
Resource-Aware Distributed Scheduling
Strategies for Large-Scale Computational

Cluster/Grid Systems
Sivakumar Viswanathan, Student Member, IEEE,

Bharadwaj Veeravalli, Senior Member, IEEE, and Thomas G. Robertazzi, Fellow, IEEE

Abstract—In this paper, we propose distributed algorithms referred to as Resource-Aware Dynamic Incremental Scheduling (RADIS)

strategies. Our strategies are specifically designed to handle large volumes of computationally intensive arbitrarily divisible loads

submitted for processing at cluster/grid systems involving multiple sources and sinks (processing nodes). We consider a real-life

scenario, wherein the buffer space (memory) available at the sinks (required for holding and processing the loads) varies over time,

and the loads have deadlines and propose efficient “pull-based” scheduling strategies with an admission control policy that ensures

that the admitted loads are processed, satisfying their deadline requirements. The design of our proposed strategies adopts the

divisible load paradigm, referred to as the divisible load theory (DLT), which is shown to be efficient in handling large volume loads. We

demonstrate detailed workings of the proposed algorithms via a simulation study by using real-life parameters obtained from a major

physics experiment.

Index Terms—Divisible loads, grid computing, cluster computing, buffer constraints, processing time, deadlines.

Ç

1 INTRODUCTION

SCHEDULING in grid systems is a challenging task, as it
involves coordinating multiple computational sites for

resource sharing and scheduling in an efficient manner.
These systems are exclusively meant for handling large
volumes of computational loads such as data generated in
the high-energy nuclear physics experiments [10], bioinfor-
matics [11], astronomical computations, etc. These applica-
tions demand new strategies for collecting, sharing,
transferring, and analyzing the data. This relatively new
era of computing, referred to as grid computing [19],
expands collaborations and intense data analysis, coupled
with increasing computational and networking capabilities.

In general, a grid computing environment is comprised
of large groups of diverse geographically distributed
resources (clusters) that are collected into a virtual
computer for high-performance computation. Grid comput-
ing creates middleware and standards to function between
these computers and networks. It allows full resource
sharing among individuals, research institutes, and corpo-
rate organizations. It dynamically allocates the idle comput-
ing capability to the needed users at remote sites. The large
number and diverse nature of these computing resources

and their users pose a significant challenge to efficiently
schedule the loads and utilize the resources. The motivation
for our work stems from the challenges in managing and
utilizing computing resources in grids as efficiently as
possible. To date, there has been little or no work on
resource-aware distributed dynamic scheduling of large-
volume divisible loads with deadline requirements on a
cluster node in a grid environment.

In this work, we propose Resource-Aware Dynamic
Incremental Scheduling (RADIS) strategies for situations
wherein processing for several divisible (partitionable)
loads need to be completed within their respective deadline
requirements, while the processing nodes have finite
capacity constraints. Divisible loads are a class of loads
that require homogeneous processing and can be parti-
tioned into arbitrary smaller fractions [12]. These load
portions, which bear no dependence relationships among
themselves, can then be assigned to individual nodes for
processing. We provide a detailed analysis of our algo-
rithms and demonstrate their performance by using a
simulation study, with real-life parameters derived from
high-energy nuclear physics experiments discussed in [10].
The analytical flexibility offered by the divisible load theory
(DLT) is thoroughly exploited to design resource-conscious
algorithms that make the best use of the available resources
in a cluster. We employ both interleaving and noninterleav-
ing techniques to process tasks (jobs) that are admitted into
the system and discuss their usefulness. Our systematic
design clearly elicits the advantages offered by our
strategies. The paper is organized as follows: In Section 2,
we provide the research background and related work for
grid and cluster scheduling and DLT. In Section 3, we
formalize the multisource and multisink problem at a
cluster node in a grid system. In Section 4, we discuss our

1450 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 10, OCTOBER 2007

. S. Viswanathan and B. Veeravalli are with the Computer Networks and
Distributed Systems (CNDS) Laboratory, Department of Electrical and
Computer Engineering, The National University of Singapore, Singapore.
E-mail: {g0306272, elebv}@nus.edu.sg.

. T.G. Robertazzi is with the Department of Electrical and Computer
Engineering, Stony Brook University, Stony Brook, NY 11794.
E-mail: tom@ece.sunysb.edu.

Manuscript received 6 Sept. 2006; accepted 12 Dec. 2006; published online
1 Feb. 2007.
Recommended for acceptance by R. Thakur.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0277-0906.
Digital Object Identifier no. 10.1109/TPDS.2007.1073.

1045-9219/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

scheduling strategies. In Section 5, we discuss the perfor-
mance of our algorithms and their workings and highlight
their advantages with a simulation study. In Section 6, we
provide the conclusions.

2 RELATED WORK

In this section, we present some of the works that are
relevant to the problem addressed in this paper. For
divisible loads, research since 1988 has established that
optimal allocation/scheduling of a divisible load to
processors and links can be solved through the use of a
very tractable linear model formulation, referred to as DLT.
The contributions in [23], [24] looked at the problem of
seeking optimal solutions for scheduling “large-grained”
computations on loosely coupled processor systems. The
study by Agrawal and Jagadish [23] focused on single-level
tree architecture, whereas the one by Cheng and Robertazzi
[24] considered daisy-chained systems. DLT is rich in such
features as easy computation, a schematic language,
equivalent network element modeling, results for infinite-
sized networks, and numerous applications. This linear
theory formulation opens up attractive modeling possibi-
lities for systems incorporating communication and com-
putation issues, as in parallel, distributed, and grid
computing. Here, the optimality, involving solution time
and speedup, is defined in the context of a specific
scheduling policy and interconnection topology. The linear
model formulation usually produces optimal solutions
through linear equation solutions. In simpler models,
recursive algebra also produces optimal solutions. The
model can take into account heterogeneous processor and
link speeds, as well as relative computation and commu-
nication intensity.

