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Abstract—In this paper, we propose a novel analysis method mesh and torus in scheduling divisible load was providedl2].[
for divisible load scheduling in mesh, torus and Gaussian The dimensional algorithm was proposed férdimensional mesh
network, a new type of interconnection network that has and torus in [13], which decomposes airdimensional mesh (or
the same node degree as the mesh and torus, but shortertorus) into linearly connected — 1-dimensional meshes (or tori).
network diameter and shorter average hop distances under Based on the dimensional algorithm, two pipeline algorighane
equal network size. The divisible scheduling in these three proposed in [14] to accelerate load distribution. In [150 6],
networks are uniformly formulated as the Maximum Finish the phase algorithm was proposed for torus and 3D-mesh hwhic
Time Minimization (MFTM) problem. It involves minimizing the  divides the load distribution into several phases. In edd@sp, the
makespan of the load distribution and processing. The MTFM active processors, i.e., processors that finish receivad,land can
problem, a relaxed MFTM problem, a linear programming start distributing load to the other processors, are clyefelected
problem version and a heuristic algorithm are described and such that the load distribution in the next phase will notcemter
solved. The first three of these problems have identical salions. link contention. The phase algorithm considers the statione,
The heuristic algorithm is close in performance to the optinal i.e., the time for connection establishment between twagssors
solution, significantly outperforms the previously descrbed in the network, which is also studied in [17]- [19]. In [20RZ], the
dimensional algorithm, and has much wider application rangg multi-installment scheme was proposed in divisible loaukestuling,
than the previously proposed phase algorithm. which allows processors to start processing and distrigukbad
Index Terms—Divisible load scheduling, Gaussian network, earlier. The scenario of multiple divisible load sourceswtudied
mesh, torus, maximum finish time minimization, linear pro- in [23]- [25], where load distribution originates from miple
gramming. processors in the network.
In this paper, we propose a novel analysis method for disib
|. INTRODUCTION load scheduling, and adopt it in mesh and torus. As will bensee
A divisible load is a computational load that can be dividetbi in Section V, the algorithm based on our proposed novel aisly
any number of arbitrary small fractions, which are indemetid method significantly outperforms the previously proposédeth-
and can be processed in parallel. The divisible load model issional algorithm in [13] due to its higher efficiency in utilig links
good approximation of tasks that require large number aitidel, in the network to distribute load, and has much wider appiboa
low-granularity computations, thus has been proposed faide range than the phase algorithm in [16], which is applicabig o
range of scientific and engineering data processing, sudmage to torus with 5" nodes. In addition to the mesh and torus, we
processing, matrix multiplication, fast-fourier-traoshation (FFT), also study divisible load scheduling in processors intenected
video encoding/decoding, stereo matching, etc. [1]- [5]. by a new type of network topology, called Gaussian network
The basic linear divisible load model assumes that the psiecg which is proposed in [26]. The Gaussian network has an equal
time of divisible load on a single processor and the transionis node degree as the mesh and torus, but shorter average teopcdis
time of divisible load from one processor to the other arehboaind network diameter than the latter two network topologieder
proportional to the divisible load size [6] [7] [8]. In gemdrthe equal network size [27]- [30]. In [28], the Gaussian netwbds
processing time of a unit divisible load on a standard premeand been demonstrated to be a promising candidate for on-clyonie
the transmission time of a unit divisible load through a liwkh  which outperforms on-chip mesh and torus networks in terms
standard data rate are denotedTas and T,,, respectively. The of communication bandwidth and latency. Moreover, by zitil
aim of divisible load scheduling is to minimize the procaegsiime the underlying Hamiltonian cycles in the Gaussian netwark,
by distributing divisible load among multiple processotsiet are bufferless routing algorithm has been proposed for thecapGaus-
interconnected by a specific network topology. The proogsspeed sian macrochip, which is a chip-scale optical network dedture
of these processors can be either homogeneous or hetetsgeso adopting the Gaussian network. The optical Gaussian miigroc
are the data rates of links in the network [9] [10]. significantly improves the power efficiency, supports mudayhér
Over the past two decades, there has been extensive regeardommunication bandwidth, and achieves much lower averagegb
the literature on scheduling divisible load in a variety @ftwork delay compared with optical macrochips adopting other agkw
topologies, such as daisy chain, bus, tree, hypercube, medh topologies, such as mesh, torus, Clos and fully connecttudonies
torus [6]- [8], [11]- [16]. In [6], [7], [8] and [11], the opthal [29] [30]. Divisible load scheduling in the Gaussian netlwads
solution was obtained for divisible load scheduling in gladkain, studied along with mesh and tori in this paper due to the fact
tree, bus and hypercube, respectively. The performancié i that the Gaussian network has the same node degree as the mes



and the torus so that the divisible load scheduling in théseet integral real and integral imaginary parts, which is defiasd
networks can be uniformly formulated as the same optinomati
problem under our proposed analysis method, as will be gésal
in Section IV. whereZ is the set of integers, and = —1.

