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Abstract

Scheduling divisible loads with the nonlinear computational complexity is a challenging task as the recursive equations are
nonlinear and it is difficult to find closed-form expression for processing time and load fractions. In this study, we attempt to
address a divisible load scheduling problem for computational loads having second order computational complexity in a master-
slave paradigm with non-blocking mode of communication. First, we develop algebraic means of determining the optimal size of
load fractions assigned to the processors in the network using a mild assumption on communication to computation speed ratio. We
use numerical simulation to verify the closeness of the proposed solution. Like in earlier works which consider processing loads
with first order computational complexity, we study the conditions for optimal sequence and arrangements using the closed-form
expression for optimal processing time. Our finding revels that the condition for optimal sequence and arrangements for second
order computational loads are the same as that of linear computational loads. This scheduling algorithm can be used for aerospace
applications such as Hough transform for image processing and pattern recognition using hidden Markov model.

Index Terms

Polynomial computational loads, processing time, divisible load theory, master-slave paradigm, optimal sequence and arrange-
ment, pattern recognition.

I. INTRODUCTION

RESEARCHERS are producing huge amount of data to solve complex and interdisciplinary problems. The efforts to solve
such complex problems are hindered by time consuming post-processing in a single workstation. Data-driven computation

is an active area of research, which addresses the issue of handling huge data set. The main objective in data-driven computation
is to minimize the processing time of computing loads by using distributed computing system. These computing loads are
assumed to be divisible arbitrarily into small fractions and processed independently in the processors. The above assumption
on computing loads is suitable for many practical applications involving data parallelism such as image processing, pattern
recognition, bio-informatics, data mining, etc. The main thrust in the parallel processing of divisible loads is to design efficient
scheduling algorithms that minimize the total load processing time. The domain of scheduling divisible loads in multiprocessor
system is commonly referred as Divisible Load Theory (DLT) and is of interest to researchers in the field of scheduling loads
in computer networks. The problem of scheduling divisible loads in intelligent sensor network started in 1988 by Cheng and
Robertazzi [13]. Here, an intelligent sensor network with master-slave architecture is considered where a master processor can
measure, compute and communicate with other intelligent sensors for collaborative computing.

The first mathematical model considered [13] is similar to a linear network of processors. The optimal load allocation strategy
presented in [13] is extended to tree networks in [14] and bus networks in [11], [31]. An optimal load allocation for linear
network of processors is presented by the theory of all processors stop computing at the same time instant [13]. In fact, this
condition has been shown to be a necessary and sufficient condition for obtaining optimal processing time in linear networks
[30] by using the concept of processor equivalence. An analytical proof of this assumption in bus networks is presented [32].
This assumption has been proven in a rigorous manner and it is shown that this assumption is true only in a restricted sense
[8]. The concepts of optimal sequencing and optimal arrangement are introduced [4], [26]. Parameters for computation and
communication are probed for adaptive distributed processing [20].

Since, 1988 research works [6]–[18], [20], [22], [26], [30]–[34], [38] in divisible load theory framework have been carried
out by algebraic means to determine optimal fractions of a load distributed to processors in the network such that the total load
processing time is minimum. A number of scheduling policies have been investigated including multi-installments [5], multi-
round scheduling [7], [39], multiple loads [15], limited memory [18], [35], simultaneous distribution [21], [29], simultaneous
start [33], start-up delay [9], [36], detailed parameterizations and solution time optimization [1], and combinatorial schedule
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optimization [19]. Divisible loads may be divisible in fact or as an approximation as in the case of a large number of relatively
small independent tasks [3], [10]. Recently, ten reasons to use the concept of divisible load scheduling theory are presented
[31]. Results and open problems in divisible load scheduling in single level tree network is highlighted in [6]. A complete
survey and results in divisible load scheduling algorithm can be found [8], [31], [33]. Aforementioned research works in the
domain of divisible load scheduling in distributed systems consider processing load requiring linear computational power.

There is an increasing amount of research on real-time modeling and simulation of complex systems such as nuclear
modeling, aircraft/spacecraft simulation, biological system, bio-physical modeling, genome search, etc. It is well known that
many algorithms requires nonlinear computational complexity, i.e., the computational time of the given data/load is a nonlinear
function of the load size (N ). For the first time in the literature, a nonlinear cost function is considered [17], [22]. In [22],
the computational loads require nonlinear processing time depending on the size of load fractions. It has been mentioned
that because of nonlinear dependency the speed-up achieved by simultaneous-start is super-linear [17], [22]. Finding algebraic
solution for nonlinear computational loads is a challenging issue. In this paper, we present approximate algebraic solution for
second order computational loads.