DLT can model a wide variety of approaches with
respect to load distribution (sequential or concurrent),
communications (store and forward and virtual cut-through
switching), and hardware availability (the presence or
absence of front-end processors). Front-end processors
allow a processor to both communicate and compute
simultaneously by assuming communication duties. In
addition to the monograph [22], a survey on the results
until 2003 has been published in [12]. DLT has been proven
to be remarkably flexible. The DLT model allows analytical
tractability to derive a rich set of results regarding several
important properties of the proposed strategies and to

analyze their performance. DLT also offers an exciting
opportunity to optimally schedule multiple divisible loads
in grid computing. The usefulness of DLT in terms of its
applicability is demonstrated in several real-life applica-
tions, for example, parallel video encoding [3], image
processing [14], large matrix computations [15], and
database applications [17], [18].

Moges et al. [7] studied divisible load scheduling strategy,
with communication delays and two source nodes. Kim [13]
has proposed a mathematical model in which simultaneous
communication to several nodes is carried out. This model
suits a cluster node in our grid system infrastructure. A very
directly relevant material to the problem addressed in our
paper is in [10], where Wong et al. use an incremental
recursive strategy (modified incremental balancing strategy
(IBS) algorithm) for offline scheduling of multiple loads in a
grid environment. Recently, memory-constrained problem
formulations for grid systems are also considered. Wu and
Sun [8] studied memory-conscious task scheduling for grid
systems. Kim and Weissman [9] presented a genetic algo-
rithm approach for decomposable data processing on large-
scale data grids. Marchal et al. [4] considered scheduling
divisible loads for generic large-scale platforms. Another
study that may be useful in the cluster systems context is of
Ghose et al. [2], wherein time varying speeds of links and
processors in the network are considered in the modeling to
evolve an adaptive load distribution strategy. Beaumont et al.
[5] discussed some open-ended problems and issues pertain-
ing to divisible load scheduling. We refer astute readers to the
papers mentioned above for an up-to-date look at the
literature related to the problem addressed in this paper.

3 PROBLEM FORMULATION

A generic grid computing system infrastructure considered
here comprises a network of supercomputers and/or a
cluster of computers connected by local area networks, as
shown in Fig. 1a, having different computational and
communication capabilities. We consider the problem of
scheduling large-volume loads (divisible loads) within a
cluster system, which is part of a grid infrastructure. We
envisage this cluster system as a cluster node comprising a set
of computing nodes. Communication is assumed to be
predominant between such cluster nodes and is assumed to
be negligible within a cluster node. The underlying comput-
ing system within a cluster can be modeled as a fully
connected bipartite graph comprising sources, which have

VISWANATHAN ET AL.: RESOURCE-AWARE DISTRIBUTED SCHEDULING STRATEGIES FOR LARGE-SCALE COMPUTATIONAL... 1451

Fig. 1. Grid computing system. (a) Grid infrastructure. (b) Abstract overview of a cluster comprising sources and sinks with a coordinator node (CN).

computationally intensive loads to be processed (very many
operations are performed on them) and computing elements,
called sinks, for processing loads (data), as shown in Fig. 1b.
This represents the fact that each source can schedule its load
on all the sinks.

In real-life situations, one of the practical constraints is
satisfying the deadline requirements of the loads (arriving
in real time from multiple source nodes) to be processed
while taking into account the availability of the buffer
(memory) resources at the sink nodes, since the memory
available at the processing nodes to store the received load
and process them is limited. We consider these combined
influences in our proposed algorithm. We employ a “pull-
based” approach in the design of our scheduling strategy,
wherein the sinks schedule the competing sources, depend-
ing on the availability of the resources for processing.

Now, we shall formally define the problem that we
address. We consider a cluster node in a grid system,
comprising N source nodes denoted as S1; S2; . . . ; SN and
M sink nodes denoted as K1; K2; . . . ; KM . Each source Si
has a load Li to be processed. In our model, a master node is
assumed to coordinate the activities within a cluster. The
master node estimates the load distribution and does
admission control for the sources. We refer to this master
node simply as a coordinator node (CN), and without loss of
generality, we assume that any node within a cluster can be
elected as the CN based on leader election algorithms [20].

As shown in Fig. 1b, there are direct links (which may be
virtual) from all source and sink nodes to CN. In this paper,
we adopt a simultaneous load distribution model, as
proposed in [21], in which all sources (sinks) can send
(receive) load fractions to all the sinks (from all the sources)
simultaneously. Also, following Kim’s model [13], we
assume that the communication time delay is negligibly
smaller than the computation time, owing to high-speed
links within a cluster node, so that no sink starves for load
and that all sinks could start computing as they receive the
loads from the sources.

The objective of this study is to schedule and process the
loads among M sink nodes, rendering finite buffer capa-
cities such that their processing time, defined as the time
instant when all the M sinks have completed processing the
loads is a minimum. As with real-life situations, we
consider the availability of buffer space as a time-varying
quantity in our formulation. Also, our objective is to
minimize the scheduling-related communication overheads
in the system. The CN obtains the information about the
available memory capacities and computing speeds from
the sinks, as well as the size and deadline requirements of
the loads from the sources. The CN then computes the
parameters required by the sinks for scheduling and
broadcasts them to all of the sinks. The sink nodes
determine the amount of load fractions to be received from
the source nodes based on the scheduling parameters
received from the CN. Thus, in this study, all the proposed
schemes are distributed scheduling strategies. The sources,
upon receiving the requests from the sinks, shall send their
load to all sinks concurrently.

Our RADIS strategies proposed in this paper are a
generalization of the modified IBS algorithm [10], tuned to

consider dynamic arrival of loads with deadline constraints.
We also propose admissibility criteria to handle such
dynamic loads. We now present the list of notations,
definitions, and terminology that will be used throughout
the paper:

. �i;j: amount of load that sink Kj shall request from
source Si in an iteration.

. �j: fraction of the total load L that sink Kj shall
consider in an iteration.

. B
ðqÞ
j ðB̂

ðqÞ
j Þ: available (estimated) buffer space in sink

Kj in the qth iteration.

