IJCA03 DECEMBER 22, 2003 1

SCALABLE SCHEDULING FOR CLUSTERS
AND GRIDS USING CUT THROUGH
SWITCHING

J. T. Hung and T. G. Robertazzi

Abstract

A new scalable scheduling strategy using cut through switching is proposed in this paper. Recursive and closed form expressions
for speedup are found in heterogeneous single level trees and in homogeneous multilevel trees, respectively. The ratio of speedup
using cut through switching to that using store and forward switching is presented so as to illustrate the amount of improvement
in speedup between these two different techniques.

Index Terms

Cut through switching, Divisible load scheduling, Scalability, Multilevel tree network, Simultaneous distribution

1 INTRODUCTION

The processing of massive amounts of data on distributed and parallel networks is becoming more and more comm
Applications include grid computing, database applications, multimedia, and sensor network processing. Over the past
years, a number of researchers have mathematically modeled such processing using a divisible load scheduling model
which is useful for data parallel applications.

Divisible loads are ones that consist of data that can be arbitrarily partitioned among a number of processors interconnec
through some network. Divisible load modeling usually assumes no precedence relations amongst the data. Due to the line:
of the divisible model, optimal scheduling strategies under a variety of environments can be devised.

The majority of the divisible load scheduling literature has appeared in computer engineering periodicals. Divisible log
modeling should be of interest as it models, both computation and network communication in a completely seamless integra
manner. Moreover, it is tractable with its linearity assumption. It has been used to accurately and directly model such features
specific network topologies and scheduling policies [1], [2], [3], [4], [5], [6], [7], [8], [9], computation versus communication
load intensity [1], [2], time varying inputs [10], multiple job submission [1], [11], [12], [13], and nhumerous applications.
However, researchers in this field have noted an saturation limit. If speedup (or solution time) is considered as a function
the number of processors, an asymptotic constant is reached as the number of processors is increased. Beyond a certain
adding processors results in minimal performance improvement.

For the first interconnection topology considered in the literature, the linear daisy chain [2], the saturation limit is usuall
explained by noting that, if load originates at a processor at a boundary of the chain, data must be transmitted and retransm
i — 1 times from processor to processor before it arrives atitheprocessor (assuming nodes with store and forward
transmission). However, for subsequent interconnection topologies considered (e.g. bus, single level tree, hypercube),
reason for this lack of scalability has been less obvious.

The reason why the saturation occurs in a single level tree is because of the assumption that a node distributes |
sequentially to one of its children at a time. This is true for both single and multi-installment scheduling strategies discuss
to date [1], [5]. In a single level tree (star topology), if a processor can distribute load to all of its children simultaneously
the speedup is a linear function of the number of processors [14].

How to implement simultaneous (concurrent) distribution is indicated in [14] as follows:

How might one implement the strategy that a processor distributes load concurrently to all its neighbors? A direc
method, similar to what is done in packet switches, is to envision that a processor has a CPU and an output buffer fi
each output link. Scalability can be achieved as long as the CPU can effectively distribute load to all of its output buffer
concurrently.

In a multilevel tree, even though the hardware can support the mechanism that the processors distribute load to their chilc
simultaneously, saturation can also occur if scheduling policies do not adopt the cut through switching policy from upper lev
to lower level and the simultaneous distribution policy in the same level. A fat tree network architecture was introduced
one means for hardware to implement simultaneous distribution so as to avoid the saturation problem [14]. The actual probl

Thomas G. Robertazzi, Cosine Laboratory, Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY 11794. E-ma
tom@ece.sunysb.edu. The support of NSF grant CCR-99-12331 is acknowledged.

Jui Tsun Hung, Cosine Laboratory, Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY 11794. E-mail
trent@ece.sunysb.edu

IJCA03 DECEMBER 22, 2003 2

UoWo

ay ap

o, Wy oW, | amlwm1| oW,

Fig. 1. Structure of a heterogeneous single level tree with simultaneous distribution, simultaneous start.

in multilevel trees is the nature of store and forward switching, which is used in [14], down a path in such a tree. With a
efficient scheduling policy (such as cut through switching with simultaneous distribution) it is ultimately hardware that limits
the performance. This is in the sense that single level tree scheduling is scalable as long as outputs of the root are contint
loaded.