Image processing and pattern analysis for aerospace applications of which computational complexity is O(N2) include line
detection using the Hough transform [40], and pattern recognition using 2D hidden Markov model (HMM) [28]. The classical
Hough transform was concerned with the identification of lines in the image, but later this transform has been extended to
identifying positions of arbitrary shapes, most commonly circles or ellipses. The computational complexity for N points is
approximately proportional to N2. When, N is large, parallel or distributed processing is desired [42]. A separable 2D HMM
for face recognition builds on an assumption of conditional independence in the relationship between adjacent blocks. This
allows the state transition to be separated into vertical and horizontal state transitions. This separation of state transitions brings
the complexity of the hidden layer of the proposed model from the order of O(N3k) to the order of O(N2k), where N is
the number of the states in the model and k is the total number of observation blocks in the image [42]. In addition, we
can also find real-world problems like molecular dynamic simulation of macromolecular systems, learning vector quantization
neural network [24] and block tri-diagonalization of real symmetric matrices [2] which require second order computational
complexity.

In this paper, we address the scheduling problem for second order computational loads in a master-slave paradigm with
non-blocking mode communication. Here, the second order time complexity computational load arrives at master processor
and master processor distributes the load fractions one-by-one to the slave processors in the network using non-blocking mode
of communication. Using a mild assumption on the communication to computation speed ratio and the minimum granularity of
any load fractions, we derive an algebraic solution for the optimal size of the each load fraction and the total load processing
time. Numerical solutions are compared with the algebraic solution to see if they conform to each other. The results clearly
indicate that the algebraic closed-form expression matches closely with the numerical solution. Finally, we study the conditions
for optimal sequence and optimal arrangement using the closed-form expression. Our finding reveals that the condition for
optimal sequence/arrangements is the same as that of linear computational loads.

II. MATHEMATICAL FORMULATION

1l 2l il 1il + ml

0p

1p
ip 1ip + mp2p

Fig. 1. Master-Slave Network

In this section, we describe the master-slave model and formulate the problem. We consider a second order computational
load which is arbitrarily divisible. The user submits the computational load in the master processor (p0). The master processor
p0 is connected to m slave processors (p1, p2, · · · , pm) through the links (l1, l2, · · · , lm) as shown in Fig. 1. The root processor
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(p0) divides the processing load is into m+1 fractions (α0, α1, · · · , αm), keeps α0 for itself and distributes the remaining m
fractions to child processors (p0, p1, p2, · · · , pm) in the network. The processing time to compute the load fraction depends
linearly on the computing speed of the processor and nonlinearly in terms of the size of load fraction. In this paper, we use the
non-blocking mode of communication [25], [37] to distribute the load fractions (α0, α1, · · · , αm) to slave processors (p1, p2,
· · · , pm). In non-blocking mode of communication, the child processor will start the computation process while its front-end
starts receiving the fraction of loads. The objective of this study is to find the optimal size of load fractions assigned to the
processors in the network such that the total processing time is minimum. The following are the notations used in this paper.
α0: fraction of the load assigned to the root processor p0.
αi: fraction of the load assigned to the child processor pi.
Ai: inverse computing speed on the processor pi.
Gi: inverse link speed on the link li.
T (m): total time taken to process the complete load.
N : total size of the load fractions.
m: number of the slave processors.
n: order of processing.
δ: minimum granularity of any load fraction.

A. Optimal Load Scheduling
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Fig. 2. Timing diagram describing the load distribution process in master-slave network

We will derive the closed-form expressions for the load fractions and processing time for nonlinear processing load in the
non-blocking mode of communication model. For the purpose of derivation of the closed form expression, we consider a
sequence of load distribution, p1, p2, · · · , pm, in that order. The problem is to find the optimal sizes of the load fractions that
are assigned to the processors in the network such that the final processing time is minimal. The load distribution process by
the master processor p0 is illustrated by means of a timing diagram as shown in Fig. 2. As in the case of linear computational
loads [8], the processing time for nonlinear computational loads is minimum only when all processors stop computing at the
same time. The detailed proof for second order computational loads is given in the Appendix I.

From the timing diagram, we can write the recursive load distribution equations as follows:

(α1N)nA1 = (αoN)nA0, (1)
(αi+1N)nAi+1 + (αiN)Gi = (αiN)nAi, i = 1, 2, · · · ,m− 1. (2)

The above equations are reduced to

(α1N)n = (αoN)nf1, (3)
(αi+1N)n = (αiN)nfi+1 − (αiN)βifi+1, i = 1, 2, · · · ,m− 1, (4)
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where

fi+1 =
Ai

Ai+1
i = 0, 1, 2, · · · ,m− 1, (5)

βi =
Gi

Ai
i = 1, 2, · · · ,m− 1. (6)

The normalization equation is
m∑
i=0

αi = 1. (7)

Equations (3) and (4) can be reduced to

α1N = α0N
n
√
f1, (8)