. B̂
ðtÞ
j : time-averaged buffer space at sink Kj, esti-

mated based on historical data.
. Li: load at source Si.
. M: total number of sinks in the system, with each

sink denoted by Kj, j ¼ 1; . . .M.
. N : total number of sources in the system, with each

source denoted by Si, i ¼ 1; . . .N .
. T : current time in the system.
. T̂ : estimated processing time for the admitted loads

in the system.
. T ðqÞ: time taken to process the loads in the

qth iteration.
. Tcp ðTcmÞ: computing (communication) intensity

constant.
. Tdi: deadline requirement of the source Si.
. Tul: time required to process a unit load.
. wj: inverse of the computing speed of the sink Kj.
. Xnow ðXlaterÞ: set of sources that are being processed

in an iteration (which shall be processed in a later
iteration).

. Y : fraction of the load L that should be taken into
consideration in an iteration of installment, where
Y � 1.

. zi;j: inverse of the link speed of the link li;j between
source Si and sink Kj.

. Znow: set of sources that are being considered during
the admissibility testing.

4 RADIS STRATEGIES

We now describe our RADIS strategies. In all of our
strategies, we assume that the CN computes the parameters
required by the sink nodes to determine a schedule
satisfying the resource constraints.

In the DLT literature [12], it was mentioned that for an
optimal scheduling solution, it is necessary and sufficient
that all the sinks that participate in the computation stops at
the same time instant; else, the loads could be redistributed
to improve the processing time. The optimality principle
stated in the DLT literature was used, and the load fractions
that a sink Kj shall receive from the source Si was derived
in the modified IBS algorithm [10] for systems with
prespecified buffer constraints.

The modified IBS algorithm recursively invokes the
IBS algorithm [16] and employs a “push-based” strategy. In
this scheme, a source node identifies potential sinks (with
knowledge about the available resources at the sinks),
computes the schedule, and communicates it to other
source nodes. Upon receiving this schedule information,

1452 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 10, OCTOBER 2007

all the source nodes send their load portions to the
respective sink nodes. Although this algorithm recursively
attempts to fill up the buffer space of one or more sinks at
every iteration, it is basically an offline algorithm. In this
scheme, when a sink’s buffer is completely filled up, that
sink is not considered for scheduling in the subsequent
iterations.

The modified IBS algorithm produces an optimal
solution and exhibits finite convergence. However, it does
not consider real-life situations, where the buffer capacities
at sink nodes vary over time, and the loads to be processed
may arrive at arbitrary times to the system.

We consider three different scheduling strategies for
such dynamic environments, depending on how the set of
loads will be processed. All our strategies work in an
incremental fashion, consuming several iterations for
scheduling the loads. Each iteration refers to a time period
in which a set of sinks is to be scheduled for processing the
loads by the CN. Our first strategy utilizes the Earliest
Deadlines First (EDF) Scheme, wherein among the sources
that are admitted into the system, the sources with the
earliest deadlines are considered for processing in every
iteration. In the second strategy, termed as the Progressive
Scheme, we process the loads from the sources that are at the
risk of missing their deadlines in every iteration. In the third
strategy, termed as the Noninterleaved Scheduling Scheme, all
the sources that were admitted into the system are
scheduled for processing in every iteration.

Below, we will describe the workings of our scheduler in
the coordinator and sink nodes designed for our strategies
in a systematic fashion. The flowcharts shown in Figs. 3, 4,
and 5 describe the workings of the CN, the admission

control procedure, and the sink nodes, respectively. The
pseudocodes for RADIS are made available to the readers
on the CS Digital Library (http://www.computer.org/
tpds/archives.htm).

In our strategies, in every iteration, after the admissibility
testing for the newly arrived sources, the scheduler at the
CN first determines the loads to be scheduled and the sinks
that will participate. Based on the estimated buffer
availabilities at the sink nodes, the CN computes an
estimate of the amount of load to be scheduled at a sink
node and the finish time for the next iteration. It then

VISWANATHAN ET AL.: RESOURCE-AWARE DISTRIBUTED SCHEDULING STRATEGIES FOR LARGE-SCALE COMPUTATIONAL... 1453

Fig. 2. Timing diagram of the load distribution strategy with N sources

and M sinks in an iteration.

Fig. 3. Workings of the RADIS scheduler at the CN.

broadcasts this schedule information to all the sink nodes. A
sink node, upon receiving this information, will wait for the
current iteration to be completed and determines the actual
buffer availability for the next iteration. Based on the
estimate received from the CN and its actual buffer
availability, it computes the amount of load that it can
process in the next iteration and requests that amount of
load from the respective sources. It also communicates the
difference between the estimated and the actual amounts of
load to the CN.

We shall first consider handling the time-varying buffer
availabilities at the sink nodes and then the dynamic arrival of
loads. For dynamic environments, a feasible schedule may
not exist, unless the sink nodes allow their available buffers to
be reused after a given load is processed. Hence, we assume
that the sink nodes allow their available buffer spaces to be
reused after the processing is completed in an iteration so as
to enable the scheduling of more amounts of loads, employ
the modified IBS algorithm [10] in every iteration, and
incrementally process the loads. Our scheduling strategies
take into account that the buffer space variations may not be
known a priori. In our strategies, the sinks estimate the
amount of buffer space that they could offer for scheduling in
the next iteration, as described later in Section 4.1, and
communicate it to the CN. With this information, the CN
determines the participating sink nodes for the next iteration
and computes the required parameters to schedule the loads
in an incremental fashion, satisfying the resource constraints
as follows.

The timing diagram shown in Fig. 2 represents the
communication and computation times of the sources and
sinks within a cluster system in an iteration, with the x-axis
representing the time. Assuming the buffer availability at a

sink node in an iteration, say q, as B
ðqÞ
j and the load fraction

that a sink shall request is proportional to the size of the

load at the sources, the fraction of the total load to be taken
into consideration in that iteration for optimal processing,

denoted as Y , shall be computed as

Y ¼ min
B
ðqÞ
j

�
ðqÞ
j L

� � ; 8Kj 2 Pnow

8<
:

9=
;; ð1Þ

where Y � 1 and

�
ðqÞ
j ¼

1

wj
PM

x¼1
1
wx

� � ; 8Kj 2 Pnow: ð2Þ

The optimal processing time for all the participating sink

nodes at that iteration is given by

T ðqÞ ¼ Y �
ðqÞ
j L

� �
wj Tcp: ð3Þ

It may be noted that the expression for the load fractions

Y �
ðqÞ
j L

� �
in (3) guarantees that at each iteration, all the

participating sink nodes complete their processing at the

same time instant. Having thus computed the required

parameters for scheduling, the CN communicates them to

all the sink nodes.
The sink nodes receive the information from the CN and

wait till the processing is completed by all the sink nodes in

1454 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 10, OCTOBER 2007

Fig. 4. Admission control procedure at the CN.

