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Abstract—A scheduling model for single level tree networks with various distribution policies is studied where the communication
time from the root to each node is nonlinear in the size of the load. An iterative method is implemented to solve the optimal load
distribution. The difference between sub-linear and super-linear complexity is examined. Applications arise in the aerospace field.
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1 INTRODUCTION

FOR decades it has been realized that many al-
gorithms of much practical interest have a com-

putational time that is a nonlinear in the size of
the algorithms input. This includes algorithms used
in aerospace applications such as the fast Fourier
transform, matrix operations, line detection using the
Hough transform [1] and pattern recognition using 2D
Hidden Markov models.

But a related question that has received much less
attention is whether the transmission time of data
moving over links between processing nodes can be
nonlinear in the size of the data to be transmitted.
Normally one would think this is not possible. If one
doubles the amount of data to be transmitted one
would think it should take twice as much time to
transmit as half that amount of data. This intuition is
based on the usual linear intuitive model of a channel.
Naturally we are ignoring overhead such as packet
headers in this consideration.

However there is another way of looking at things:
indexing data transmission not by time but by data
structural properties. For instance, if one transmits
a square matrix and indexes data transmission by
matrix (i.e. row/column) size, the transmission time
is proportional to a square power of the size of the
matrix. Alternately if one transmits a binary tree of
data where each node holds x bytes and indexes data
transmission by the size of the tree in levels, L, the
transmission time is proportional to 2L − 1.

In this paper such nonlinear models of communi-
cation time operating either with linear or nonlinear
models of computation is investigated. This is done
in the context of divisible loads and divisible load
scheduling. Divisible loads are perfectly partitionable
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loads that are a good model for parallel systems
processing embarrassingly parallel loads consisting
of voluminous amounts of data. That is, we assume
that there are no precedence relationships in the
processing. Divisible load scheduling techniques are
used in this paper because of their tractability in
order to make analytical progress. We pay particular
attention to communication time that is a positive
integer power law function of load size. However
the approach can be generalized to communication
time that is an arbitrary differentiable function of
load size, as is shown below. The difference between
sub-linear and super-linear complexity is examined.
Finally, the equations presented in sections 2 and 3
are very generic. In reality for particular problems,
methods of managing data yield specific variations
on the mathematical model used.

Over a hundred and forty journal papers [2] de-
scribing the divisible load scheduling have been pub-
lished since the original work of Cheng and Rober-
tazzi in 1988 [3] and Agrawal and Jagadish [4] that
year. The basic problem is to determine the optimal
scheduling of load given the interconnection and pro-
cessor network topology, scheduling policy, processor
and link speeds, and computing and communication
intensities. The aim is to finish processing in the short-
est time by the optimal scheduling of the load taking
into consideration the aspects of both computation
and communication. This occurs if processors stop
working at the same time. If not, the load can be trans-
ferred from busy to idle processors to improve the
solution. This linear model is well suited for parallel
and distributed computing because of its tractable and
realistic characteristics [5].

Over the years, divisible load theory has been ap-
plied to various kinds of networks topologies includ-
ing linear daisy chains, tree and bus networks using a
set of recursive equations [3] [6]. Further studies have
been made for hypercubes [7] and mesh networks [8].
The idea of equivalent networks [9] was developed for
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complex networks such as multilevel tree networks.
Research has also examined scheduling policy with
multi-installment [10], multi-round algorithms [11],
independent task scheduling [12], fixed communi-
cation charges [13], detailed parameterizations and
solution reporting time optimization [14], large matrix
vector computations [15] and combinatorial optimiza-
tion [16]. Recent new applications includes aligning
biological sequences [21], aligning multiple protein
sequences [22], optimizing parallel image registration
[23], divisible MapReduce computations [24], multi-
core and parallel channel systems [25] and parallel
video transcoding [26].

To the best of our knowledge, only nonlinear com-
putation, not nonlinear communication, has been in-
vestigated to date using divisible load theory. The first
to do so was Drozdowski and Wolniewicz [17] who
demonstrated super-linear speedup by defining pro-
cessing times as a piecewise linear (and thus nonlin-
ear) function of the size of the input load for evaluat-
ing the memory hierarchy of a computer. These results
were determined using mathematical programming.
Later, Hung and Robertazzi [18] obtained analytically
optimal load allocation and speedup for simultane-
ous (i.e. concurrent) load distribution for a quadratic
nonlinearity. They also presented an iterative solution
for sequential load distribution with a nonlinearity of
arbitrary power. Suresh, Run, Kim et.al. [19] [20] used
a mild assumption on the communication to compu-
tation speed ratio to present scheduling solutions for
certain nonlinear divisible load problems including
optimal sequencing and arrangement results. Beau-
mont, Larcheveque and Marchal examined when time
savings are possible with nonlinear computation [28].

