
_____________________________________2006 Conference on Information Sciences and Systems, Princeton University, March 22-24, 2006

Abstract— Communication delay in a processor network is
very critical to the throughput for parallel video processing. We
propose a simultaneous distribution and collection method (SD)
from the root processor to children processors via a multi-port
switch network. For the proposed mechanism, we analyze the
video encoding time and derive a closed-form solution for a star
interconnection network topology. The results show that the total
encoding time is significantly faster than the previous method,
Parallel Interlaced (PI). In addition, we achieve scalability in
terms of the number of processors, which means that as the
number of processors increases over the optimal number of
processors of PI, one continues to achieve much better
performance.

Index Terms— Parallel video scheduling, divisible load theory,
concurrent communication, star network.

I. INTRODUCTION
N parallel video processing, various scheduling

algorithms were presented such as PI (parallel interlaced)
and PR (parallel recursive) which can assign video frames to

multiple processors. For these two algorithms the authors [3,4]
found both the maximum processing throughput and I/O
utilization, and the optimal number of processors for each of
algorithms under a bus architecture, using divisible load
analysis [1,2]. However the algorithms have inherent
limitations of sequential I/O communication, due to the use of a
bus based architecture, on communication in terms of
throughput and the optimal number of processors.

In this paper we propose an efficient scheduling mechanism,
SD (Simultaneous Distribution), for parallel video processing
which distributes raw video loads and collects encoded video
results concurrently among the root (control) processor and
each child worker processor on a multi-port star topology. Note
that simultaneous distribution was proposed by Piriyakumar
and Murthy [9] and analyzed by Hung and Robertazzi [10]. We
consider two cases: one is that load is assigned to the root
processor, the other is it is not assigned. For the two cases, we

Manuscript received Feb 24, 2006.
Taeyoung. Lim is with Dept. of Electrical & Computer Engineering, Stony

Brook University, Stony Brook NY 11794 (e-mail: tlim@ece.sunysb.edu)
Thomas. G. Robertazzi., is with Dept. of Electrical & Computer Engineering,

Stony Brook University, Stony Brook NY 11794 USA (phone:
631-632-8412/10; fax: 631-632-8494; e-mail: tom@ece.sunysb.edu).

obtain closed-form solutions for the total video processing time,
and then compare them with the performance under the optimal
number of processors which is proposed in previous scheduling
algorithms, such as PI and PR. Both of the two cases show
much better performance in video processing, more than 6
times as much for the parameters we use as those under the
optimal number of processors of previous methods, such as PI
and PR. In terms of the number of scalable processors, our
proposed method, SD, reaches up to 30, more than the optimal
number of processors (12) of PI or PR [4].

We know that when the number of processors is small, the

factors that affect the total processing time are the method to
distribute and collect load as well as the root processor
participation in computation and processing speed. As the
number of processors increases, all of the SD methods show
still better performance than PI and PR methods, because all of
SD methods have good scalability. However when the number
of processors is 30, the performance improvement of
SD-COMP method (SD with computation) is relatively small,
just 1.3 times, against the SD-NO method (SD with no
computation). When we compare it with the sequential
distribution method, PI, the improvement is 6 to 8 times. It
means that when the number of processors increases enough to
process the whole load, the most critical part is the way to
distribute and collect load rather than whether the root
processor receives and computes load.

Also of practical interest is that we propose a multi-port star

topology among the root (control) processor and children
worker processors. This means that the control processor has
multiple ports to each of the children processors for I/O
communication. One of the reasons to select the multi-port star
topology is that there is only communication between the root
processor and each of children processors without
communication among children processors. The other aspect is
that the star topology is cost effective model for parallel video
processing and relatively easy to implement compared with
other complex architectures, such as 2D meshes, or Hypercube.

This paper is organized as follows. Section II describes a

multi-port star network for concurrent communication, system
modeling, and mathematical definitions. In section III, our
scheduling methods are proposed and analyzed mathematically.
In section IV, several comparisons with the previous works are
presented, and section V is the conclusion.