This paper considers the use of cut through switching to overcome this problem. In cut through switching, load proceedi
down a multilevel tree path need not be completely received by a node before it can be forwarded to the node’s descendz
Rather, a node can simultaneously receive load from its parent node and transmit (from the portion received so far) to
children at the same time. Intuitively one can see that this should lead to a performance improvement but we seek here
guantify that performance.

Note that simultaneous load scheduling was proposed by Piriyakumar and Murthy in [15]. While they stated this shou
lead to improve performance, the scalable nature of simultaneous scheduling was not known until [14]. Previous related w
on scalability issues for parallel processing includes an experimental study of several real time load balancing schemes |
and an experimental study of scalable scheduling for function parallelism on distributed memory multiprocessors [17]. It h
been known on an intuitive basis that network elements should be kept constantly busy for good performance [18].

This paper presents the types of notation and analytic background in Section 2. In Section 3 the speedup formulas
processors are derived for a single level and a multilevel tree, respectively. We also compare the speedup using cut thro
switching (with simultaneous start) with that using store and forward switching (with simultaneous start) [19]. The conclusio
is stated in Section 4.

2 MODEL AND NOTATION
2.1 Model and Notation for Single Level Tree

To evaluate a homogeneous multilevel tree, we must analyze a single level tree first. Here we present a heterogeneous s
level tree, (see Figure 1), with intelligent root. All the children processors are connected to the root (parent) processor \
communication links. An intelligent root can process a fraction of the load as well as distribute the remaining load to it
children processors at the same time. Timing diagrams within each node of Figure 1 show communication above the horizol
time axis and computation below it. In this paper we assume that a node begins to process its load as soon as load is rece
by the nodes as proposed by Kim [20]. This is simultaneous start.

For a heterogeneous single level tree, which can be collapsed into an equivalent node, the notation is presented as follo
ag: The load fraction assigned to the root processor.
«;: The load fraction assigned to thth link processor pair.
w;: The inverse computing speed on thk processor.
weq: The inverse computing speed on an equivalent node collapsed from a single level tree.
z;: The inverse link speed on thi¢h link.
T.,: Computing intensity constant. The entire load can be processegIis seconds on théth processor.
T.»: Communication intensity constant. The entire load can be transmitted’ip, seconds over théh link.
T}.m: The finish time of an equivalent node collapsed from a single level tree composed of one root nadechiidren

nodes. Herdly ,,, is equal towe,Tep .
Tt,0: The finish time for the entire divisible load solved on the root processor, (i.e. a tree without any children nodes but tt
root node). Herdly o is equal tol x wo1e,, that isweTy, .

Definition 1: ~,, the ratio of the inverse computing speed on an equivalent node to that on the root node:
Yeq = Weq/Wo = Tr,m/Tt0 @

Definition 2: Speeduphe ratio of finish time on one processor (i.e. the root node) to that on an equivalent node collapse
from a single level tree. It is thus a measure of parallel processing advantage. This value is equal to the ratio of the inve
computing speed on the root node to that on an equivalent node, i.e. the inverse ldence:

Speedup = T5,0/Tfm = Wo/Weq = 1/7eq @

IJCA03 DECEMBER 22, 2003 3

Theentireload is
aready stored in
the root node

(Layer k)

Level k

Fig. 2. Structure of a homogeneous multilevel fat tree using cut through switching, simultaneous distribution, and simultaneous start.

2.2 Model and Notation for Multilevel Tree

A heterogeneous multilevel tree network is too complex for a closed form speedup solution. Therefore, in this paper
homogeneous multilevel tree network is evaluated. A homogeneous multilevel tree network where root processors are equip
with a front-end processor for off-loading communications is considered. Root nodes, called intelligent roots, process a fract
of the load as well as distribute the remaining load to their children processors at the same time (see Figure 2). Note t
each child processor starts computing and transmitting immediately as soon as it receives its assigned fraction of load
continues without any interruption until all of its assigned load fraction has been processed. Under simultaneous distributi
load is distributed from a node to its children simultaneously, as opposed to sequentially. This is the operation of “cut throu
switching with simultaneous distribution” for computation and communication.

