1>,---,a@,---,a(f),---,a(M)} 6)

sorting

Consequently, & is the load fraction of the entire processing
load assigned to pD. Here p® is defined as the i** reporting
processor. Also, 2™ is the inverse speed of the link connected
to p(i). Then the following property holds:

M M
PORECI o)
i=1 i=1

The reporting order is that p is followed by pitY for 4 =
1,2,-+-, M — 1. In Fig. 1, the reporting order of processors is
P2, P1, P4, and then ps.

“Finish time” is the time for the system to complete pro-
cessing its entire load. Naturally, in general finish time is
equal to the time when the originator processor finishes pro-
cessing or the last reporting processor completes processing
and reporting.

T (M) = max [GowoTey T] ®)

The term, aowoT;p, is the processing time of the originator
processor. Here, ay is arbitrary generated. The term, i(M),
is the time taken by the last reporting processor to complete
reporting.

In this section, we develop an expression for the finish time
of arbitrary scheduling. Now, T 9 is the time taken by the
originator processor to distribute load fractions to all of the
Processors.

M
T = " &2Tem (9)

=1

Also, i(z) is the time taken by the i® reporting order proces-
sor to complete sending its solution according to this reporting
order. Here p(*, the itf:, reporting order processor, tries to re-
port its solution after TT(,’,). The i** reporting order processor
can immediately send its solution if p**~*) already finished re-
porting. However, if p™1) didn’t finish reporting its solution
yet, p® should wait until p©~% finishes. Consequently, p®
can report its solution after a time equal to the maximum of
T and T, For i =1,2,---, M:

T = max [i(i_l),ﬁ(;)] +a® ol (10)
The last term in the above equation is the time taken by p®
to report. Note that the first reporting processor can’t send

its solution while the originator processor distributes fractions
to children processors.

Let G1 be the time difference between the instant of the
start of the transmission of the solution of the first report-
ing processor, ﬁ(;) and the instant that the originator pro-
cessor finishes distributing load fractions, T, Also let G;
be the time difference between TT(;) , the instant of the start of
transmission of the solution of the i*" reporting processor, and
T8 , the instant when the transmission of the solution of the
(— 1)“” reporting processor is complete. For i1 =2,3,---, M:

(11)

It is assumed that the root can transmit or receive with only
one child processor at a time. In the case that p were to
begin to report its solution while p®~%) is transmitting its

solution, (ﬁ(;) < i(ifl)) Also all

Gi = T4 — 76V

, a conflict would occur.
links are idle when p® cannot immediately send its solution,
after p@~ 1 has already transmitted &(i_l), (i(;) > i(i*l)).
A negative G; indicates a conflict and a positive G; indicates
a time when all of the links are idle. In the case of a con-
flict (Gi < 0or ﬂ(;) < i(i*l)), p(i) can immediately report

its solution as soon as p“ ') finishes transmitting its solution.
Thus equation (10) is represented as follows:
T = T 4 500! (12)

In the case of idleness (Gi >0 or ﬁ(,i,) > ﬁ(i_l)), equation

(10) is represented as follow:
TO = T 4 50 ,Oqsel (13)

Using equation (11) the last two equations can be combined
as follows:

7O = 7O + &M O71 4 Gy sign (Gy) (14)
TH = 709 4 30019 4 Gisign (G) (15)
T — O 4 gD Dol | g sion (Gigy)
: (16)
TM) = M- 4 D (D psol 4 @ sign (Gum) (17)
Here sign(x) is defined as follows:
sign(x) = L ifz2>0 (18)
IME=1 0 ifz<o0

In equation (15), the time for the ** reporting processor to
finish reporting its solution includes three terms. One is the
time for the (i — 1)*" reporting processor to finish reporting.
The second term is the time for the i** reporting processor to
report the solution. The last term is the potential idle time
of reporting between p*'s and p®~V's reports.

The solution of the recursion of equation (14) to equation
(17), T | can be written as follows:

M M
T =7 4 2&%“@:&’ + Z Gisign(Gi) (19)

i=1 i=1

Substituting equation (7) and (9) into (19), ’f}M) can be
rewritten as follows:

M M M
TS(M) = Z @iziTem + Z &iziTcsﬁf + Z Gisign(Gi) (20)

i=1 =1 i=1

The above equation expresses the time at which all proces-
sors finish reporting their solution to the originator proces-
sor. Note that Ty (M), defined as the finish time for arbitrary
load scheduling, is the maximum of the processing time of
the originator processor and the completion time of reporting
all solutions. The processing time of the originator processor
is determined by ao generated arbitrary and the completion
time of reporting all solutions is obtained from equation (20).
Thus, Tf (M) from equation (8) can be calculated.