Efficient Parallel Video Processing
Through Concurrent Communication on a

Multi-port Star Network
Taeyoung Lim, Student Member, IEEE and Thomas G. Robertazzi, Fellow, IEEE

I

_____________________________________2006 Conference on Information Sciences and Systems, Princeton University, March 22-24, 2006

II. SYSTEM MODELING AND MATHEMATICAL DEFINITIONS

A. System Modeling
In this paper, a star network topology is considered, which

consists of the one root (control) processor with multiple ports
and m children processors. The root (control) processor
distributes raw video data (load) and collects the encoded video
data (results) to/from each child processor concurrently via
multiple ports. While the children processors encode the video,
the root processor waits for the encoded video data from each
child processor.

We have two scenarios for concurrent scheduling. The first
scenario is for the root processor to only distribute and collect
load without computation. This is because we try to compare its
performance with one in the previous papers [3, 4]. Here we
assume that our multi-port star network is homogeneous, which
means all of the children processors are identical in terms of the
processing speed. In addition, the communication speed
between the root processor and each child processor is also
identical.

The other case is for the root processor to do both
communication, such as loads distribution and results
collection, and computation (video encoding). Here we assume
that all of the children processors are homogeneous in terms of
processing speed and communication speed as in the previous
scenario, but the root processor speed can be different from the
children’s speed. We analyze how much processing power the
root processor needs to do both communication and
computation and achieve good performance.

B. Mathematical definition
The variables we will use in the following are based on the

papers [1, 2, 4].

αi the load fraction assigned to the ith link-processor pair
wi the inverse of the computing speed of the ith processor
zi the inverse of the link speed of the ith link
Tcp computing intensity constant: the entire load is

processed in wiTcp seconds by the ith processor
Tcm communication intensity constant: the entire load can

be transmitted in ziTcm seconds over the ith link

Tf,m the finish time. Time at which the last processor of m
children processors ceases computation.

Tf,0 the finish time. Time at which (only) the root processor
ceases computation.

In Fig.2, the value of ‘k’ is defined as the ratio of the result
(an encoded video) obtained from each child processor to the
load sent (an original raw video). That is,

k =
sentload

receivedresult
_

_

We have the three cases as follows:

 k = 1, if the amount of load sent is same as that of
result received.

 k < 1, if the amount of load sent is greater than that of
result received. This case is typical in digital video
processing.

 k > 1, if the amount of load sent is less than that of
result received.

Then αiwiTcp is the time to process the fraction αi of the
entire load on the ith processor. Note that the units of αiwiTcp
are [load] x [sec/load] x [dimensionless quantity] = seconds.
Likewise, αiziTcm is the time to transmit the fraction αi of the
entire load over the ith link. Our goal is to propose more
efficient scheduling methods and analyze the solution in
parallel video processing through concurrent communication.

III. CONCURRENT LOAD SCHEDULING METHOD

A. The load is not assigned to the root processor (SD-NO)
We consider the case of a homogenous processor network,

which means all children processors except the root processor
are identical; the inverse processor speed is wi = w and the
inverse network speed is zi = z. The root processor does no
computation by itself, and just distribute load and collect results
to/from the children processors. The timing diagram for
concurrent scheduling is shown in Fig. 3.

Root
Control

Processor

Interconnection Network

C2C1 C3
Ci Cm

Fig.1. Block diagram for multi-ports star network

α0w0

Σ αi Σ καi

zi

κz1

z

2

z

m

κz2 κzi κzm

. . .

z

1

α1w1

α1
α1

α2w2

α2
α2

αiwi

αi
αi

αmwm

αm αm

Children
Processors

Root
Processor

communication

Load Distribute

Result Collection

computation

Fig.2. The fraction of load may or may not be assigned to the root processor. If
it is assigned, the root processor not only distributes load and collects results
to/from each child processor, but also joins computation itself. Otherwise, the
root processor just distributes and collects load. Here ‘k’ is the ratio of result
received to original load sent.