Fig. 5. Workings of the RADIS scheduler at the sink nodes.

the previous iteration. Then, if at a sink, the actual buffer
availability is not sufficient to accommodate the estimated

amount of load, that sink node computes the load fractions
to be requested from the source nodes as

�
ðqÞ
i;j ¼ Li �

B
ðqÞ
j

L
: ð4Þ

If the buffer availability at a sink node is more or enough to
accommodate the estimated load fraction, then the sink

node computes the load fraction to be requested from the
source node Si in the iteration q as

�
ðqÞ
i;j ¼ Y �

ðqÞ
j Li: ð5Þ

The sink nodes communicate to the CN the difference

between the amount of load that they estimated to process
and the actual amount of load that they are processing. All
the sinks request these load fractions from the sources and

process them. Following our model described in Section 3,
all the sinks start computing the load fractions as they start

receiving them from the sources.
The CN receives the information on the difference

between the amount of load estimated to be processed

and the actual amount of load processed at the participating
sink nodes, computes the remaining amount of load in the
system, and waits till the processing is completed by all the

sink nodes for that iteration. It may be noted that since
buffer availability is a function of time, the guarantees given

to the sources (to complete the processing within their
deadlines) may be met only when the buffer estimation

strategy utilized is conservative.
In RADIS, the total load processed in the iteration q is

given by

XM
j¼1

�
ðqÞ
j ¼

XN
i¼1

XM
j¼1

�
ðqÞ
i;j : ð6Þ

Hence, the time taken to process a unit load in that iteration

is given by

Tul ¼
T ðqÞPN

i¼1

PM
j¼1 �

ðqÞ
i;j

: ð7Þ

RADIS attempts to completely fill at least one of the
sinks’ buffers in every iteration, depending on the proces-

sing speed and the size of the buffer available at the sinks.
Since, in our strategy, all the sinks are forced to stop

processing at the same time, the product of the buffer
utilization and the inverse of the computing speed for each
sink node will be the same. From this, the maximum buffer

utilization or, in other words, the total load that could be
processed at each sink in an iteration could be derived as

XN
i¼1

�i;j ¼
Bi�wi�

wj
; where i� ¼ argmin Bj

�j

� �
: ð8Þ

In (8), the “argmin” term identifies a sink whose buffer is
completely filled. The buffer utilization at other sink nodes

and, hence, the total amount of buffer utilized for the
optimal processing by the system or, in other words, the

total load that could be processed by the system in an

iteration could be computed as

XN
i¼1

XM
j¼1

�i;j ¼
XM
j¼1

Bi�wi�

wj
: ð9Þ

Substituting (3), (8), and (9) into (7), the time taken to

process a unit load is given by

Tul ¼
TcpPM

j¼1
1
wj

n o : ð10Þ

Hence, the estimated time taken to process the loads in the

system is given by

T̂ ¼ Tul �
XN
i¼1

Li: ð11Þ

Thus, the time taken to process the loads from the sources

that are being considered are estimated in RADIS strategies.
Now, we shall discuss how our strategies consider the

dynamic arrival of loads. In RADIS, at the start of every

iteration, the CN checks the feasibility for admitting new

sources (based on their deadline requirements and prio-

rities), if there are any, and decides on the set of sources to

be scheduled in that iteration. The admission criteria for the

sources vary for different RADIS schemes, and they are

discussed in Section 4.2. The set of loads that are scheduled

in an iteration also depends on the chosen scheme of the

scheduler: sources with the earliest deadlines are chosen in

the case of the EDF Scheduling Scheme, all the sources that

are admitted into the system are chosen in the case of the

Noninterleaved Scheduling Scheme, and the set of sources

that needs to be scheduled so as to meet the deadline

requirements is chosen in the case of the Progressive

Scheduling Scheme.
While determining the set of sources to be scheduled in

the case of the Progressive Scheme, there are three

possibilities, and the actions taken under such situations

are as follows:

1. The deadline requirements for all the sources considered are
later than T̂ . Under this condition, the deadline
requirements of all the sources in the system could
be satisfied. Hence, the set of sources that were
considered previously is scheduled.

2. The deadline requirements for all the sources considered are
earlier than T̂ . Under this condition, there is a chance
that the deadline requirements of a set of sources that
were considered previously may not be satisfied.
Hence, those sources are scheduled immediately.

3. The deadline requirements for some of the sources are
earlier, and some are later than T̂ . Under this condition,
we reiterate considering those sources whose dead-
lines are earlier than T̂ .

The new set of loads and the unprocessed loads from the

existing sources are considered together for scheduling at

the start of every iteration. This process is continued until

all the loads are processed.

VISWANATHAN ET AL.: RESOURCE-AWARE DISTRIBUTED SCHEDULING STRATEGIES FOR LARGE-SCALE COMPUTATIONAL... 1455

4.1 Buffer Estimation Strategy

We propose a distributed buffer estimation strategy based
on the weighted average calculations of the buffer avail-
ability in the previous “s” iterations. The weights for
computing the estimates are based on the iteration indices
until the current iteration. Our estimation algorithm shall be
executed at all sink nodes. A sink node, after estimating the
buffer space to render in the next iteration, shall commu-
nicate it to the CN so that it could determine the scheduling
parameters required for the sink nodes.

For estimating the buffer availability in a sink, each sink
Kj needs to keep track of the actual buffer sizes Bj from its
previous “s” iterations. In an iteration q, each sink node
shall estimate the buffer size that will be available for the
next iteration ðq þ 1Þ as

B̂
ðqþ1Þ
j ¼

Pðs�1Þ
k¼0 ðs� kÞ �Bðq�kÞj

� �
Pðs�1Þ

k¼0 k

0
@

1
A � p; ð12Þ

and declare it to the CN. In (12), p is the probability that the
estimated buffer size will be available at a sink at the next
iteration. The value of p can be chosen based on the
confidence level of the buffer estimator. For practical
purposes, we shall assume that p equals 0.95. This
guarantees that the expected buffer sizes will be available
at the sinks, with a confidence level of 95 percent, for the
next iteration.