An equivalent subtree can be obtained by collapsing the lower level subtrees into an equivalent node [21]. Therefore,
equivalent network for a level subtree in a multilevel tree can be derived and is illustrated in Figure 3.

the fraction load
for j level subtree l 7

a.
V\éeq 1 Jm—anl |,mWnqu .

Fig. 3. Structure of j-level subtree in a multilevel tree using cut through switching, simultaneous distribution, and simultaneous start.

The notation for a multilevel homogeneous fat tree is denoted as follows

a;0: The load fraction assigned to a root processor of jhelevel subtrees.

a5 The load fraction assigned to thith link-processor pair of thgth level subtrees.

Wi, The inverse computing speed of an equival@htnode collapsed from the ¢ 1)th level subtree, which consists of
collapsed single level subtrees from leyel 1 descending to level. In a homogeneous multilevel tree, we assume
thatwey, , = Wi, (i=1,2,...,m).

T}Ln’; The finish time of ak level homogeneous tree with one root node aneéquivalent children nodes.

IJCA03 DECEMBER 22, 2003 4

Definition 3: p;_1 ;, the multiplier of the inverse capacity of thith link at level;j (see Figure 3). The value of the multiplier
pj—1,; is defined as the inverse of the total number of children processor descendants at and belgw-laytar the ith
subtree. The variablg;_; ; allows fat tree modeling. A fat tree allocates more capacity to nodes near the root to improve the
transmission speed. In a homogeneous multilevel fat free, = p; 1, (1 = 1,2,...,m). Hence:

=1\ !
Pj—1 = <Zml> 0< Pj—1 <1 (3)
1=0

With this natural choice op;_4, the transmission capacity between parent nodes and children notlé®js,z), which is
larger than the capacity of bottommost level links bip;_,. This implicitly indicates that each node within an equivalent
subtree from layey — 1 down to layer0 has an equivalent capacity of z in the channel at level.

Definition 4: ~;, the ratio of the inverse computing speed on an equivalent node atjlégethat on the root node:
Vj = Weg; /w (4)

Definition 5: Speeduphe ratio of finish time on one processor (i.e. the root node) to that on an equivalent node collapse
from a subtree from levet to level 1. This value is also equal to the ratio of the inverse computing speed on the root node
to that on an equivalent node, i.e. the inverseypf Hence:

Speedup = Tfyo/T}f;lfL =W/Weq, = 1/7k (5)
We make three major assumptions. First, the computing and communication loads are divisible (i.e. perfectly divisible wi
no precedence constraints [1]). Second, transmission and computation time are proportional (linear) to the size of the prob
transmitted or computed. Finally, each node transmits load simultaneously to its children.

3 CUT THROUGH SWITCHING WITH SIMULTANEOUS DISTRIBUTION AND SIMULTANEOUS START

This section examines scalable scheduling with two improved features. One feature is the use of cut through switching, rat
than store and forward switching [14], for load distribution from level to level in a tree network. The second feature is t
allow a child node receiving load from its parent node to begin computing as soon as load starts to arrive. This type of timin
referred to here as simultaneous start, was first proposed by Kim [20].

An ideal form of cut through switching would provide sufficient virtual circuits (one from the root to each node) so that
all nodes in the multilevel tree receive load simultaneously with effective root to individual node data figte @r some
variation for a heterogeneous network). Neglecting propagation delays, this creates a logical single level tree (star) netwc
However, because there is more traffic as one approaches the root, a fat tree like assignment of link capacity is needed.

The form of cut through switching used in this study is to have the multilevel tree root start to transmit simultaneously t
all its children. After a node receives its own load, load for the node’s children will be relayed (in virtual cut through) througt
the node to its children. Each node distributes load to its children in a similar manner. Each node receiving load commen
processing on its fraction as it starts to receive it. Once a node has received its own load it continues processing and re
load to its children and descendants.

Finally, in this work we proceed by aggregating single level subtrees into equivalent processors, starting from the bottom
the tree and working upwards [1].