_____________________________________2006 Conference on Information Sciences and Systems, Princeton University, March 22-24, 2006

From the timing diagram in Fig.3, the equations for SD-NO
scheduling are obtained as follows:

α1zTcm +α1wTcp +α1kzTcm = α2zTcm +α2wTcp +α2kzTcm (1)

221)(
)(

ααα =
++

++
=

cpcm

cpcm

wTTkzz
wTTkzz

 (2)

From (2), we deduce as follows:
α1 = α2 = α3 = … = αm (3)

The normalization equation is

 ∑
=

m

i
i

1

α = 1 (4)

From equation (4), we obtain

 m×1α = 1, α1 = m
1

 (5)

mm ×α = 1, αm = m
1

 (6)

The total processing time, T(m), is achieved as
T(m) = α1zTcm +α1wTcp +α1kzTcm

 = α1(1 + ρ+ kρ) wTcp (7)

 where
cp

cm

wT
zT

=ρ

From (5), the above equation, the total processing time for
the entire load can be rewritten as follows:

 T(m) = cpwT
m

k)1(ρρ ++
 (8)

Our finding is that the total processing time decreases
linearly as the number of children processors increases.

B. The load is assigned to the root processor (SD-COMP)
In case load is assigned to the root processor itself, we assume

the root processor has more processing power than that of the
children processors, while all of the children are identical in
terms of processing power and link speed. We define the
inverse computing speed of children processors as w1 = w2 = …
= wm = w, and the inverse link speed of children processors as
z1 = z2 = … = zm = z. As for the root processor, the processor
speed is greater than those of children processors, which means
the inverse value of the root processor, w0, is less than ‘w’. The
link speed of the root processor is identical to children’s speed,
so the inverse value, z0, is equal to ‘z’, since they all are
connected to the same network.

From the timing diagram in Fig.4, the equations for
SD-COMP scheduling method, in which the root processor has
load assigned to compute, are obtained as follows:

α0w0Tcp = α1z1Tcm +α1w1Tcp +α1kz1Tcm (9)

α1z1Tcm +α1w1Tcp +α1kz1Tcm
= α2z2Tcm +α2w2Tcp +α2kz2Tcm (10)

…
αm-1zm-1Tcm+αm-1wm-1Tcp+αm-1kzm-1Tcm

= αmzmTcm+ αmwmTcp+αmkzmTcm (11)

The normalization equation is
α0 +α1 + α2 + α3 + … + αm = 1 (12)

From equation (9),

1
1

1
0

111 1])[(
ααα

kTw
TwTkzz

cp

cpcm
o =

++
= (13)

where
])[(111

0
1

cpcm

cp

TwTkzz
Tw

k
++

=

α1wTcp

000

:
:
:

Raw Video Encoded Video

comm

comp

...

comm

comm

comm

comp

comm
comp

comp

comp

P
1

(Child 1)

P
0

(ROOT)

P
2

(Child 1)

P
i

(Child i)

P
m

(Child m)

α1zTcm

α2zTcm

αizTcm

αmzTcm

ΣαizTcm

000
...

ΣkαizTcm

kα1zTcm

α2wTcp

αiwTcp

αmwTcp

kα2zTcm

kαizTcm

kαmzTcm

Fig.3 The timing diagram for concurrent load scheduling mechanism without
load assigned to the root (control) processor. Here the root processor does not
compute in itself, but just distributes and collects load (SD-NO).

α0w0Tcp

α1wTcp

000

:
:
:

Raw Video Encoded Video

comm

comp

...

comm

comm

comm

comp

comm
comp

comp

comp

P1

(Child 1)

P0

(ROOT)

P2

(Child 1)

Pi

(Child i)

Pm

(Child m)

α1zTcm

α2zTcm

αizTcm

αmzTcm

ΣαizTcm

000
...

ΣkαizTcm

kα1zTcm

α2wTcp

αiwTcp

α
m
wT

cp

kα2zTcm

kαizTcm

kαmzTcm

Fig.4 The timing diagram for concurrent load scheduling with load assigned
to the root processor. The root (control) processor computes load assigned to
itself as well as distributes and collects load (SD-COMP).