4.2 Admission Control Strategy

In RADIS, in every iteration, if there are new sources, then
the CN considers them in their priority order. It then
requests the sink nodes to estimate their buffer availabilities
until the farthest deadline requirement time of all the
sources that were accepted earlier and also the new source
that is being considered. The sinks estimate their buffer
availability by calculating the time average of their
historical data as

B̂t
j ¼

1

treq

Z t¼T

t¼ðT�treqÞ
BjðtÞdt; ð13Þ

where treq¼ðmaxfTdig�T Þ,ðT � treqÞ � 0, andmaxfTdig is the
farthest deadline requirement time of all the sources.

The estimation requests could be further minimized if
the CN requests the sink nodes to estimate the buffer
variations, taking into consideration the deadline require-
ments of all the new sources in every iteration. This
approach has an inherent advantage of minimizing the
communication required for estimating the buffer for
admissibility testing, especially when the source arrival
rates are higher.

In the case of the EDF Scheme, the algorithm checks the
deadline requirement of all the sources that were admitted
earlier and also the new source against the processing time
required to process them, considering the sources with the
earliest deadlines. The process is repeated until the deadline
requirements of all of the sources are found to be satisfied, in
which case the new source shall be admitted, or the deadline
requirement of some of the sources is violated, in which case
the new source shall not be admitted into the system.

In the case of the Progressive Scheme, during the
admissibility testing for a new source, there are three
possibilities, and different actions are taken under such
situations. They are as follows:

1. The deadline requirements for all the sources considered
are later than T̂ . Under this condition, the new source
that is considered shall be admitted.

2. The deadline requirements for all the sources considered
are earlier than T̂ . Under this condition, the new
source that is considered shall not be admitted. Note
that the priority of a source could depend on its
processing requirements.

3. The deadline requirements for some of the sources are
earlier and some are later than T̂ . Under this condition,
we reiterate considering only those sources whose
deadlines are earlier than T̂ .

In the case of the Noninterleaved Scheduling Scheme, if
the deadline requirement of all the sources that were
admitted earlier and also the new source could be satisfied
when they all are scheduled together in every iteration, then
the new source shall be admitted; otherwise, the new source
shall not be admitted into the system.

The proposed admissibility criteria, together with the
conservative buffer estimation strategy, guarantees that the
deadlines for all the loads that are accepted will always be
satisfied. It may be noted that in RADIS, the priorities of the
sources are used only to resolve conflicts that may arise
while admitting multiple sources. If multiple sources have
identical priorities set, then schemes such as first in, first out
(FIFO) or other possible heuristics can be adopted to resolve
the conflict.

The interleaving scheduling strategy of RADIS works in
a style contrary to most of the conventional schedulers,
which use priority as the criterion for scheduling the loads.
In this scheme, some of the sources that are processed in an
iteration could be suspended, and some other sources could
be scheduled in the following iteration so as to satisfy the
deadline requirements of the admitted sources. A simula-
tion study presented in Section 5 clarifies the workings of
RADIS and all the schemes mentioned above in detail.

5 PERFORMANCE EVALUATION

In this section, we shall describe our experimental platform

and list certain parameters that influence the performance

of the methodologies. As a grid computing environment is

envisaged as a large-scale system, in our study, we

simulated 64, 128, and 256-node (sink) systems. The

computing intensity constant ðTcpÞ and sink speed 1
wj

� �
parameters are derived from the Solenoidal Tracker at

Relativistic Heavy-Ion Collider experiments conducted at

Brookhaven National Laboratory [10]. The speed parameter

is assigned to the sink nodes based on the uniform

probability distribution.
In our study, the buffer availabilities at the sinks are

allowed to vary randomly over time (referred to as the Time
Varying Buffer (TVB) scenario), and we also observe the best
case performance when the buffer sizes are time invariant

1456 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 10, OCTOBER 2007

(referred to as the Time Invariant Buffer (TIB) scenario). The
TIB scenario results are important, as they provide the
upper bounds for the performance of the strategies. Also, all
possible variations (for the priority of loads and available
buffer sizes), ranging from small to large fluctuations, and
the frequency of the buffer availability fluctuations are
captured. These are varied randomly by following the
uniform probability distributions, whereas the load arrival
rates follow the Poisson distribution. In our simulations, we
consider three different sets of loads. Set 1 consists of
10 percent type-I and 90 percent type-II load sizes (see
Table 1). Set 2 consists of 50 percent type-I and 50 percent
type-II load sizes. Set 3 consists of 90 percent type-I and
10 percent type-II load sizes. All the above-mentioned
simulation parameters and their respective ranges are given
in Table 1.

In our experiments, the number of sinks participating in
every iteration is also allowed to vary, simulating the nodes
leaving the system or participating in the computation in a
random fashion. Thus, we attempt to capture the behavior
of the strategies close to a real-life environment. Further,
our schemes guarantee that the deadlines for all the loads
that are accepted will be satisfied, since in our experiments,
the buffer sizes follow the uniform probability distribution,
and our schemes utilize the time-averaged buffer estimation
strategy for admissibility testing.

5.1 Metrics of Interest

We consider the following performance metrics, which are
of direct relevance to this study. The number of loads
accepted in the TVB scenario ð�Þ has a higher significance,
since one of our aims is to maximize the number of loads
that are accepted. We also define the acceptance ratio ð�Þ
and the ratio of acceptance ratios ð�Þ as

� ¼Number of loads accepted
Number of loads arrived

;

� ¼�TVB
�TIB

;

ð14Þ

where �TVB and �TIB are the acceptance ratios of the TVB
and TIB scenarios, respectively.