The tree’s bottommost single level subtrees are at léyehe tree’s topmost (including the root) subtree is at leveA
little thought will show that the topmost single level subtree can have all processors commence computation simultaneou
at time zero (root node with data storage case).

In the lower level sub-trees there is a delay between the time that a subtree’s root commences computation and recep
of its load and the time it finishes reception of its own load and can begin distributing load to its children, so they can sta
processing (root node without data storage case).

In this paper the single level tree root node with data storage and root node without data storage cases are first examil
Then these results are applied to a multi-level tree. Again, root node without data storage scheduling is applied to lower lev
1,2,...,k—1, and root node with data storage scheduling is applied to topmostievel

3.1 Processors with Simultaneous Start: Single Level Tree

3.1.1 Single Level Tree: Root Node with Data Stora@ensider a single level tree network with an intelligent roat+ 1
processors, andh links. All children processors are connected to the root processor via direct communication links. The
intelligent root processor, assumed to be the only processor at which the divisible load arrives, partitions a total process
load intom+1 fractions, keeps its own fractiam,, and distributes the other fractions, as, ..., a,, to the children processors
respectively and simultaneously.

Each processor begins computing immediately as soon as load starts to arrive and continues without any interruption until
of its assigned load fraction has been processed. In order to minimize the processing finish time, all of the utilized process

IJCA03 DECEMBER 22, 2003 5

Heterogeneous Single-Level Tree (Linear Type)
- Simultaneous Distribution

- Simultaneous Start

- Root Node with Data Storage

Single Level
Root Node G
(Parent 0)
oW Ty [C
: : "
C ication
(Child 1)]
4w Ty ‘ Computation
T
%,2,T;
(Child 2) W Ty

Computation

0227,
o222 em
] Communication
(Child m-2) 0, oW, o1,
- 2Win-21ep C i
1 Tom
C ication
(Child m-1) O, Wyt T,
o Won-11ep C; i

(Childm)

=Y

e

=

R
i
5

Communication

%, T | Computati

<3

Fig. 4. Timing diagram of single level tree with simultaneous distribution, simultaneous start, and root node with data storage.

in the network must finish computing at the same time [1]. The process of load distribution can be represented by Ga
chart-like timing diagrams, as illustrated in Figure 4. Note that this is a completely deterministic model. The fundament:
recursive equations of the system can be formulated as follows:

O‘OwOTcp = alwchp (6)
Oéi_1’wi_1Tcp = aiwiTcp 1= 2, 3, o.M (7)

The normalization equation for the single level tree with intelligent root is:
a0+041+042+~~+04m:1 (8)

This givesm + 1 linear equations withn + 1 unknowns.

Now from (6):)
w1

g = —a1 = —aoq where ki = wp/w;. 9)
wo kl
Then from (7),
i— Tc
;= uawl = q;a;—1 where ¢; = wi—l/wi~ (10)
w?ﬁTcp
=([[a) xen i=23,....m (11)
1=2

Then the normalization equation (8) becomes:
1 m [
k—+1+Z(qu) o =1
1 i=2 =2

1
o] =

-1 m i (12)
mt T+l @)

IJCA03 DECEMBER 22, 2003 6

The finish time is:

1
Tf,m = anOTcp = FaleTcp (13)
1

_ 1
ek [1+ (T)]

The single level tree can be collapsed into a single equivalent node, and the equivalent computation. speed
1

Ltk [14 (0T a)

woTep (14)

wechp = Tf,m = wOTcp
According to Definition 1 in Section 2:

Weg _ 1

Wo 1+ kq [l—Fzm wl}

=2 w;

Yeq = (15)

SinceTy o = apwoTe, andag = 1: the speedup is derived as follows:

T 1 i
Speedup:T;ti’O:,y =1+k 1+ZZ’}T] (16)
fom eq i—p Wi

As a special case, consider the situation of a homogeneous network where all children processors have the same inv
computing speed and all links have the same inverse transmission speed €-ev andz; = z for i = 1,2,...,m). Note

that wy can be different fromw;, and thenk; = wo/w andg; = 1 (i = 2,3, ..., m). Consequently, the speedup can be a
linear function of the number of children processors as follows.
Speedup = 1+ ky 1—|—Zw1] :1—|—m@ a7
i—p Wi w

3.1.2 Single Level Tree: Root Node without Data Storabere we assume that the children nodes in the subtree begin
computing when the root node finishes receiving its load. It is assumed that communication speed is fast enough on links t
no node “starves” for load. The Gantt chart-like timing diagram of this process of load distribution can be illustrated in Figur
5.