_____________________________________2006 Conference on Information Sciences and Systems, Princeton University, March 22-24, 2006

From equation (11),

 11
111

)(
])([

−−
−−− =

++

++
= iii

cmiicpi

cmiicpi
i q

TkzzTw
TkzzTw

ααα (14)

where
cmiicpi

cmiicpi
i TkzzTw

TkzzTw
q

)(
)(111

++

++
= −−− , for i = 2, 3,…, m

Equation (14) can be represented as

 1
2

1)(ααα ∏
=

− ==
i

l
liii qq i=2, 3, …, m (15)

From (9), (11), the normalization equation (12) becomes

11
2

11
1

=++ ∑
=

m

i
ik

ααα (16)

1)](11[
2

1
21

=++ ∑ ∏
= =

m

i

i

l
lq

k
α (17)

∑ ∏
= =

++
= m

i

i

l
lq

k 2 21

1

)](11[

1α (18)

From the timing diagram, Fig. 4, we can get the finish time
with m+1 processors, Tf,m, as follows:

Tf,m= α0w0Tcp = cpTw
k 01

1

1 α (19)

While the finish time with only one processor, Tf,o, is
Tf,o= α0w0Tcp = 1·w0Tcp = w0Tcp (20)

The speed-up, which is the ratio of job solution time of one
processor to that on m+1 processors, can be obtained like this:

∑ ∏= =++=×= m
i

i
l l

mf

of qkk
T
T

2 21
1

1
,

,)](1[11
α

 (21)

Since ∏
=

i

l
lq

2

 can be simplified as
cmiicpi

cmcp

TkzzTw
TkzzTw

)(
)(111

++

++
,

the speed-up and the finish time, Tf,m, can be derived as
follows:

SPUP = ∑
= ++

++
+

++
+

m

i cmTikzizcpTiw
cmTkzzcpTw

cmTkzzcpTw
cpTw

2
]

)(

)11(11[
)11(1

01

= ∑
= ++

+
m

i cmTikzizcpTiw
Tw cp

1])([
11 0 (22)

Tf,m = cpTw
k 01

1

1 α

=)]
2)(

)(
(1[111

1
0 ∑

= ++

++
+

m

i cmTikzizcpTiw
TkzzTw

kTw cmcpcp (23)

For a special case, a homogeneous network, in which all of
children processors are same, the finish time, Tf,m, is

Tf,m =
)]1(1[1 1

0

−++ mk
Tw cp =

mk
Tw cp

×+ 1

0

1

 =

cp

cpcm

cp

Tw
wTzTk

m

Tw

0

0

)1(
1

++
×+

 =
]1)1[(1 *

0

++×+ ρkm

Tw cp
(24)

where k1 is from (13), and
cp

cm

Tw
zT

0

* =ρ .

From (21), speed up for a homogeneous network is

obtained as follows:

SPUP = ∑ =++= m
i

mf

of k
T
T

21
,

,]11[1 = mk ×+ 11 (25)

 where
cmcp

cmcp
i TkzzwT

TkzzwT
q

)(
)(

++

++
= = 1

We know that the value of speed-up is linearly related to

the number of processors in a simultaneous distribution and
collection method.

IV. PERFORMANCE ANALYSIS AND COMPARISON

A. Speed up without computation on the root processor
In this section A, for SD-NO (Simultaneous Distribution

with NO computation) scheduling method, we assume that the
root processor is identical to each child processor in terms of
processing speed. The root processor does not have load
assigned to itself, but just distributes and collects load to/from
children processors, We consider the same parameters as those
of PI and PR in paper [4]. The inverse computing speed of the
processor, w, is 1.0, and the inverse communication speed, z, is
0.2. Both Tcp and Tcm are 1.0. Three kinds of the ratio, k, is
considered such as 0.2, 1.0, and 1.8.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

c
e
s
s
in

g
 T

im
e
 T

(m
)

(sec)

The Number of Processors (m)

m= 12

1

k = 0.2

T
cp

=1.0
T

cm
=1.0

w=1.0
z=0.2 SD-NO

PI

PR

0.24

0.0413

Fig.5. Total processing time versus the number of processors for SD-NO
(Simultaneous Distribution with NO computation), PI and PR load
scheduling methods. The load is not assigned to the root processor.