Next, our attention turns to developing the concept of stag-
gered scheduling.

III. STAGGERED SCHEDULING

The basic idea of staggered scheduling is that p¥, the
ith reporting processor, begins to transmit its solution im-
mediately after the transmission of the solution of pt~Y | the
(i — 1)*" reporting processor for i = 2,3, -+, M while the orig-
inator (root) processor finishes its processing as soon as receiv-

ing the solution of the last reporting order processor, p3M),

sol sol

5o 5o
oz, Ty (002,) 02T oz, Ty 002, T 02y T |02, T 023 Ty
G‘OWOTcp
Pﬂ
soll
(XIZITcm aIZ]Tcm
P
! oW ITcp
sol
oz, T, oz, o,
P,
° a‘ZWZTcp
sol
oz, T, 02,
?
3 OL]W;TCP
sol
oz, T, 0z, T,
P
4 (>L4W4TCp

Figure 2: Timing Diagram for Staggered Scheduling of
Homogeneous Single Level Tree Network.

Fig. 2 is a timing diagram of staggered scheduling. From
equation (19) the first term and Gisign(G1) can be repre-
sented as follows:

TS(O) + Gisign(Gh)

7O+ (T -) - sign (1) - 1) (21)

Again, Ts(o) is the time taken by the originator processor to
distribute load fractions to all of the processors so as to create
a well posed problem. The originator processor can distribute

fractions before the first solution is received (T,(;) > ﬁ(o)).

The above equation can then be reduced to Tr(,}) . This can be

done since Tr(;) is greater than T for staggered scheduling.
Thus equation (19) can be rewritten as follows using equation

(7):

M M
'fs(M) = f,n(ll,) + Z aijT;;;l + Z G;sign(Gj) (22)
Jj=1 Jj=2
If reporting solutions back to the originator processor is stag-
gered so that there is no idle time, then the last term of the
above equation is zero.
M
TS(M) = TT(II,) + Z OthchsT%l (23)
j=1
Note we use a; (no tilde) to denote a staggered scheduled load
fraction.
In addition, the originator processor finishes its processing
as soon as it receives the solution of p(M), the last reporting
processor.

™ = Ty (M)

= aowoTlep (24)

Here, a; for i = 0,1, -+, M should be adjusted for staggering.

(25)

Again, &; is the arbitrary scheduling load fraction for the "
processor and now «; is the staggered scheduling load frac-
tion for the ** processor. The normalization equation of load
fractions for staggered scheduling is applied.

M
Zaj =1
=0

From the two normalization equation, equation (2) and equa-
tion (26), the following equation is obtained.

M
'
Jj=0

The problem is to find a; for ¢ = 0,1,---, M so that G; for
1 =2,3,4,---, M equals zero, which means that all processors
are staggered. This problem is addressed in the next section.

Here, M! staggered scheduling cases exist because of the
reporting sequence. In this section, the staggered finish time
for all cases will be obtained. The smallest one of the M! stag-
gered finish times is the optimal schedule. Each child proces-
sor has four time phases; receiving, processing, reporting the
solution, and resting after reporting solution until the origina-
tor processor receives all solutions. The processor which sends
its solution last has no rest time. Thus, the sum of the four
time phases is equal to the finish time for any ¢ =1,2,--- | M
and is represented as follows:

~ !

Qi = Q — O

(26)

(27)

Tf (M) = Olo’LUoTcp
= 7M™ (28)
For any ¢ =0,1,---, M:
i
M) Z a;j2jTem + aiwiTep
j=1
M
+riiizTin + Y 1oz T (29)

J=1,g#i

Here, we suppress that the dependence of TS(M) on % as TS(M)
is the same for all i. The first two terms of equation (29)
are the time taken by the i® processor to receive its fraction
and then to process its fraction, respectively. The processor
reports its solution back to the originator (root) immediately
after processing (third term). The last term is the resting
time until all processors complete processing and reporting
their solutions to the root. The r;; is defined as a resting
coefficient. Here, 7;; is one if the i** processor is resting
when the j** processor reports its solution. Further r;; is
zero if the i*" processor is processing. The coefficient Ti,j can
be determined from the solution reporting order of processors
and, again, could be zero or one. If the i** processor reports
its solution before the j** processor, r,j is one and r; ; is zero.
If the it processor reports its solution after the j** processor,
r5,5 is zero and r;; is one. Thus, one of the r;; and r;; is
one, and the other zero. Also the i** processor should wait
until it sends its own solution so 7;,; = 1 in the third term of
equation (29). If the it" processor is the k" solution reporting
processor, then the following equation holds:

M
er,i = k

j=1

(30)

= S (31)

Here, S; is the reporting order of the i** processor. The prop-
erties of the resting coefficient are summarized as follows:

l.r;=10r0
2. rij+rji=1
3. Tij*Tj,i = 0
4. (rij)? =1,
5

- T,’J:].ifj:i

Equation (28) can be rewritten as follows fors = 1,2,---, M
2
—ao’onCp =+ Z ajijcm =+ Oh;’wiTcp
j=1
M
taimTon + Y rijaizTon
J=1,5#i
= 0 (32)

Equation (32) for ¢ =1,2,---, M and (26) form (M + 1) linear
equations.

D+W+RMa=E (33)
Here, ,
o= [ap a1 ap-1 am] (34)
E=[T, 0 0 0] (35)
0 0 0 0
0 zZ1 0
D= . Tem (36)
0 :
0 = ZM
1 1 ... 1
—Wo w1 0
W = . Tep (37)
—Wo 0 wmM

0 0 0 0
0 21 cee TLMEM
R® = Tew (38)
0
0 rM,121 ZM

Here, r;; is for 4,j = 0,1,2,---, M, and the reporting se-
quence matrix, R®*) for k = 1,2, -+, M! reporting sequences
are specified. Now «; for ¢ = 0,1,2,---, M can be obtained
using Cramer’s rule.

_ det(EH_l)
" det[D + W + R(¥)]

(€7

(39)

Here E; is obtained from [D + W + R] by replacing the t*
column of [A+B + C] by E for i =0,1,---, M. Then ayp is:

_ det(E1)

"~ det[D + W + R®)]
Now the finish time for computing a unit load with M chil-

dren processor is obtained as follows for any k =1,2,---, M!:

_ det(El)
~ det[D+W +R®)

Qo (40)

Ty (M) (41)

] wOTcp
There are M! possible cases depending on the solution report-
ing sequence. In this section the finish time of each possible
order has been obtained. It should be noted that for a specific
reporting sequence recursive solutions for the staggered sched-
ule load fractions can be developed as in [2].

IV. OPTIMALITY PROOF

In this section, both arbitrary scheduling and staggered
scheduling are assumed to follow the same reporting sequence.
We will show that if all of the processors are staggered for a
given reporting sequence, the finish time of staggered schedul-
ing is always less than the finish time of arbitrary scheduling
with the same reporting sequence.

Let the hyperplane Hy in (M + 1)-dimensions be a set of
the form {x : n-x =1} where nis a 1 by (M + 1) ones vector.

Definition 1 Any point on the hyperplane Hy can be defined
as a which is an arbitrary load distribution.

{a:n-a =1} (42)
Here:
a=(ao,a1,a2, -+, Q-+, aM) (43)
The set of {a: n- a =1} is a normalization equation.
Consider staggered scheduling. There exist M! cases de-
pending on reporting sequences. Let Q®) for k =1,2,---, M!
be [D + W+ R(k)] in the linear equation (33). There exists
a unique solution (through normalization) on the hyperplane
Hj given reporting sequence, R® | for any k =1,2,- -, M!

satisfying equation (33).

Definition 2 In the (M + 1)-dimensional space, the unique
solution of the linear equation (33) is defined as a® for any
k=1,2,---, M.

Q™ .a" =E (44)

Here:

at = (al(;aallc"",ali/[) (45)

Specifically, a* is staggered scheduling for a given report-
ing sequence, R™ . Thus a* is the fraction of load for the
staggered scheduling of the Q™ matrix.

Definition 3 Let @ be any point in a set of the form:
{E: Qo #alg and @ = ma¥ for all i = 1,2,---,M} (46)
Thus @ can be defined as follows:
a= (ao,ma’f,---,maf,---,ma’fu) (47)

1
% -
l—ao

Here, m is any arbitrary real number and 0 < m <

The upper limit of m is chosen so that the & is on a hy-
perplane. Each load fraction of the children processors in the
load distribution &, is proportional to the load fraction of the
children processors in the load distribution a*. Thus, the
reporting time of all of the children processors with load dis-
tribution @ is also staggered. In the load distribution, @, it
is not necessary that the computation of the originator pro-
cessor and reporting of the last reporting processor finish at
the same time.

Lemma 1 For any reporting sequence R® for k =1,2,--
-, M, staggered scheduling has a smaller finish time than
scheduling with load distribution, a.

Lemma 1 can be written as follow equation: The finish time
of scheduling with & can be written as follows:

(48)

Here, T; (M) is the finish time of scheduling with @ ,and
Ty (M) is the finish time of staggered scheduling.