The fundamental recursive equations of the system can be formulated as follows:

apwoTey = arwiTey + aozoTem (18)

OéiflwiflTCp = aiwiTcp 1= 2, 3, o.M (19)

The normalization equation for the single level tree with intelligent root is:

agt+ar+as+--+a, =1 (20)

This givesm + 1 linear equations withn 4+ 1 unknowns. Now from (18),

wchp 1
— - — 21
a0 wOTcp — 20Tem “ k1 “ ()

Here:
Tc - Tcm
foy = L0Zep — Z0Zem (22)
wchp

Here we assume thatT,, > zo1... That is, communication speed is faster than computation speed. Following the
derivations in section 3.1.1, we can obtain the following results:

1
Tf_’m = aoonCp = Ealoncp (23)
1
== m i wOTcp (24)
Lk 1450, (T)|
We 1
Yeq = 1= (25)

=2 w;

wo 1+k1 {lJer ﬂ}

IJCA03 DECEMBER 22, 2003 7

Heterogeneous single-level tree (Linear Type)
- Simultaneous Distribution
- Simultaneous Start

1 - Root Node without Data Storage

Single Level | -7
Root Node pum==""""- 1

» o | Communication
(Parent 0)
% Ty

Computation

10,31,
Jitd F Communication
(Child 1)
ouw, I, .
2 Comp
2,1,
o Communication
(Child 2)
WLy R)

<3

=L

Nl

%222 Lo
) Communication
(Child m-2) @ T
b 2Wn-24cp Computation
T
's
%1%/ Tom
Communication
(Child m-1) o 7
b Win-11ep Computation
%3 o
Communication
(Childm) T
W, .
mWm Zep Computation

Fig. 5. Timing diagram of single level tree with simultaneous distribution, simultaneous start, and root node without data storage.

=

Ne]

T 1 “
Speedup:ﬁ:—zl—&-kl l—i-zE (26)
Tf,m Veq i Wy

As a special case, (i.ev; =w andz; =z fori=1,2,...,m):
Speedup = 1+ m(wo/w — 200/2) (27)

Hereo = 2T, /wTy,.

3.2 Processors with Simultaneous Start: Homogeneous Multiple Level Tree Analysis

The process of load distribution for the multilevel fat tree network using cut through strategy for computing and communicatir
can be represented by Gantt chart-like timing diagram in Figure 6.

The dashed blocks at the communication parts denote the periods when data only passes through a node with cut thrc
switching and the solid blocks at the communication parts denote the periods when the indicated node receives the data assi
for computation.

3.2.1 Levelj Subtree: Single Level Tree Root Node without Data Stordgee timing diagram of a single equivalejth
level tree is analogous to Figure 5. However, the following notation is defined asc;; (i = 0,1,2,...,m); 20 = p;z;
zi=pj1z (1=1,2,...,m); wo = w; andw; = weq, , (i =1,2,...,m). Consequently, the fundamental recursive equations
of the jth level subtree network are derived as follows:

ajowley = ajiWeq;_, Tep + j0pizTem (28)
Qi1 Weq;_y Tep = 0 iWeq; _, Tep 1=2,3,...,m (29)
The normalization equation for the single level subtree with intelligent root is:
ajotajitajottajim=1 (30)
This givesm + 1 linear equations withn 4+ 1 unknowns. Then from (28):

Weq. e 1
i —j1 (31)