αi+1N = αiN
n
√

fi+1

[
1− βi

(αiN)n−1

]1/n
, i = 1, 2, · · · ,m− 1. (9)

The size of load fractions can be obtained by substituting Equations (8) and (9) in Equation (7) and solved analytically.
Solving these equations is difficult and computationally intensive. In this paper, we derive a closed-form expression for the size
of load fraction and processing time by approximating the terms inside the root. Finding approximate closed-form expression
for higher power is difficult. Hence, in this paper, we consider only the second power (n = 2). If we substitute n with 2 in
Equations (8) and (9), then the equations are reduced as

α1N = α0N
√
f1, (10)

αi+1N = αiN
√

fi+1

√
1− βi

αiN
, i = 1, 2, · · · ,m− 1. (11)

Assumption: We assume that the ratio of communication time to computation (βi) is very small in most practical distributed
systems. Also, the size of load fraction assigned to the child processor αiN is larger than βi.

Using the above assumption, we will express the term (
√
1− βi

αiN
) in Equation (11) in Taylor series as√

1− βi

αiN
= 1− βi

(αiN)
+O

((
βi

αiN

)2
)

(12)

Note that the communication-to-computation ratio (βi) is less than 1 and the load fraction assigned to the child processor is
greater than the minimum granularity of processing load (αiN > δ). Hence, the higher order terms of βi

αiN
are small and are

neglected.
In this paper, we consider a first-order approximation of square root to derive the closed-form expression.√

1− βi

αiN
≈ 1− βi

2αiN
(13)

The approximation holds only when βi

αiN
is much smaller than one and βi

αiN
moves closer to βi

δ , the approximation become
worse.
By substituting the approximation of the square root, Equation (11) can be simplified as

αi+1N ≈ αiN
√
fi+1 −

βi

√
fi+1

2
, i = 1, 2, · · · ,m− 1. (14)

By substituting Equations (14), and (10) in normalization Equation (7), we can derive the closed-form expression for the
load fraction α0 assigned to the root processor p0 as

α0 =
N + x(m)

Ny(m)
, (15)

where

x(m) =
1

2

m−1∑
i=1

βi

 m∑
j=i+1

j∏
k=i+1

√
fk

 , (16)

y(m) = 1 +

 m∑
i=1

i∏
j=1

√
fj

 . (17)
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From Equations (10) and (15), the load fraction αi can be expressed in terms of load fraction α0 as

αiN ≈ α0N
√

f1f2 · · · fi −
1

2

i−1∑
j=1

βj

i∏
k=j+1

√
fk, i = 1, 2, · · · ,m. (18)

By substituting the closed-form expression for load fraction α0 in Equation (18), one can easily calculate the size of load
fraction assigned to any processor in the network as follows:

αi =
1

N

N + x(m)

y(m)

√
f1f2 · · · fi −

1

2

i−1∑
j=1

βj

i∏
k=j+1

√
fk

 , i = 1, 2, · · · ,m. (19)

Now, we derive the closed-form expression for the total load processing time. From the timing diagram shown in Fig. 2,
the total load processing time T (m) is given as follows:

T (m) = (α0N)2A0 =

[
N + x(m)

y(m)

]2
A0. (20)

One should remember that the above closed-form expression for processing time is derived under the assumption that the
communication time is less than the computation time. When the communication time is greater than the computation time
(βi > 1), simultaneous processing is not possible. The processor will have cycles of the work and wait period. For this case,
finding closed-form expression is not straightforward. This case can be handled easily using the equivalent processor concept
explained in [25], [37].

The advantage of the closed-form expression is that we can directly derive conditions for the optimal sequence of load
distribution and the optimal arrangement of processors. Before analyzing the theoretical results, we present a numerical example
to understand the characteristics of nonlinear divisible load theory with non-blocking mode of communication.

B. Numerical Example 1.

Consider the task of finding ellipses in an 512 × 512 image. Lets assume that the ellipses are oriented along the principle
axes. Hence, we need four parameters (k = 4) (two for the center of the ellipse and two for the radii) to describe the ellipse.
The computational complexity in identifying the ellipse is O(Nk−2), which is O(N2). Here, N is image space (N = 262144).
For simplicity, we consider a small region of interest 10×10 (N = 100) in our example. The root processor divides the image
size into small fractions and distribute them to child processors. Each child processor computes the Hough space for a given
resolution and generates the accumulator array for their fraction of image region. The size of accumulator array depends on the
resolution and does not depends on the image size. Finally, the root processor collects all the arrays and identify the candidate
points for ellipses. For simplicity, we neglect the result collection time (resolution is much smaller than image size) from each
processor.