This paper is organized as follows. In section 1, the
introduction was made. In section 2, we discuss the
optimal scheduling for different distribution policies.
In section 3, a specific example is presented. In section
4, we present the conclusion.

2 OPTIMAL SCHEDULING UNDER DIFFEREN-
T DISTRIBUTION POLICIES

2.1 Sequential distribution, simultaneous start

We assume the time of writing to memory can be
subsumed into the computation time. We consider
single level trees in this paper as a basic starting point
architecture. Note that if link speeds are homogenous,
a single level tree under sequential distribution is
equivalent to a bus. We also assume communication
speed and computation speed are known though they
can be estimated [27]. Consider now a single level tree
network, sequential distribution (load is distributed
from the root to each child in turn), simultaneous
start policy (load reception and computation start at
the same time). We also assume that the root does
processing.

TABLE 1
Table of symbols

αi The load fraction assigned to the ith child
processor from the root node.

wi The inverse of the computing speed of the ith child
processor.

zi The inverse of the link speed of the link that
connects ith processor to the root node.

Tcp Computing intensity constant: The entire load is
processed in wiTcp seconds by the ith child

processor. We assume the time of writing to memory
can be subsumed into the computation time.

Tcm Communication intensity constant: The entire load
can be transmitted in ziTcm seconds to the ith child

processor from the root node.
χ Communication integer power nonlinearity (χ > 1)
y Computation integer power nonlinearity (y > 1)

Fig. 1. Sequential distribution, simultaneous start

Certainly many nonlinear communica-
tion/computation functions are possible. In this
paper, for purposes of demonstration we use a
communication integer power nonlinearity χ (χ >
1). Certainly also polynomial nonlinearities could
be considered. From figure 1, one has the timing
equations:

α0w0Tcp = α1w1Tcp (1)

α1w1Tcp = (α1Tcm)χz1 + α2w2Tcp (2)

α2w2Tcp = (α2Tcm)χz2 + α3w3Tcp (3)

· · · · · ·
· · · · · ·
· · · · · ·

αN−1wN−1Tcp = (αN−1Tcm)χzN−1 + αNwNTcp (4)

We assume in our timing diagram that communica-
tion time does not extend beyond computation time
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(ie. communication is generally faster than computa-
tion).

The normalization equation is:

α0 + α1 + α2 + · · ·+ αN = 1 (5)

These equations can be re-written as:

f0 = α0w0Tcp − α1w1Tcp = 0 (6)

f1 = (α1Tcm)χz1 − α1w1Tcp + α2w2Tcp = 0 (7)

f2 = (α2Tcm)χz2 − α2w2Tcp + α3w3Tcp = 0 (8)

· · · · · ·
· · · · · ·
· · · · · ·

fN−1 = (αN−1Tcm)χzN−1 − αN−1wN−1Tcp

+αNwNTcp = 0
(9)

fN = α0 + α1 + α2 + · · ·+ αN − 1 = 0 (10)

and

~f =



f0(α0, α1, α2, · · · , αN )
f1(α0, α1, α2, · · · , αN )
f2(α0, α1, α2, · · · , αN )

...
fN−1(α0, α1, α2, · · · , αN )
fN (α0, α1, α2, · · · , αN )


= 0 (11)

One can use the multivariate Newton’s method to
solve this set of timing equations. For the above equa-
tions, the Taylor expansion of fi in the neighborhood
of α:

fi(~α+ δ~α) = fi(~α) + δα0
∂fi
∂α0

(~α) + · · ·+ δαN
∂fi
∂αN

(~α)

+O(|δ~α|2) ≈ fi(~α) +∇fi(~α) · δ~α
(12)

This can be rewritten as

~f(~α+ δ~α) ≈ ~f(~α) + J~f (~α)δ~α = 0 (13)

where J~f (~α) is the Jacobian of ~f = (f1, · · · , fN )T .

J~f (~α) =


∇fT0 ( ~α)

∇fT1 ( ~α)

∇fT2 ( ~α)
...

∇fTN ( ~α)

 =



∂f0
∂α0

(~α) · · · ∂f0
∂αN

(~α)
∂f1
∂α0

(~α) · · · ∂f1
∂αN

(~α)
∂f2
∂α0

(~α) · · · ∂f2
∂αN

(~α)
...

...
...