Qo = —m
7, Js
Wilep — pizlem keqj_l

IJCA03 DECEMBER 22, 2003 8

Homogeneous Multi-Level Tree
- Cut Through Switching
- Simultaneous Distribution

- Simultaneous Start
Root C P
(Laerk) ommunication
: oWl [Computation
O ; P2l T,
evelis | (Cut Through) | /
vel k> |
(Nodei 4 |
=12, / i
e g Pyl i
Larertcd | Communication
ayer k-1) @ T [
he-1.0W1, 3 .
[o T ! - Computation
! k-1iPr2 e em) T
ctevelits | (Cut Through) |
evel k-
i=1,2,,m) 'ak—zﬂﬂgfaz 777777 : .
! Communication
(Layer k-2)
- - %20 Wy | Computation
! 31Dy om! T
' (Cut Through) |
<Levelk-2> | !
(Node i i i
i=1,2,0.,m) ! |
v 1
1
1
1
1
1
|
i 102 T,
! \ (Cut Through)
<Level 3> o
(Node i) !
i veenatt) 5 i
+
g —
%P2 T, f Communication
(Layer 2) - . ST
207 ‘ Computation
1%ipRL, 7
Lovel2 I \(Cut Through)
<Level 2> Vo
(Node i “ "
i=12,...m) i i
r i
o, Pzl Communication
(Layer 1) e o T ‘
_ 1.0 ey Computation
1102 T, T;
! {(Cut Through)
<Level I> v
(Node i i
i=1,2,...m) [
I
APy, Communication
(Layer 0) e o "”F T I !
L Computation

Fig. 6. Timing diagram for scalable scheduling using cut through switching, simultaneous distribution, and simultaneous start in a multilevel fat tree.

According to Definition 4 in Section 2 andl = 2T¢,, /wTcyp , keq, , becomes:

k = wTCP _ijTcm _ w _ ’LUijTcm
€qgj—1 wEQj—lTC;D weqj_l weq]._lecp
w 1
= o —(1=pjo) = ——(1-pjo) (32)
Weq;_, J Y1 J
Now from (29):
Weg.; T i
Q54 = Ma]ﬂ*l = Qeq;_ 1 Qi1 = ququl a1
weq.J—lTCP e
= (Qqu'—l)i—lajJ 1=2,3,....,m (33)
Here, as the network is homogeneous (see (33)),, = 1. The normalization equation (30) becomes:
1 m
Tt e+) ey =1 (34)
i i=2
1
@51 = ; — - (35)
quj71 +1+ Zi:2 |:Hl:2 qeqj,1:|

Therefore, the equivalent finish time is as follows:

1
704]"1UITCP (36)
keq‘ifl

_ 1 Wl (37)

1 + keQJfl {1 + 222 |:Hli:2 Qeqj,1:| }

h.j _ _
T m aj’o’chp =

IJCA03 DECEMBER 22, 2003 9

Sincewey, Tep = T}2, andke,, , = (1 — p;o)/~;—1, we obtain

1

Weq; = 1+ key {1 + Z’” [HLQ qeq%l] }w
;= et L
! w 1+ keg;_, {1"'2?;2 [Hé:z q@%l”
1
- (1 — Pjo o) e

From (38), the closed forms of speedup for fat tree and non-fat tree networks are obtained as follows.

1) Homogeneous multilevel fat tree
Since the computation capability of each nodevisw., is equal tow. Therefore, the initial value of, (which is),
is equal to 1 (because = we,,/w = w/w). Furthermore;y; can be derived as follows:

1 1

IR po) T+ m(l—pio) (39)

B 1
PEIT (1= pao)

B 1

1+ m(1l = p2o) +m?(1 = pao)(1 = p1o)

1

= 40

78 R(o,m) (40)
. (41)

1L [T m - pi0)
wherej =1,2,...,k—1 and
R(o,m) =14+ m(1 — p3o) + m*(1 — p3o)(1 — p20o)
m*(1 = p3o)(1 = pao)(1 — p1o) (42)
The equivalent speedup of levglsubtree is described as the following equation:

7—1

H (1-pj_ 10)] (43)

J

Speedup = — = Z

=1

wherej =1,2,...,k—1.
2) Homogeneous multilevel non-fat tréall the bandwidth of each transmission link is the sames= 1):
In (41), p; = 1. Hence, the closed form solution of is:

1
Vi = — - J=12... k-1 (44)
TS m(1 - o)

The equivalent speedup of a subtree, level j, is obtained as follows:

L [m(1 - o)}
1-—m(l-o0)

Speedup = ’yi = Z [m(1—o)]’ =

J i=0

(45)

wherej =1,2,...,k— 1.