Consider a single-level tree network with three processors (m = 3). The time to compute the accumulator array for one
pixel (processors parameter) and the time to communicate one pixel through the link (link parameters) are given in Table
I. The total size of load fraction N is assumed to be 100 units. Using the closed-form expression, the values of fractions
assigned to the processors are computed as follows: α0 = 0.12840, α1 = 0.13619, α2 = 0.35132 and α3 = 0.38480. The
corresponding total load processing time is 148,384 units of time. The total load processing time obtained by analytically
solving the nonlinear recursive equations using nonlinear least square solver [41] is 148,170 units of time. The load fractions
obtained using analytical solution are: α0 = 0.128309, α1 = 0.13609, α2 = 0.351068, and α3 = 0.38453. From the results,
we can see that the closed-form expressions closely approximate the actual solution.

TABLE I
PROCESSOR AND COMMUNICATION LINK PARAMETERS USED IN THE NUMERICAL EXAMPLE 1.

Parameters P0 P1 P2 P3

A 900 800 120 100
G - 20 1 0.85

The processing time obtained using the closed-form expression and actual solution obtained using the analytical solution are
given in Table II. From the table, we can see that the processing time obtained using the approximate closed-form solution is
matching with the analytical solution. The difference between the solutions depends on the ratio between communication time
to computation time (βi) and size of load fraction (αiN ). The error is small when βi

αiN
close to zero and it becomes worse

when βi

αiN
moves closer to βi

δ .
The main objective of deriving the closed-form expression is to study the behavior of second order load scheduling problems.

In the following section, we show that the approximate closed-form solution can be directly used to find the conditions for
optimal arrangements and optimal sequence of load distribution.
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TABLE II
TOTAL LOAD PROCESSING TIME OBTAINED USING ANALYTICAL SOLUTION OF RECURSIVE EQUATIONS AND APPROXIMATE CLOSED-FORM EXPRESSION.

# of child processors Approximate solution Analytical solution
1 2,119,482 2,119,482
2 391,247 390,995
3 148,384 148,170

C. Homogeneous System

As a special case for homogeneous system (Ai = A and Gi = G), the load fraction assigned to the root processor (α0) is
obtained by substituting fi = 1 and βi = β in Equation (15) as follows:

α0 =
4N +mβ(m− 1)

4N(m+ 1)
. (21)

Load fraction assigned to any child processor pi is obtained as follows:

αi =
4N +mβ(m− 1)

4N(m+ 1)
− (i− 1)β

2N
i = 1, 2, · · · ,m. (22)

The total load processing time for homogeneous system is computed as follows:

T (m) =

[
4N +mβ(m− 1)

4(m+ 1)

]2
A. (23)

In the homogeneous case, if the communication to computation ratio tends to be zero, the load fractions assigned to the
processors converge to equal load fraction, i.e.,

α0 = lim
β→0

4N +mβ(m− 1)

4N(m+ 1)
=

1

m+ 1
(24)

and

αi = lim
β→0

[
4N +mβ(m− 1)

4N(m+ 1)
− (i− 1)iβ

2N

]
=

1

m+ 1
i = 1, 2, · · · ,m, (25)

and the total load processing time converges to

T (m) =

[
N

m+ 1

]2
A. (26)

From Equation (26), we can see that the total processing time is super-linear with increase in the number of processors.

III. OPTIMAL SEQUENCE OF LOAD DISTRIBUTION

In the linear divisible load theory, the closed-form expression is used to find the condition for the optimal sequence of load
distribution. Similarly, one needs to derive the closed-form expression to study the behavior of the nonlinear divisible load
condition. In this section, we present the condition for optimal sequence of load distribution obtained from the approximate
closed-form expression. First, we present an example to understand the effect of changing the sequence of load distribution
and later generalize the result. For this purpose, we consider a three-processor (m = 3) network. From Equation (20), we can
see that the processing time is a function of load fraction α0 assigned to the processor p0. Hence, it is sufficient to analyze
the behavior of α0 instead of processing time T (m).

Case A: The sequence of load distribution is (p1, p2, p3), i.e., the root processor p0 first sends the load fraction to the
processor p1, next to the processor p2, and last to the processor p3. Using the closed-form expression, we can write α0 as

α0N =
N + β1(

√
f2 +

√
f2f3)/2 + β2(

√
f3)/2

1 +
√
f1 +

√
f1f2 +

√
f1f2f3

. (27)

The above equation can be expressed in terms of system parameters (Ai, Gi) as
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α0N =
2N

√
A1A2A3 +G1(

√
A2 +

√
A3) +G2

√
A1

2(
√
A1A2A3 +

√
A0A2A3 +

√
A0A1A3 +

√
A0A1A2)

. (28)

Case B: Now, we change the load distribution sequence as (p1, p3, p2), i.e., the root processor p0 first sends the load
fraction to the processor p1, next, to the processor p3 and finally to the processor p2. The load fraction (α′

0) can be obtained
by interchanging (A2, G2) and (A3, G3) in earlier expression.