∂fN
∂α0

(~α) · · · ∂fN
∂αN

(~α)


(14)

One can first make a guess of the solution for the αs
and then iterate the relation below until it converges
to a solution:

~αk+1 = ~αk − J−1(~αk)~f(~αk) (15)

Fig. 2. Simultaneous distribution, staggered start

One can set the number of runs for this iteration
and stop if it converges to a solution with acceptable
error. Here we ran 5000 iterations for 20 processors
and it converged to a solution with negligible error
after several thousand runs.

2.2 Simultaneous distribution, staggered start
A simultaneous distribution, staggered start policy
involves the root distributing loads to its children
nodes simultaneously and the children nodes start-
ing computation after they have received the entire
fractions of the loads. In figure 2:

α0w0Tcp = (α1Tcm)χz1 + α1w1Tcp (16)

(α1Tcm)χz1 + α1w1Tcp = (α2Tcm)χz2 + α2w2Tcp (17)

(α2Tcm)χz2 + α2w2Tcp = (α3Tcm)χz3 + α3w3Tcp (18)

· · · · · ·
· · · · · ·
· · · · · ·

(αN−1Tcm)χzN−1 + αN−1wN−1Tcp

= (αNTcm)χzN + αNwNTcp
(19)

Manipulating the recursive equations and normal-
ization equation one can obtain

f0 = α0w0Tcp − (α1Tcm)χz1 − α1w1Tcp = 0 (20)

f1 = (α1Tcm)χz1 + α1w1Tcp − (α2Tcm)χz2 − α2w2Tcp = 0
(21)

f2 = (α2Tcm)χz2 + α2w2Tcp − (α3Tcm)χz3 − α3w3Tcp = 0
(22)

· · · · · ·
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Fig. 3. Nonlinear communication and nonlinear com-
putation

· · · · · ·
· · · · · ·

fN−1 = (αN−1Tcm)χzN−1 + αN−1wN−1Tcp

−(αNTcm)χzN − αNwNTcp = 0
(23)

fN = α0 + α1 + α2 + · · ·+ αN − 1 = 0 (24)

Then one can use the Newton’s method to solve it
for the unknown α’s.

2.3 Nonlinear communication, nonlinear compu-
tation, sequential distribution, staggered start
Here, both the computation and communication time
is nonlinear to the size of the load. We have integer
power χ (χ > 1) for the communication nonlinearity
and integer power y (y > 1) for the computation
nonlinearity.

A sequential distribution, staggered start policy in-
volves the root node distributing loads to its children
nodes in a sequential way and the children nodes
starting computation after they have received the
entire fractions of the loads.

One can have timing equations (figure 3):

(α0Tcp)
yw0 = (α1Tcm)χz1 + (α1Tcp)

yw1 (25)

(α1Tcp)
yw1 = (α2Tcm)χz2 + (α2Tcp)

yw2 (26)

(α2Tcp)
yw2 = (α3Tcm)χz3 + (α3Tcp)

yw3 (27)

· · · · · ·
· · · · · ·
· · · · · ·

(αN−1Tcp)
ywN−1 = (αNTcm)χzN + (αNTcp)

ywN (28)

α0 + α1 + α2 + · · ·+ αN = 1 (29)

Manipulating the recursive equations and normal-
ization equation one can obtain

f0 = (α0Tcp)
yw0 − (α1Tcm)χz1 − (α1Tcp)

yw1 = 0
(30)

f1 = (α1Tcp)
yw1 − (α2Tcm)χz2 − (α2Tcp)

yw2 = 0
(31)

f2 = (α2Tcp)
yw2 − (α3Tcm)χz3 − (α3Tcp)

yw3 = 0
(32)

· · · · · ·
· · · · · ·
· · · · · ·

fN−1 = (αN−1Tcp)
ywN−1 − (αNTcm)χzN − (αNTcp)

ywN = 0
(33)

fN = α0 + α1 + α2 + · · ·+ αN − 1 = 0 (34)

One can calculate the Jacobian of the ~f and use
Newton’s method to solve for the unknown α’s.

Whether the complexity is sub-linear or super-
linear can be calculated from the exponents y (compu-
tation) and χ (communication). One usually thinks of
algorithm complexity in terms of data size (as in O(N)
where N is the data size). We have an alternative
description of data size which needs to be normalized
with respect to how long it takes to communicate
data. To communicate data takes time Tcom = Nχ

and to process (compute) data takes time Tproc = Ny .
Normally we say the algorithm has O(Ny) complexity.
In terms of Tcom though N = Tcom

1/χ and substituting
for N , Tproc = Tcom

y/χ so the actual complexity
is O(Ny/χ) instead of O(Ny). If y > x the overall
complexity is super-linear and if y < x the overall
complexity is sub-linear.