_____________________________________2006 Conference on Information Sciences and Systems, Princeton University, March 22-24, 2006

In Fig.5, our load scheduling mechanism, SD-NO shows a
much better performance than the previous one, PI and PR.
When the number of processors is 12, which is the optimal
number of the processors in PI, the SD-NO method shows more
than 2 times less processing time as PI and PR. Especially when
we consider more processors added in the network, for example,
30, the difference is much larger, which is more than 8 times for
PI. This means our mechanism, SD-NO, is more scalable and
cost effective in terms of the processing power. When the
number of processors increases from 12 to 30, the performance
of the system increases almost 6 times, while the number of
processors only increases 2.5 times.

In Fig. 6, we know that for all three cases of the ratio, k,

where k <1, k=1, k>1, our mechanism shows a much better
performance than that of PI. In terms of the optimal number of
processors, SD-NO shows almost 2 times better performance
than that of PI for three ‘k’ values. When we consider
processor scalability, for a number of processors of 30, SD-NO
achieves much better performance than that of PI. That is more
than 10 times, 8 times, and 6 times for each of k>1, k = 1, k < 1.

B. Speed up with computation on the root processor
In this section B, for the SD-COMP (Simultaneous

Distribution with Computation) scheduling method, we assume
that the root processor is different from the children in terms of
processing power and has load to compute itself. So the root
processor not only distributes and collects load to/from children
processors, but also computes load. The ratio of load received
to load sent, k, is chosen as 0.2, since we suppose the case k is
less than 1, as is usually the case for compressed results, like
MPEG.

In Fig.7, we assume that the processing power of the root

processor for SD-COMP is twice as much as that of each child
processor. That is the inverse computing speed of the root
processor, w0, is half of that of each child, ‘w’. We see that
SD-COMP method is continuously faster for SD-NO method,
and much faster, for example more than 6 times, for PI and PR
method up to the number of processors, 10. In terms of

processor scalability, SD-COMP has more improved result.
When the number of processors increases from 12 to 30, the
performance of SD-COMP goes up 2.24 times to 6 times as fast
as respectively that of PI. However, SD-COMP and SD-NO
method shows similar performance and good scalability.

 From Fig.8, we consider three cases of processing speed of
the root processor for SD-COMP. Those are twice, 5 times, and
10 times as fast as that of each child processor. When the
number of processors is small, for example 2 to 5, the
performance of the SD-COMP method is much better than
SD-NO, PI, and PR method, because the root processor of
SD-COMP method participates in computation itself, involving
around half to 20% of the whole load.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

c
e
s
s
in

g
 T

im
e
 T

(m
)

(sec)

The Number of Processors (m)

PI(k=1.8)

PI(k=1.0)
PI(k=0.2)
SD-NO(k=1.8)
SD-NO(k=1.0)
SD-NO(k=0.2)

m=5

m=6

m=12

1

Tcp=1.0
Tcm=1.0
w=1.0
z=0.2

0.24

0.0413

Fig. 6. Total processing time versus the number of processors for SD-NO and PI
load scheduling methods on a homogeneous network. Here three values of the
ratio, k, are considered, where k = 1.8, k = 1.0, k = 0.2.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

c
e
s
s
in

g
 T

im
e
 T

(m
)

(sec)

The Number of Processors (m)

1

k = 0.2

Tcp=1.0
Tcm=1.0
w=1.0
z=0.2

PR

PI

SD-NO

SD-COMP

0.24

0.0382

Fig.7. Total processing time versus the number of processors for SD-COMP,
(SD with computation), SD-NO, PI, and PR load scheduling methods on a
homogeneous network. As for SD-COMP, the computing speed of the root
processor is twice as fast as that of each child processor and has load assigned.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

c
e
s
s
in

g
 T

im
e
 T

(m
)

(sec)

The Number of Processors (m)

1

k = 0.2

Tcp=1.0
T

cm
=1.0

w=1.0
z=0.2

PR

PI

SD-NO

SD-COMP2x

SD-COMP5x

SD-COMP10x

0.029

0.24

Fig.8. Total processing time versus the number of processors for SD-COMP
2x, SD-COMP5x, SD-COMP10x, SD-NO, PI, and PR load scheduling
methods. As for each SD-COMP above, the computing speed of the root
processor is twice, 5 times, and 10 times as fast as that of each child processor.