α′
0N =

2N
√
A1A2A3 +G1(

√
A2 +

√
A3) +G3

√
A1

2(
√
A1A2A3 +

√
A0A2A3 +

√
A0A1A3 +

√
A0A1A2)

. (29)

Now, we have to find the condition for α0 ≤ α′
0. By subtracting Equation (29) and Equation (28), we get

α0N − α′
0N =

√
A1(G2 −G3)

2(
√
A1A2A3 +

√
A0A2A3 +

√
A0A1A3 +

√
A0A1A2)

. (30)

From the above equation, we can say that the total load processing time is minimal for load distribution sequence (p1, p2,
p3) if and only if G2 is less than G3. From the results obtained for the three-processor network case, we can generalize the
result as follows:

Optimal Sequencing Theorem: Given an (m+ 1)-processor single-level tree network with non-blocking mode of communi-
cation, the optimal sequence of load distribution is produced if the root processor distributes the load fractions in ascending
order of communication speed parameter Gi of the links.

Proof: For m processors, consider a case when the root processor p0 distributes the load fractions to child processors in the
following sequence (p1, p2, · · · , pi−1, pi, pi+1, · · · , pm). The value of load fraction α0 assigned to root processor for this
sequence is

α0 =
N + x(m)

Ny(m)
. (31)

Consider another sequence of load distribution where the root processor distributes the load fractions to child processors in
a sequence (p1, p2, · · · , pi−1, pi+1, pi, · · · , pm). The value of load fractions assigned to the root processor in this sequence is

α′
0 =

N + x′(m)

Ny′(m)
. (32)

The load fraction for the new sequence can be obtained by exchanging the (Gi, Ai) and (Gi+1, Ai+1) in Equation (31).
The interchange affects terms fi, fi+1, fi+2, βi and βi+1 only, and does not affect the other terms. Note that, because of
this interchange, y(m) and y′(m) will not change. Now, we will find the conditions for α0 ≤ α′

0, which is the same as
x(m) ≤ x′(m). The terms x(m) and x′(m) are a function of f and β.

x(m) =
1

2


β1

[√
f2 +

√
f2f3 + · · ·+

√
f2f3 · · · fm

]
+ · · ·

+βi

[√
fi+1 +

√
fi+1fi+2 + · · ·+

√
fi+1fi+2 · · · fm

]
+ · · ·+ βm−1

√
fm

(33)

Now, x(m)− x′(m) is given as follows:

x(m)− x′(m) =
Gi −Gi+1

2
√

AiAi+1

. (34)

Then,

α0N − α′
0N =

Gi −Gi+1

2y(m)
√
AiAi+1

. (35)

Here, note that α0N ≤ α′
0N only when Gi ≤ Gi+1. By recursively applying the above condition, we can get the optimal

load distribution sequence which satisfies the condition G1 ≤ G2 ≤ · · · ≤ Gm. This proves the theorem.
The result obtained from the Optimal Sequencing Theorem is similar to that of the optimal sequence of load distribution

presented for the linear case [8], [26].
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Numerical Example 2.: In this example, we consider the same parameters used in the Numerical Example 1. In the previous
example, we have used load distribution sequence (p1, p2, p3). The total load processing time is 148,384 units. By applying
the optimal sequencing theorem, the optimal sequence of load distribution is (p3, p2, p1). The load fractions assigned to the
processors in the network are α0 = 0.128236, α1 = 0.136015, α2 = 0.351175, and α3 = 0.38465. The total load processing
time is 148,000 units. From this result, we can see that the total processing time for the optimal sequence is less than that for
the previous sequence.

IV. OPTIMAL ARRANGEMENT OF PROCESSORS

In this section, we derive the condition for the optimal arrangement of processors in the nonlinear divisible load problem
using our closed-form expressions. First, we present an example to understand the effect of changing the processor arrangement
and later generalize the result. For this purpose, we consider a three-processor (m = 3) network. Here, the sequence of load
distribution is fixed as (p1, p2, p3).

Case A: The processor p1 is connected to link l1, processor p2 is connected to link l2, and processor p3 is connected to link
l3. Using our closed-form expression, we can write α0 as Equation (28).

Case B: Now, we change the arrangement of processors in the network. The processor p1 is connected to link l2 and
the processor p2 is connected to link l1. The load fraction (α′

0) can be obtained by interchanging A1 and A2 in the earlier
expression as Equation (28).