Second, for the TVB scenario, we define a metric ð�Þ that
quantifies the throughput of the system as

� ¼ Number of loads processed
Number of loads accepted

: ð15Þ

Finally, we define the average buffer utilization in an
iteration at a sink node ð�Þ and the ratio of the average
buffer utilization ð�Þ as

� ¼

PM
j¼1

Pq
i¼1

minfY �ðiÞj L;B
ðiÞ
j g

B
ðiÞ
j

� ��
q

� �

M
;

� ¼ �TVB
�TIB

;

ð16Þ

where q is the number of iterations that the sink node has
participated, and �TVB and �TIB are the average buffer
utilization in an iteration at a sink node in the TVB and TIB
scenarios, respectively.

5.2 Discussion of the Results

Fig. 6 shows the behavior of �, �TVB, �, �, and � when we
employ RADIS in a system with 64 sinks with respect to the
load arrival rates for two different deadline types, as given
in Table 1. Though we simulated 64, 128, and 256-node
(sink) systems, since all our strategies exhibited identical
behavior in terms of trends for all the performance metric
considered, we have presented here only the results for the
64-node system. In Fig. 6, we denote the Progressive
Scheme with load sets 1, 2, and 3 as PS1, PS2, and PS3,
respectively, the EDF Scheme with load sets 1, 2, and 3 as
ES1, ES2, and ES3, respectively, and the Noninterleaved
Scheduling Scheme with load sets 1, 2, and 3 as NS1, NS2,
and NS3, respectively.

In Fig. 6, it is observed that at low arrival rates (less than
0.006), there is little difference in � for the various
scheduling schemes. As the arrival rate increases, irrespec-
tive of the scheduling schemes and the deadline type of the
loads, the number of loads accepted for load set 3 is higher
than that for load set 2, which, in turn, is higher than that
for load set 1. It is also interesting to observe that a better
performance is shown by the Progressive Scheduling
Scheme in the case of loads with type-I deadlines, and by
the EDF Scheduling Scheme for the loads with type-II
deadlines. Also, the performance improvement at higher
arrival rates for loads with type-II deadlines is significantly
higher for the EDF scheme when compared with other
schemes. However, the improvement is of less significance
for arrival rates higher than 0.3, since the �TVB is closer to 0
at these rates (see the plot of �TVB in Fig. 6).

Initially, all the arriving loads get accepted by the system
(the acceptance ratio is close to 1), and as the arrival rate
increases further, it starts falling steeply (the zone repre-
sented as “A” in the plot of �TVB in Fig. 6). This is due to the
fact that the scheduler can no longer continue to accept the

VISWANATHAN ET AL.: RESOURCE-AWARE DISTRIBUTED SCHEDULING STRATEGIES FOR LARGE-SCALE COMPUTATIONAL... 1457

TABLE 1
Simulation Parameters and Their Range of Values

newly arrived loads, unless the deadline requirements of

the already accepted loads, together with the new load

being considered, could be satisfied. Hence, the admissi-

bility testing starts rejecting some of the newly arrived

loads. As the arrival rate further increases, the acceptance

ratio �TVB moves closer to 0.

Based on the plot of � in Fig. 6, it is observed that at

arrival rates lower than 0.03, for all load sets and deadline

types, � is almost similar for both the EDF and Progressive

Schemes of RADIS because the acceptance ratios ð�Þ of

these schemes are almost identical. At these arrival rates, for

loads with type-I deadlines, these � values are higher than

1458 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 10, OCTOBER 2007

Fig. 6. Simulation results for the Progressive, EDF, and Noninterleaved Scheduling RADIS schemes for load sets 1, 2, and 3 and deadline types I

and II in a 64-node system.

that for the Noninterleaved Scheduling Scheme. At higher

arrival rates, for all load sets with type-I deadlines, � tends

to saturate close to a value of 0.6 for the EDF and

Noninterleaved schemes and about 0.4-0.5 for the Progres-

sive Scheme. For all load sets with type-II deadlines, � tends

to saturate close to a value of 0.65 for the EDF Scheme, 0.5

for the Noninterleaved Scheme, and around 0.3-0.4 for the

Progressive Scheme.
It is also observed that the system throughput � value is

closer to 1 for loads with type-I deadline requirements,

irrespective of the load arrival rates, whereas it decreases

with increasing arrival rates for loads with type-II deadline

requirements for all the load sets and schemes. In the case of

the EDF Scheme, though the system throughput decreases

with the increase in load arrival rates for loads with type-II

deadlines, it is seen to be more robust, since the variations

in the system throughput are less as compared with other

schemes (refer to the plot of � in Fig. 6).
The plot of � in Fig. 6 shows that at arrival rates lower

than 0.03, for both type-I and type-II deadline requirements

of the loads, the average buffer utilization for all the

schemes are almost identical, the utilization of load set 1 is

higher than that of load set 2, and the utilization of load set

2 is higher than that of load set 3. For arrival rates higher

than 0.03, for both deadline types and all the load sets, the

utilization saturates at a value of around 0.8 in the case of

both the EDF and Noninterleaved Scheduling Schemes. In

the case of the Progressive Scheme, the trend reverses, then,

the utilization of load set 3 becomes higher than that of load

set 2, and the utilization of load set 2 becomes higher than

that of load set 1, and the values saturate between 0.85 and

0.95 at higher arrival rates.
It is to be noted that at arrival rates lower than 0.006, the

number of loads accepted for all the schemes are almost the

same, and at higher arrival rates, although the acceptance

ratios of all the schemes are almost similar, for loads with

type-I deadlines, the average buffer utilization is higher,

and the number of loads that are accepted are also higher in

the case of the Progressive Scheme, whereas for loads with

type-II deadlines, the average buffer utilization is lower,

and the number of loads that are accepted are higher in the

case of the EDF Scheme. The implementation of the

Noninterleaved Scheduler is simpler than other schemes.
In an actual system, we propose to have a decision-

making mechanism that monitors the load arrival patterns

and their deadline requirement at the CN and dynamically

choose the appropriate scheduling scheme. Hence, irre-

spective of the type of loads and their deadline require-

ments, when the load arrival rate is lower, we propose to

utilize the Noninterleaved Scheduling Scheme. When the

load arrival rate increases further, depending upon the type

of deadline requirements of the loads, we propose to utilize

either the Progressive or the EDF Scheduling Schemes.

However, when the load arrival rate is higher than 0.3, we

propose to utilize the simpler Noninterleaved Scheduling

Scheme, since the acceptance ratio ð�TVBÞ is closer to 0.