_____________________________________2006 Conference on Information Sciences and Systems, Princeton University, March 22-24, 2006

While the number of processors increases to 12, all of the SD
methods show 2.4 times, 3 times, 4 times, 5 times improvement
in the processing time irrespective of load assigned to the root
processor. As the number of processors increases up to 30, all
of the SD methods show still better performance than PI and PR
methods, because all of SD methods have good scalability in
the number of processors. However when the number of
processors is 30, the performance improvement of SD-COMP
is small, just 1.3 times, against the SD-NO method as compared
to 6 to 8 times against PI and PR.

One point to note is that when the number of processors is
small, it is the method to distribute load as well as the root
processor speed that is important to total processing time. The
other point is that when the number of processors increases
enough, the most critical part is the method to distribute and
collect load simultaneously or sequentially rather than whether
load is assigned to the root processor.

V. CONCLUSION
We believe that this work is meaningful for showing not

only a more efficient scheduling method for parallel video
encoding, but also good scalability in the number of processors.
Through simultaneous load distribution and collection, our
proposed method, SD scheduling, achieves a minimum 3 times
better performance under the optimal number of processors of
the PI method, and 8 times better performance when the
number of processors increases up to 30. In addition, in terms
of a practical processor and network topology, we propose a
mutil-port star network to achieve concurrent communication
among the root processor and children processors. In the future,
other appropriate network topologies could be considered.

REFERENCES
[1] V. Bharawaj, D. Ghose and T.G. Robertazzi, “Divisible Load Theory: A

New Paradigm for Load Scheduling in Distributed Systems,” in the
special issue of Cluster Computing on Divisible Load Scheduling, spring
2003.

[2] Y.C. Cheng and T. G. Robertazzi, “Distributed Computation with
Communication Delays,” IEEE Transactions on Aerospace & Electronic
Systems, vol. 24, no. 6, Nov. 1988, pp. 700-712.

[3] D. T. Altilar, Y. P. Paker, “Optimal Scheduling Algorithms for
Communication Constrained Parallel Processing”, LNCS2400, Euro-Par
2002, Germany

[4] M. Suresh, S. N. Omkar, H.J. Kim, “Parallel Video Processing using
Divisible Load Scheduling Paradigm”, Korean Journal of Broadcast
Engineering, vol. 10, no. 1, 2005.

[5] D. T. Altilar, Y.P. Paker, A. V. Sahiner “A parallel architecture for video
processing”, LNCS 1225 Proceedings of the International Conference and
Exhibition on High-Performance Computing and Networking, April 1997

[6] G. D. Barlas, “Collection aware optimum sequencing of operations and
closed form solutions for the distribution of divisible load on arbitrary
processor trees,” IEEE Transactions on Parallel and Distributed Systems,
vol. 9, no. 5, 1998.

[7] O. Beaumont, H. Casanova, A. Legrand, Y. Robert, Y. Yang. “Scheduling
Divisible Loads on Star and Tree Networks: Results and Open Problems,”
IEEE Transactions on Parallel and Distributed Systems, vol. 16, no. 3,
2005.

[8] P. Li, B. Veeravalli, A. A. Kassim, “Design and Implementation of Parallel
Video Encoding Strategies Using Divisible Load Analysis,” IEEE
Transactions on Parallel and Distributed Systems, vol. 15, no. 9, 2005, pp
1098-1112.

[9] D.A.L. Piriyakumar, C.S.R. Murthy, "Distributed Computation for a
Hypercube Network of Sensor-Driven Processors with Communication
Delays Including Setup Time", IEEE Transactions on Systems, Man and
Cybernetics-Part A: Systems and Humans, vol. 28, no. 2, March 1998.

[10] J.T. Hung, H.J. Kim, T.G. Robertazzi, "Scalable Scheduling in Parallel
Processors," Proceedings of the 2002 Conference on Information
Sciences and Systems, Princeton University, Princeton NJ, March 2002.