α′
0N =

2N
√
A1A2A3 +G1(

√
A1 +

√
A3) +G2

√
A2

2(
√
A1A2A3 +

√
A0A2A3 +

√
A0A1A3 +

√
A0A1A2)

. (36)

Now, we have to find the condition for α0 ≤ α′
0. By subtracting Equation (28) and Equation (36), we get

α0N − α′
0N =

(
√
A1 −

√
A2)(G2 −G1)

2(
√
A1A2A3 +

√
A0A2A3 +

√
A0A1A3 +

√
A0A1A2)

. (37)

From the above equation, we know that the processing time is a minimum if and only if the sequence of load distribution
based on ascending order of communication speed parameter, i.e., G1 ≤ G2. Hence, from the above equation, we can change
the arrangement if and only if the processing speed A2 is less than A1. Now, we generalize the result as follows:

Optimal Arrangement Theorem: Given an (m + 1)-processor single-level tree network with optimal sequence of load
distribution, the total load processing time is minimum if the processors are connected to the links in ascending order of
processor speed parameter Ai.

Proof: For m processors, consider a case when the root processor p0 distributes the load fractions to child processors in
the following sequence (p1, p2, · · · , pi−1, pi, pi+1, · · · , pm). Here, the network arrangement is (p1, l1), (p2, l2), · · · , (pi,
li), (pi+1, li+1), · · · , (pm, lm). The value of load fraction α0 assigned to the root processor in this arrangement is given as
Equation (31).

Consider another arrangement where a processor pi is connected to a link li+1 and a processor pi+1 is connected to a link
li, i.e., the arrangement is (p1, p2, · · · , pi−1, pi, pi+1, · · · , pm). Here, the network arrangement is (p1, l1), (p2, l2), · · · , (pi+1,
li), (pi, li+1), · · · , (pm, lm). The value of load fractions assigned to the root processor in this arrangement is given as Equation
(32).

The load fraction for the new arrangement can be obtained by exchanging the Ai and Ai+1 in Equation (31). The interchange
affects terms fi, fi+1, fi+2, βi and βi+1 only, and does not affect the other terms. Note that, because of this interchange,
y(m) and y′(m) will not change. Now, we will find the conditions for α0 ≤ α′

0 which is the same as x(m) ≤ x′(m). The
terms x(m) and x′(m) are a function of fs and βs.

Now, x(m)− x′(m) is given as follows:

x(m)− x′(m) =
(Gi+1 −Gi)(

√
Ai −

√
Ai+1)

{∑m
j=i+2

∏j
k=i+2

√
fk

}
2
√
AiAi+1

. (38)

Then,

α0N − α′
0N =

(Gi+1 −Gi)(
√
Ai −

√
Ai+1)

{∑m
j=i+2

∏j
k=i+2

√
fk

}
2y(m)

√
AiAi+1

. (39)

Here, note that α0N ≤ α′
0N only when Ai ≤ Ai+1. By recursively applying the above condition, we can get the optimal

load distribution sequence which satisfies the condition A1 ≤ A2 ≤ · · · ≤ Am. This proves the theorem.
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In the above analysis, the speed condition of the root processor is not included. Now, we will prove the speed condition on
the root processor.

Let us consider a two-processor network and the arrangement of processors in the network is (p1, l1) and (p2, l2). The
processing time for this arrangement is

T =

{
2N

√
A1A2 +G1

2
(√

A1A2 +
√
A0A1 +

√
A0A2

)}2

A0. (40)

Now, assume that the processor p1 should distribute the load fractions instead of processor p0. Then, we have to consider
another arrangement: (p0, l1) and (p2, l2). The total load processing time for this arrangement is

T ′ =

{
2N

√
A0A2 +G1

2
(√

A0A2 +
√
A1A0 +

√
A1A2

)}2

A1. (41)

The value T − T ′ is computed as follows:

T − T ′ =
G1[4N

√
A0A1A2 +G1(

√
A0 +

√
A1)]

2
(√

A0A1 +
√
A0A2 +

√
A1A2

)2 (
√
A0 −

√
A1).. (42)

Hence, T ≤ T ′ only when A0 ≤ A1. From here, we can say that the first processor should be fastest. Note that, to find
speed condition of the root processor, we have to use the processing time expression. For the speed condition of the child
processors, it is sufficient to consider the value of the α0 expression rather than the processing time expression.

Numerical Example 3: In this example, we consider the same parameters used in the Numerical Example 1. In the Numerical
Example 1, we have used load distribution sequence (p1, p2, p3). The total load processing time is 148,384 units. By applying
the optimal arrangement theorem, the optimal sequence of load distribution is (p2, l3), (p1, l2), (p0, l1). The load originating
processor is now p3. The total load processing time is 147,975 units. From this result, we can see that the total processing
time with the optimal sequence and arrangement is less than that of the total load processing time for the other sequences.