Thus, all the proposed schemes are very useful for real-life

systems.

6 CONCLUSIONS

In this paper, we have proposed distributed scheduling
strategies for processing multiple divisible loads on grid
systems. As in real-life situations, we have considered the
dynamic arrival of loads, the buffer capacity constraints at
the sink nodes, and the deadline requirement of the loads to
be processed. We have proposed three schemes of RADIS
and have rigorously analyzed and evaluated their perfor-
mance. In our simulations, for all the schemes, the number
of sinks that participate in the processing in an iteration are
allowed to vary, which is reflective of real-life situations.
The impact of load sizes, load deadlines, and buffer size
variations are also captured in our simulation study.

In the schemes proposed in this paper, the CN performs
the admissibility test, determines the loads to be processed
and the sinks that participate in an iteration, computes the
scheduling parameters required for the sink nodes for
determining the schedule, and communicates them to the
sink nodes. The sink nodes perform the buffer estimation,
estimate the amount of load fractions to be processed based
on the scheduling parameters received from the CN,
determine the amount of load fractions to be requested
from the source nodes based on the actual buffer avail-
ability at the start of an iteration, and communicate the
difference between the estimated and the actual amounts of
load processed in an iteration to the CN. The sink nodes
also request and process the amount of load fractions thus
determined. In our schemes, the scheduling is done in a
distributed manner (the load fractions are computed at the
sink nodes), and only ð4þ rÞ variables (where r is the
number of sources that are scheduled in an iteration) are
communicated from the CN to the sink nodes. Hence, the
effectiveness of our schemes is more pronounced in larger
systems.

The strategies shown here are explicitly designed for a
group of computing nodes within a cluster node, which is
part of a grid infrastructure. The proposed strategies can be
tuned to work across several cluster nodes by considering
communication delays. One of the ways on how the
strategies could be tuned follows the work presented in
[6] for Ethernet networks. Another limitation in our
schemes is the single-point admissibility testing performed
by the CN. However, one could implement a distributed
approach by using leader-election-like algorithms [20] to
make it more fault tolerant.

We infer and observe the following based on our work
presented in this paper:

. The DLT paradigm has been proven to be a valid
tool for handling large-scale computational loads on
cluster/grid systems.

. Though our algorithm is shown to provide the best
effort schedules, the underestimation of buffer
availability enables our scheme not to miss the
deadlines for the accepted loads.

. All the proposed scheduling strategies are scalable,
are relevant in real-life situations, and are shown to
be useful under different scenarios.

. In grid systems, with high-speed links, concurrent
communication in different links is certainly a viable

VISWANATHAN ET AL.: RESOURCE-AWARE DISTRIBUTED SCHEDULING STRATEGIES FOR LARGE-SCALE COMPUTATIONAL... 1459

model for handling large-scale computational loads
such as the one addressed in this paper. However,
when the underlying grid system has slower links,
for handling multiple loads, alternative models with
nonzero communication delays, which are proposed
using the DLT paradigm [1], should be considered.

. Although we have proposed a scheme for buffer
estimation at sink nodes, it may be noted that the
design of the buffer estimation strategy is a topic in
itself, and other strategies such as the use of a fading
memory could be “plugged into” the RADIS
strategies.

ACKNOWLEDGMENTS

Bharadwaj Veeravalli’s research was funded by the

National Grid Office, Singapore, under the grant R-263-

000-350-592. Sivakumar Viswanathan’s research was sup-

ported by the Institute for Infocomm Research, Singapore.

Thomas G. Robertazzi would like to acknowledge the

useful conversations with Dantong Yu.

REFERENCES

[1] H.M. Wong, V. Bharadwaj, and B. Gerassimos, “Design and
Performance Evaluation of Load Distribution Strategies for
Multiple Divisible Loads on Heterogeneous Linear Daisy Chain
Networks,” J. Parallel and Distributed Computing, vol. 65, no. 12,
pp. 1558-1577, Dec. 2005.

[2] D. Ghose, H.J. Kim, and T.H. Kim, “Adaptive Divisible Load
Scheduling Strategies for Workstation Clusters with Unknown
Network Resources,” IEEE Trans. Parallel and Distributed Systems,
vol. 16, no. 10, pp. 897-907, Oct. 2005.

[3] L. Ping, B. Veeravalli, and A.A. Kassim, “Design and Implementa-
tion of Parallel Video Encoding Strategies Using Divisible Load
Analysis,” IEEE Trans. Circuits and Systems for Video Technology,
vol. 15, no. 9, pp. 1098-1112, Sept. 2005.

[4] L. Marchal, Y. Yang, H. Casanova, and Y. Robert, “A Realistic
Network/Application Model for Scheduling Divisible Loads on
Large-Scale Platforms,” Proc. 19th Int’l Parallel and Distributed
Processing Symp. (IPDPS ’05), p. 48b, Apr. 2005.

[5] O. Beaumont, H. Casanova, A. Legrand, Y. Robert, and Y. Yang,
“Scheduling Divisible Loads on Star and Tree Networks: Results
and Open Problems,” IEEE Trans. Parallel and Distributed Systems,
vol. 16, no. 3, pp. 207-218, Mar. 2005.

[6] B. Veeravalli, “Design and Performance Analysis of Heuristic
Load Balancing Strategies for Processing Divisible Loads on
Ethernet Clusters,” Int’l J. Computers and Applications, vol. 27, no. 2,
pp. 97-107, 2005.

[7] M.A. Moges, D. Yu, and T.G. Robertazzi, “Grid Scheduling
Divisible Loads from Multiple Sources via Linear Programming,”
Proc. 17th Int’l Conf. Parallel and Distributed Computing and Systems
(PDCS ’04), pp. 423-428, Nov. 2004.

[8] M. Wu and X.H. Sun, “Memory-Conscious Task Partition and
Scheduling in Grid Environments,” Proc. Fifth IEEE/ACM Int’l
Workshop Grid Computing (Grid ’04), pp. 138-145, Nov. 2004.

[9] S. Kim and J.B. Weissman, “A Genetic Algorithm-Based Approach
for Scheduling Decomposable Data Grid Applications,” Proc. 33rd
Int’l Conf. Parallel Processing (ICPP ’04), vol. 1, pp. 406-413, Aug.
2004.