3.2.2 Levelk Subtree: Root Node with Data Storag&he timing diagram of the top equivalent single level tree, level
k, is analogous to Figure 4. However, the following notation is definedvas= ar; (i = 0,1,2,...,m); z; = pr_12
(1=1,2,...,m); wo = w; andw; = weq,_, (1 = 1,2,...,m). Consequently, the fundamental recursive equations of the
kth-level subtree are derived as follows:

o oW1 ep = O 1Weqy o Tep (46)
Ok i—1Weq, 1 Lep = Qk,iWeq,_ Tep 1=2,3,...,m 47

IJCAO3 DECEMBER 22, 2003 10

The normalization equation for the single level tree with intelligent root is

agotogitags+-tag, =1 (48)
Applying the derivations in section 3.2.1, one obtained the following results. So from (46):
we%flTCP 1
Qo= — Qg1 = Qg1 (49)
chp keqk—l
where
wT, w 1
kje — P = = 50
" weqj—lTCp Weq; 1 Ve—1 (50)
.k 1
T, = okowle, = ap 1w, (51)
€qr—1
1 T (52)
= 710 c
1+ mkeg, , P
Wegy, 1 1
w L4 mkeq,_, 1+

Therefore, we can summarize the speedup of lévél & = 1, thenyy =1 andy; = vo/(m + o). If k > 2, the closed form
solution for ak level fat tree is shown as follows.

1) Homogeneous multilevel fat tree

1
Speedup = —
Vi

k—1
:1+m{1+z

i=1

i—1
H m(1 — p(k—l)—lo—)‘| }

=0
2) Homogeneous multilevel non-fat tre@ll the bandwidth of each transmission link is the sames= 1):

k—1
Speedup = LI + mz [m(1—o)]"
Tk =0
3.2.3 Speedup Comparison Between Cut Through Switch and Store and Forward 3mwitt®} the recursive formulae for
a homogeneous multilevel fat tree with simultaneous start using store and forward switchipg=ate v; = (pj—10(vj—1 +
m) +vj-1)/(vj-1+m) (j =1,2,...,k—1); andy, = v,_1/(m + yx—1). We can thus solve these formulae to obtain the
ration of speedup using cut-through switching to that using store and forward switching (see Figure(71). As Figure 7

The ratio of speedup using cut through switching to that using store and forward (sigma=0.1)

~
@

The ratio of speedup

10

The number of levels in a network The number of children in each subtree

Fig. 7. The ratio of speedup of cut-through switch to that of store and forward switeh(@.1)

shows, speedup using cut through switching is faster than that using store and forward switching.

IJCA03 DECEMBER 22, 2003 11

4 CONCLUSIONS

Tree networks are of direct relevance to cluster and grid interconnection. Spanning trees are an efficient and commonly u
interconnection topology in large scale networks/grids for distributing load while minimizing the number (and inherent cos
of links used. In clusters, single level trees (i.e. stars) are a natural topology for small scale interconnection and multiley
trees are natural for larger system interconnection.

The performance analysis of a heterogeneous single level tree and a homogeneous multilevel tree using cut through switc!
was derived in this paper. The speedup of scheduling using cut through switching outperforms than that of scheduling us
store and forward switching. A comparison in the performance between these two method becomes possible by solving
recursive equations derived in this paper.