Any point on the hyperplane Hy can be denoted as a which
is an arbitrary load distribution.

a=(607a17a27"'aai5"'7aM) (49)
Let E be the result from multiplying Q*) by &
Q" .a=E (50)
Here E can be expressed as follows:
E=[T, & & - eu] (51)
Subtracting both side of equation (44) from (50)
Q®.(a-a)=E-E (52)
or R
Q®.a=E (53)
Here:
a=a-a (54)
and
E = E-E (55)
=[0@&a & - eu] (56)

Lemma 2 If two distributions, & and & are on the hyper-
plane then at least, one of e; fori = 1,2,---, M is greater than
or equal to zero.

Lemma 3 In a given sequence, if @o equals to aqg then the
load distribution with @, has a smaller finish time than arbi-
trary load distribution, a.

Proof.
From Lemma 2, assume that e; for any 4 = 1,2,---, M is
greater than or equal to zero. Also from equation (53), €; can

be expressed as multiplying (& — @) by the (i + 1) row of
Q(k).
e = qg’j—)l - ql(i)1 ‘o
> 0 (57)

Here, qgi)l is defined as the (i + 1)*" row of Q®). The second
term on the right side of the above equation can be expressed
as equation (33).

k —
qg+)1 o =

i
_ k
—aowoTep +m E aj 2iTem
j=1
k & 1
+ma; wiTep + mag 2, T
M
k !
+m E rij0; 2 Tom
J=1,j#i

(58)

Similarly, q(-k)

;- a can be expressed as follows:

(k) |~

2
Qi a = —aoonc,,+E a;2;Tem

=1

~ ~]
+aiwiTcp + aiziTcS'r?L

M
~ sol
+ E 73,5052 Tem
J=1g#i

(59)

—aowoTep + dowoTep

3

~ ~ ~ !

+ E @ 2jTem + aiwiTep + aiziTom
Jj=1

M
~ sol
+ E 13,5052 Tem

j=1,j#i

i
k k k sol
-m - l E ;2 Tem + o wilep + i 2iTem,

j=1

M

k sol

+ E 74,05 2 Lo,
J=1,j#i

(60)

Note that e; is greater than or equal to zero and @ equals
to ao by assumption. Thus:

1
~ ~ ~ sol
[E 02 Tem + aiwiTep + i 2: T,

j=1

M
+) m,j&jijf,‘,’f] (61)
=L
1
> m- [Z a?ijcm + a?wiTcp + afziTcs;,’zl
j=1
M
+ Z rigo 2 Tem (62)

J=l#i

The above inequality may be summarized as follows:

(M)

™ > T, (63)

Recall that the finish time of arbitrary load scheduling:

ff (M) = max I:aO’U)OTcpy fs(M) (64)

If the finish time with distribution @ is determined by TiM):

- =)
Ty(M)=T,

(65)
Then, the following result can be obtained from equation (63)
and (64).

Ty (M) > T > TS =T (M) (66)

If the finish time with distribution @ is determined by
aooncp:

Tf (M) = a()w()Tcp (67)
Then, from equation (64),
Ty (M) > GowoTep = GowoTep = T 5 (M) (68)

Therefore, the finish time, T (M), is less than that of ar-
bitrary scheduling.

Ty (M) > Ty (M) (69)

Theorem 4 Staggered load scheduling has a smaller finish
time than arbitrary load scheduling.

Proof. From inequality (48) and (69) the following result is
obtained: _ _
Ty (M) < Ty (M) <Ts (M) (70)

V. CONCLUSION

This work is significant in using the arbitrary schedule con-
cept for scheduling in much the same way that the general
distribution is used in queueing theory. The proof methodol-
ogy used here can be applied to other divisible load optimality
problems.

REFERENCES

[1] V. Bharawaj, D. Ghose and T.G. Robertazzi, “Divisible Load
Theory: A New Paradigm for Load Scheduling in Distributed
Systems,” in special issue of Cluster Computing on Divisible
Load Scheduling (D. Ghose and T. Robertazzi, editors), vol. 6,
no. 1, Jan. 2003, pp. 7-17.

[2] V. Bharadwaj, D. Ghose, V. Mani and T. G. Robertazzi,
Scheduling Divisible Loads in Parallel and Distributed Sys-
tems, IEEE Computer Society Press (now distributed by Wi-
ley), 1996.

[3] J. Sohn and T.G. Robertazzi, “Optimal Load Sharing for
a Divisible Job on a Bus Network,” IEEE Transactions on
Aerospace and Electronic System, vol. 32, no. 1, Jan. 1996, pp.
34-40.