[10] H.M. Wong, D. Yu, B. Veeravalli, and T.G. Robertazzi, “Data-
Intensive Grid Scheduling: Multiple Sources with Capacity
Constraints,” Proc. 16th Int’l Conf. Parallel and Distributed Comput-
ing and Systems (PDCS ’03), pp. 7-11, Nov. 2003.

[11] A.E. Darling, L. Carey, and W. Feng, “The Design, Implementa-
tion and Evaluation of mpiBLAST,” Proc. Fourth LCI Int’l Conf.
Linux Clusters: The HPC Revolution 2003, June 2003.

[12] V. Bharadwaj, D. Ghose, and T.G. Robertazzi, “Divisible Load
Theory: A New Paradigm for Load Scheduling in Distributed
Systems,” Cluster Computing on Divisible Load Scheduling, vol. 6,
no. 1, pp. 7-18, Jan. 2003.

[13] H.J. Kim, “A Novel Optimal Load Distribution Algorithm for
Divisible Loads,” Cluster Computing on Divisible Load Scheduling,
vol. 6, no. 1, pp. 41-46, Jan. 2003.

[14] B. Veeravalli and S. Ranganath, “Theoretical and Experimental
Study on Large-Size Image Processing Applications Using
Divisible Load Paradigm on Distributed Bus Networks,” Image
and Vision Computing, vol. 20, nos. 13-14, pp. 917-936, Dec. 2002.

[15] S.K. Chan, V. Bharadwaj, and D. Ghose, “Large Matrix-Vector
Products on Distributed Bus Networks with Communication
Delays Using the Divisible Load Paradigm: Performance Analysis
and Simulation,” Math. and Computers in Simulation, vol. 58, pp. 71-
79, 2001.

[16] X. Li, V. Bharadwaj, and C.C. Ko, “Divisible Load Scheduling on
Single-Level Tree Networks with Buffer Constraints,” IEEE Trans.
Aerospace and Electronic Systems, vol. 36, no. 4, pp. 1298-1308, Oct.
2000.

[17] M. Drozdowski and P. Wolniewicz, “Experiments with Schedul-
ing Divisible Tasks in Clusters of Workstations,” Proc. Sixth
European Conf. Parallel Computing (Euro-Par ’00), pp. 311-319, 2000.

[18] J. Blazewicz, K. Ecker, B. Plateau, and D. Trystram, Handbook on
Parallel and Distributed Processing. Springer, 2000.

[19] I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, 1999.

[20] H. Attiya and J. Welch, Distributed Computing: Fundamentals,
Simulations and Advanced Topics. McGraw Hill, 1998.

[21] D.A.L. Piriyakumar and C.S.R. Murthy, “Distributed Computa-
tion for a Hypercube Network of Sensor-Driven Processors with
Communication Delays Including Setup Time,” IEEE Trans.
Systems, Man, and Cybernetics, Part A, vol. 28, no. 2, pp. 245-251,
Mar. 1998.

[22] V. Bharadwaj, D. Ghose, V. Mani, and T.G. Robertazzi, Scheduling
Divisible Loads in Parallel and Distributed Systems. CS Press, Sept.
1996.

[23] R. Agrawal and H.V. Jagadish, “Partitioning Technologies for
Large-Grained Parallelism,” IEEE Trans. Computers, vol. 37, no. 12,
pp. 1627-1634, Dec. 1988.

[24] Y.C. Cheng and T.G. Robertazzi, “Distributed Computation with
Communication Delays,” IEEE Trans. Aerospace and Electronic
Systems, vol. 24, no. 6, pp. 700-712, Nov. 1988.

Sivakumar Viswanathan received the BE
degree from the University of Madras, India, in
1989 and the MSc degree from the National
University of Singapore (NUS), Singapore, in
2001. He is currently pursuing the PhD degree in
the area of high-performance network-based
computing at NUS and is the assistant depart-
ment manager in the Embedded Systems
Department, Institute of Infocomm Research,
Singapore. His research interests include multi-

processor systems, cluster/grid computing, and scheduling in parallel
and distributed systems. He is a student member of IEEE.

1460 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 10, OCTOBER 2007

Bharadwaj Veeravalli received the BSc degree
in physics from Madurai-Kamaraj University,
India, in 1987, the master’s degree in electrical
and communications engineering from the Indian
Institute of Science (IISc), Bangalore, India, in
1991, and the PhD degree from the Department
of Aerospace Engineering, IISc, in 1994. He did
his postdoctoral research in the Department of
Computer Science, Concordia University, Mon-
treal, in 1996. He is currently an associate

professor in the Department of Electrical and Computer Engineering,
Communications and Information Engineering Division, National Uni-
versity of Singapore, Singapore. He is also currently serving the editorial
board of the IEEE Transactions on Computers, the IEEE Transactions on
Systems, Man, and Cybernetics, Part A, and the International Journal of
Computers and Applications as an associate editor. His mainstream
research interests include multiprocessor systems, cluster/grid comput-
ing, scheduling in parallel and distributed systems, bioinformatics, and
multimedia computing. He has published extensively in high-quality
international journals and conferences and has coauthored three
research monographs in the areas of parallel and distributed systems,
distributed databases, and networked multimedia systems. He is a senior
member of the IEEE and the IEEE Computer Society.

Thomas G. Robertazzi received the BEE
degree from the Cooper Union, New York, in
1977 and the PhD degree from Princeton
University, Princeton, New Jersey, in 1981. He
is currently a professor in the Department of
Electrical and Computer Engineering, Stony
Brook University, Stony Brook, New York. In
supervising a very active research area, he has
published extensively in the areas of parallel
processor and grid scheduling, ad hoc radio

networks, telecommunications network planning, asynchronous transfer
mode (ATM) switching, queuing, and Petri networks. He has authored,
coauthored, or edited four books in the areas of performance evaluation,
scheduling, and network planning. He is a fellow of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

VISWANATHAN ET AL.: RESOURCE-AWARE DISTRIBUTED SCHEDULING STRATEGIES FOR LARGE-SCALE COMPUTATIONAL... 1461

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