V. CONCLUSIONS

In this paper, we have dealt with parallel processing of second order computational loads in a single-level tree network
with the non-blocking mode of communication. With a mild assumption on communication to computation speed ratio, we
have shown how to derive a closed-form expression for optimal load partition such that the total load processing time is
minimum. Numerical examples are presented to illustrate the closeness of the solution. The main advantage of the closed-form
expression is in the study of characteristics of the system. Using the closed-form expressions, we derive the condition for
optimal sequencing and arrangements of processors. These results can be used in intelligent scheduling of divisible second
order processing loads.
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APPENDIX

For linear processing loads, it has been proved that the processing time is minimum only when all processors stop computing
at the same time [8]. In this appendix, we will prove that it is true even for nonlinear computational loads. First, we present
an motivational example and next we formally define the theorem and prove it.
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Fig. A1. Timing diagram for load distribution process (m = 3)

A. Numerical Example A1:

Let us consider a three-processor (m = 3) system with the following parameters: A0 = 1, A1 = 1.1, A2 = 1.5, A3 = 2,
G1 = 1, G2 = 1.5, and G1 = 2. Total size of the processing load is 100. First, we assume that the processors participating in
the computation stop computing at the same time. Using our closed-form expression of the load fraction, we can determine
the size of load fractions assigned to the processors. The load fractions are: α0 = 0.29096, α1 = 0.27742, α2 = 0.23365 and
α3 = 0.19797. The timing diagram describing the communication and computation time for each processor is shown in Fig.
A1.

From the timing diagram shown in Fig. A1, the finishing times for processors p0, p1, p2 and p3 are: T0 = 846.577,
T1 = 846.580, T2 = 846.627 and T3 = 846.631. The total load processing time is the maximum of T1, T2, T3, and T4 which
is 846.631. There is a small deviation in finishing times due to approximation in the derivation of the load fractions.

Since the child processor p2 can compute faster than p3, we assign additional load from p3 to p2. Now, the load fractions
are α0 = 0.29096, α1 = 0.27742, α2 = 0.24365, and α3 = 0.18797. For this load distribution, the timing diagram is shown in
Fig. A2. From the figure, the finishing times for processors p0, p1, p2 and p3 are: T0 = 846.577, T1 = 846.580, T2 = 918.19
and T3 = 770.919. From the result, we can see that the child processor p2 requires more time to complete the load processing,
where as others finish their computation earlier. The total load processing time is a maximum of T1, T2, T3, and T4 which is
918.19. From this result, we can say that the total processing time is the minimum if all participating processors stop computing
at the same time. Now, we formally state the theorem for non-linear case and prove the statement is true.

Theorem I: If all nodes of the nonlinear computing model receiving non-zero load fractions stop computing at the same
time, then the processing time T is a minimum.

Proof: Let α = {α0, α1, · · · , αm} be the load fractions assigned to the processors p0, p1, · · · , pm respectively. Let T0, T1, · · · , Tm

be the corresponding finishing times.
Case A: We consider the finishing times of processor p0 and p1. The rest of the finishing times are assumed to be arbitrary

and the load fractions assigned to other processors are assumed to be arbitrary constants.

C0 =

m∑
i=2

αi. (A1)

Here, C0 is a constant. Then

α1 = 1− α0 −
m∑
i=2

αi = (1− C0)− α0, 0 ≤ α0 ≤ 1− C0. (A2)

From the timing diagram given in Fig. A1, we can write the finishing times of processor p0 and p1 as
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Fig. A2. Timing diagram for load distribution process (m = 3) by changing the load fraction assigned to p2.

0T1T

0α
0 01 C−
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0 0(1 )C N A−

Fig. A3. Variation of finishing times for processor p0 and p1

T0 = (α0N)
2
A0,

T1 = (α1N)
2
A1. (A3)

By substituting α1 in T1, we get

T1 = (1− C0 − α0)
2
N2A1. (A4)

The optimal processing time is the time that minimizes the max {T0, T1}. The variation of finishing times T0 and T1 for
different values of α0 are given in Fig. A3.

From the Fig. A1, we can see that the processing time is a minimum, if the finishing times for processor p0 and p1 are the
same, i.e., T0 = T1. At this point, we can express α1

α1 = α0

√
A0

A1
= k1α0. (A5)

Case B: Now, we examine the case with three processors (p0, p1, p2) and their finishing times are T0, T1 and T2, respectively.
Here again we assume that the load fractions assigned to other processors in the network are arbitrary constants.

C1 =

m∑
i=3

αi. (A6)
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Fig. A4. Variation of finishing times with respect to loads fraction α0

Now, the load fraction assigned to the child processor p2 can be expressed in terms of load fraction α0 and α1 as,

α2 = 1− (α3 + α4 + · · ·αm)− α0 − α1. (A7)

Using Equations (A5) and (A6), we can express α2 in terms of α0 as

α2 = 1− C1 − (1 + k1)α0, 0 ≤ α0 ≤ 1− C1

1 + k1
, (A8)

where k1 =
√
f1. From the timing diagram given in Fig. A2, finishing time for T2 and T0 are expressed as

T0 = (α0N)
2
A0. (A9)

T2 = (α1N)G1 + (α2N)
2
A2. (A10)

The finishing time T2 for processor p2 can be expressed in terms of α0 as

T2 = (k1α0N)G1 + ([1− C1 − (1 + k1)α0]N)
2
A2. (A11)

Now, we plot the finishing times T0 and T2 with respect to the load fraction α0 as shown in Fig. A4. When the load fraction
α0 equals to the value (1−C1)/(1+k1), the load fraction α2 assigned to the processor p2 is zero. Hence, the finishing time T2

is zero. From the figure, we can observe that the finishing times meet each other at one point which is the minimum processing
time point. From the previous case, we can say that the finishing time of T1 is the same as T0. Hence, at the minimum point,
T2 = T1 = T0.