2.4 Differentiable functions of communication
time and computation time
The power law examined above are of much practical
interest but in fact one can account for communication
time that is a differentiable, increasing and nonlinear
function of αiTcm. Here, a set of differentiable func-
tions for sequential distribution, simultaneous start is
introduced as an example:

α0w0Tcp = α1w1Tcp (35)

α1w1Tcp = g(α1Tcm)z1 + α2w2Tcp (36)

α2w2Tcp = g(α2Tcm)z2 + α3w3Tcp (37)

· · · · · ·
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· · · · · ·
· · · · · ·

αN−1wN−1Tcp = g(αN−1Tcm)zN−1 + αNwNTcp (38)

where g(αiTcm) is a differentiable increasing
nonlinear function of αiTcm, such as:

g(αiTcm) = (αiTcm)χ (39)

g(αiTcm) = eαiTcm (40)

g(αiTcm) =
αiTcm

1 + αiTcm
(41)

3 AN EXAMPLE

Here, we take z, Tcp and Tcm all as 1 and leave w
as a variable. Note that z (inverse communication
speed) appears linearly in the equations. Below are
two performance measurements we use:

Makespan: the time period between when the root
processor starts to send loads and the last processor
finishes computing.

Speedup: the ratio of processing time on one pro-
cessor to processing time on the entire network.

3.1 Second order communication, third order
computation, sequential distribution, staggered s-
tart

In this case, the communication time is the square of
the size of the load and the computation time is the
cube of the size of the load. Thus the complexity is
super-linear. One has the timing equations:

~f =



(α0Tcp)
3
w0 − (α1Tcm)

2
z1 − (α1Tcp)

3
w1

(α1Tcp)
3
w1 − (α2Tcm)

2
z2 − (α2Tcp)

3
w2

(α2Tcp)
3
w2 − (α3Tcm)

2
z3 − (α3Tcp)

3
w3

...
(αN−1Tcp)

3
wN−1 − (αNTcm)

2
zN

−(αNTcp)3wN
α0 + α1 + α2 + · · ·+ αN − 1


= 0

(42)
Let

εi = 3α2
iT

3
cpwi (43)

and

θi = 2αiT
2
cmzi (44)

Fig. 4. Makespan - Nonlinear communication (sec-
ond order) and nonlinear computation (third order),
sequential distribution staggered start

The Jacobian of ~f is:

J~f (~α) =



∂f0
∂α0

(~α) · · · ∂f0
∂αN

(~α)
∂f1
∂α0

(~α) · · · ∂f1
∂αN

(~α)
∂f2
∂α0

(~α) · · · ∂f2
∂αN

(~α)
...

...
...

∂fN
∂α0

(~α) · · · ∂fN
∂αN

(~α)



=


ε0 −ε1 − θ1 0 · · · 0 0
0 ε1 −ε2 − θ2 · · · 0 0
...

...
...

0 0 0 · · · θN−1 −εN − θN
1 1 1 · · · 1 1


(45)

One can set the initial ~α as all zeros and insert it
into the right hand side of the iterative function below
to get a newer set of the ~α on the left hand side.
Substitute the newer ~α into the right hand side again
and so on.

~αk+1 = ~αk − J−1(~αk)~f(~αk) (46)

After the ~α is obtained, one can calculate the
speedup and the makespan (finish time).

Makespan = α3
0w0T

3
cp (47)

Speedup =
w0T

3
cp

α3
0w0T 3

cp

=
1

α3
0

(48)

Figure 4 and 5 show how the makespan and
speedup change as the number of processors increases
with sequential distribution, staggered start, second
order communication and third order computation.

The nature of the curves in this section are a func-
tion of the power of the nonlinearity and also the
scheduling protocols that is used.
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Fig. 5. Speedup - Nonlinear communication (second
order) and nonlinear computation (third order), se-
quential distribution staggered start

4 CONCLUSION

Scheduling divisible loads with nonlinear communi-
cation time has many aerospace applications includ-
ing fast Fourier transform, matrix operations, line
detection using the Hough transform and pattern
recognition using 2D hidden Markov models. This
paper proposes an iterative method to find the op-
timal scheduling for single level tree networks under
different distribution policies. A quadratic and cubic
nonlinearity example is used to demonstrate the pro-
posed algorithm. The testing results show that this
scheduling algorithm can provide an optimal solution
for parallel and distributed systems with divisible and
nonlinear communication time loads. Such optimal
solutions can maximize the responsiveness of critical
data processing where time is of the essence.
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