REFERENCES

[1] V. Bharadwaj, D. Ghose, V. Mani, and T. G. RobertaZtheduling divisible loads in parallel and distributed systdras Alamitos CA: IEEE Computer
Society, 1996.
[2] Y. C. Cheng and T. G. Robertazzi, Distributed computation with communication deleig& Transactions on Aerospace and Electronic Systedis),
1988, 700-712.
[3] G. D. Barlas, Collection aware optimum sequencing of operations and closed form solutions for the distribution of divisible load on arbitrary process
trees, |IEEE Transactions on Parallel and Distributed Syste®(&), 1998, 429-441.
[4] S. Bataineh and T. G. Robertazzi, Bus oriented load sharing for a network of sensor driven procHsE&rs[ransactions on Systems, Man and
Cybernetics 21(5) 1991, 1202-1205.
[5] V. Bharadwaj, D. Ghose, and V. Mani, Multi-installment load distribution in tree networks with dEEBE Transaction on Aerospace and Electronic
Systems31(2), 0 1995, 555-567.
[6] V. Bharadwaj, D. Ghose, and V. Mani, An efficient load distribution strategy for a distributed linear network of processors with communication delays
Computers and Mathematics with Applicatip29(9), 1995, 95-112.
[7] J. Blazewicz and M. Drozdowski, Scheduling divisible jobs on hypercuPasallel Computing 21(12), 1995, 1945-1956.
[8] J. Blazewicz and M. Drozdowski, The performance limits of a two dimensional network of load sharing procéssordations of Computing and
Decision Science®1(1), 1996, 3-15.
[9] J. Blazewicz and M. Drozdowski, Distributed processing of divisible jobs with communication start-up Pistsete Applied Mathematicg6(1-3),
1997, 21-41.
[10] J. Sohn and T. G. Robertazzi, Optimal time varying load sharing for divisible |d&d=&E Transactions on Aerospace and Electronic Syst?),
1998, 907-924.
[11] V. Bharadwaj and G. Barlas, Efficient scheduling strategies for processing multiple divisible loads on bus nelworia, of Parallel and Distributed
Computing 62, 2002, 132-151.
[12] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert, Bandwidth-centric allocation of independent tasks on heterogeneousPutatforms,
International Parallel and Distributed Processing Symposium (IPDPS’'22D2.
[13] Y. Yang and H. Casanova, Umr: A multi-round algorithm for scheduling divisible workloBdsc. International Parallel and Distributed Processing
Symposium (IPDPS’03R003.
[14] J. T. Hung, H. J. Kim, and T. G. Robertazzi, Scalable scheduling in parallel proceBsocs,2002 Conference on Information Sciences and Systems
2002.
[15] D. A. L. Piriyakumar and C. S. R. Murthy, Distributed computation for a hypercube network of sensor-driven processors with communication delay
including setup timeJEEE Transactions on Systems, Man, and Cybernetics-PART A: Systems and H2&(apns1998, 245-251.
[16] V. Kumar, A. Y. Grama, and N. R. Vempaty, Scalable load balancing techniques for parallel compatergl of Parallel and Distributed Computing
22, 1994, 60-79.
[17] S. Pande, D. P. Agrawal, and J. Mauney, A scalable scheduling scheme for functional parallelism on distributed memory multiprocessoEEfstems,
Transactions on Parallel and Distributed Systereis1995, 388-399.
[18] D. E. Culler and J. P. SingtRarallel Computer Architecture(San Francisco: Morgan Kaufmann, 1999).
[19] J. T. Hung, Scalable Scheduling in Parallel, Distributed, and Grid Systedwctoral diss., Stony Brook University, Stony Brook, NY, 2003.
[20] H. J. Kim, A novel load distribution algorithm for divisible loadSpecial Issue of Cluster Computing on Divisible Load Scheduéi(, 2002, 41-46.
[21] S. Bataineh, T. Y. Hsiung, and T. G. Robertazzi, Closed form solutions for bus and tree networks of processors load sharing a divi&HE job,
Transactions on Computerd3(10), 1994, 1184-1196.

Jui Tsun Hung received the M.S. and Ph.D. degrees in Electrical Engineering from State University of New York at Stony Brook
in 2001 and 2003, respectively.

He also received the B.S.M.E. degree from National Sun Yat-Sen University and M.S.M.E. degree from Chuang Yuan Christiar
University in Taiwan.

E}:AOC'I:% His current interests are focused on analyzing the performance of computing networks.

HERE

IJCA03

PLACE
PHOTO
HERE

DECEMBER 22, 2003 12

Thomas G. Robertazzireceived the Ph.D from Princeton University in 1981.

He is a Professor at Stony Brook University in the Dept. of Electrical and Computer Engineering. His research interests includs
grid computing, scheduling, networking and performance evaluation. He has authored, co-authored and edited four books in the
areas.