Using this condition, we can express the load fraction α2 in terms of the load fraction α0 as given in Equation (18)

α2N = α0N
√
f1f2 −

β1

√
f2

2
= k2α0N − r2, (A12)

where k2 =
√
f1f2 and r2 = β1

√
f2
/
2.

Case C: Now, we examine four processors (p0, p1, p2, p3) and their finishing times are T0, T1, T2 and T3, respectively. Here
again, we assume that the load fractions assigned to other processors in the network are arbitrary constants.

C2 =
m∑
i=4

αi. (A13)

Now, the load fraction assigned to the child processor p3 can be expressed in terms of the load fraction α0, α1, and α2 as,

α3 = 1− (α4 + α5 + · · ·αm)− α0 − α1 − α2. (A14)

Using Equations (A13), (A12) and (A5), we can express α3 in terms of α0 as

α3 = 1− C2 +
r2
N − (1 + k1 + k2)α0, 0 ≤ α0 ≤ (1−C2+r2/N)

(1+k1+k2)
.

(A15)

From the timing diagram given in Fig. A2, finishing time for T3 is expressed as

T3 = (α1N)G1 + (α2N)G2 + (α3N)
2
A3. (A16)
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Fig. A5. Variation of finish times with respect to load fraction α0.

The finishing time T3 for processor p3 can be expressed in terms of α0 as

T3 = (k1α0N)G1 + (k2α0N − r2)G2 +
([

1− C2 +
r2
N

− (1 + k1 + k2)α0

]
N
)
. (A17)

Now, we plot the finishing times T0 and T3 which is shown in Fig. A5. When the load fraction α0 equals to the value
(1 − C1 + r2/N)/(1 + k1 + k2), the load fraction α3 assigned to processor p3 is zero. Hence, the finishing time T3 at this
condition is zero. From the figure, we can observe that the finishing times meet each other at one point which is the minimum
processing time point. From previous cases, we can say that the finishing times of T1 and T2 is the same as T0. Hence, at the
minimum point, T3 = T2 = T1 = T0.

Using this condition, we can express the load fraction α3 in terms of load fraction α0 as given in Equation (18),

α3N = α0N
√
f1f2f3 −

β1

√
f2f3
2

− β2

√
f3

2
= k3α0N − r3 (A18)

where k3 =
√
f1f2f3 and r3 = β1

√
f2f3
2 + β2

√
f3

2
Case D: Based on the results in the previous cases, we can extend the proof to show that minimum processing time is

achieved when T0 = T1 = · · · = Ti for i+ 1 processors (p0, p1, · · · , pi). Let

Ci =
m∑

j=i+1

αj . (A19)

Then,

αi = 1− Ci −
i−1∑
j=0

αj (A20)

From the results of previous cases, we can express αj in terms of α0 as

αj = kjα0N − rj , j = 1, 2, · · · , i− 1 (A21)

where kj =
√∏j

k=1 fk and rj =
∑j−1

k=1

βk

√∏j
l=k+1 fl

2 . Note that r1 = 0.
Now, we can express αi in terms of α0 as

αi = 1− Ci +
i−1∑
k=1

rk
N

− (k1 + · · ·+ ki−1)α0 (A22)

From the above equation, the feasible values for α0 are

0 ≤ α0 ≤
1− Ci +

∑i−1
k=1

rk
N

(k1 + · · ·+ ki−1)
= C (A23)

From the timing diagram given in Fig. 2, finish time Ti for processor pi can be expressed as

Ti = (α1N)G1 + · · ·+ (αi−1N)Gi−1 + (αiN)
2
Ai (A24)

When α0 = C, the load fraction (αi) assigned to the processor pi is zero, and hence, finish time is zero. Similarly, when
α0 = 0, the load fraction (αi) assigned to the processor pi is 1 − Ci. Now, the finish time is (1− Ci)

2NAi. From, this, we
can conclude that there exist a minimum processing time at a crossover point where T0 = T1 · · · = Ti. Using mathematical
induction, one can generalize that the processing time is a minimum if all participating processors stop computing at the same
time, i.e., T0 = T1 = · · · = Tm.
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