For presentational convenience, the terminologies of ggsar  Given a non-zero Gaussian integer+ bi, and two Gaussian
and node will be used interchangeably in the rest of this papmtegersw andw’, if there exist a Gaussian integet -+ v'i such
We assume homogeneous processing speed and data rate fahatl
the nodes and links, respectively, in the network, and gtatitne w—w' = (a" 4+ Vi)(a+bi)
is ignored in our paper. Besides, we study the scenario tiet t , _ o
load distribution originates from only one node in the netwo we say thatw andw’ arecongruent modula -+ bi, which is denoted
and nodes can start processing and distributing load orthr af*s
it finishes receiving load from its neighbors. Since the Gaurs
network is recently proposed, and its interconnection i$ @ and thatw andw’ belong to the sameongruence class modulo
widely known as the mesh and torus, we begin our discussitn Wi, + pi. For instance(6+i) — (—1+2i) = (1—i)(4+ 3i), therefore,
the Gaussian network, and formulate the divisible load dolieg ¢ + i and —1 + 2i belong to the same congruence class modulo
in a Gaussian network as an optimization problem, denoted /3 3i. Congruence modulo is an equivalence relation, which has
maximum finish time minimization (MFTNgjoblem, in which we symmetry, reflectivity and transitivity. It has been shovnatt for
record the time that each node finishes processing the load, iGaussian integer+bi, there are;2+b2 different congruence classes
the finish timeof each node. The object of the MFTM problenmoduloa + bi in total, and any given Gaussian integer belongs to
is to minimize the maximum finish time of all nodes in thene of these:i? + b2 congruence classes [27] [31]. Next, we define

network. By relaxing the constraints of the MFTM problem, weaussian network by the introduced terminologies above.
obtain the relaxed MFTM problem, which is further transfedn

into the finish time minimization (FTMproblem. We prove that B- Network Interconnection
these three problems have an equal optimal solution, arigrdas In this subsection, we discuss Gaussian network interadioms
optimization algorithm based on linear programming, derast the and some of its properties.
LP-basedalgorithm, for the FTM problem. Considering the high A Gaussian network defined by a non-zero Gaussian inieger
time complexity of the LP-based algorithm, we further prepa bi, denoted asi,.s, hasa? + b* nodes, each represented by a
heuristic algorithm for the FTM problem. After the discussion Gaussian integer that belongs to a distinguished congreclass
the Gaussian network, we will extend our analysis to mesh amdduloa + bi, and the items of Gaussian integer and node will be
torus. As mentioned above, the divisible load schedulinghese used interchangeably in the rest of our paper.
two networks can be formulated as an MFTM problem as well, Given two nodesw; and wy in Gqysi, there exists an edge
which can still be transformed into the FTM problem, and odretweenw; andws if and only if
proposed LP-based algorithm and heuristic algorithm ajsplya
to divisible load scheduling in mesh and torus networks.

The rest of the paper proceeds as follows. Section Il inttedu wherej = 0, 1,2 and3, and we say that; is neighborj of ws.
the Gaussian network, and some of its related properties ttsbd  According to Eq. (1), all nodes in a Gaussian network are
in the following parts of the paper. In Section Ill, we forratd symmetric [26], and a node in Gaussian networks has as many
divisible load scheduling in Gaussian network as the marimuas 4 neighbors. In addition, if a Gaussian network has mag th
finish time minimization (MFTM) problem, transform it intd¢ 4 nodes, any node in it has 4 neighbors, i.e., the node degrée i
finish time minimization (FTM) problem, which has equal opdl [26]. Beside, Eq. (1) indicates
solution to the MFTM problem, and propose an optimal aldponit
based on linear programming, denoted as LP-based algorithch
a heuristic algorithm for the FTM problem. We extend our megd thereforew, is neighbor mog(;j + 2) of w;, where mod(j + 2)
MFTM problem formulation to mesh and torus in Section IV. Iis j + 2 modulo 4. Note that Gaussian networks with higher node
Section V, we compare the performance of the heuristic @lgor degree than 4 can be generalized [32], but we only consideseth
m with the LP-based algorithm, dimensional algorithm, pige with node degree of 4 as they have equal node degree as the
algorithms and phase algorithm in terms of speedup in Gamissinesh and torus, and the divisible load scheduling in thesseth
networks, meshes and tori with respect to different netvaizks. networks can be uniformly formulated as tii@ximum Finish Time
Finally, we conclude the paper in Section VI. Minimization (MFTM)problem, to be seen in the following of the
paper. Fig. 1 is an example of Gaussian netw6tk, s with 25

1. GAUSSIAN NETWORKS . . : X
) ) ) ) ) nodes, which are placed in two adjacent meshes in the complex
In thls_sectlon, we bneﬂy mtrolduce.the Gaussgn netvyonjd 8plane, and nod& + i is neighbor 2 of nodei in G,y since
some of its related properties, which will be useful in theodission (g 4 j) — 2i = i mod4 + 3i, indicating node2i is neighbor 0 of

of divisible load scheduling in the Gaussian network. node6+i. It has been proved in [26] that Gaussian netwarks, .y
A. Mathematical Background and G4+, are isomorphic, therefore, without loss of generality,

. : : . we assume that > b > 0 in the rest of our paper.
In this subsection, we provide related mathematical bamkapls, The distance between two nodes, say, and ws, in Gu s,

which are necessary for introducing the Gaussian network. denoted aD(w;, w2), is given as follows
A Gaussian network is a network topology defined by Gaussian Lw2), 159 '
integers. Gaussian integers are a subset of complex numlithrs D(w;,ws) = min{|z| + |y|, = + yi = (w1 — w2) Moda + bi} (2)

Zli|={w=a+vyi|z,ycZ}

w = w’ moda + bi

w1 —wy =i/ moda + bi (1)

wy —wy = —i’ moda + bi
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Fig. 1.

That is,D(w1,w2) equals the minimunz| + |y|, such thate + yi
andw; — ws belong to the same congruence class modiHobi.
For example, in Fig. 1D(0,1 +i) = |1| + |1| = 2, andD(1 +
i,54 2i) is 2 as well since thati = (1+1i) — (5 + 2i) mod 4 + 3i,
and whenw = 2i, |z| + |y| is minimized in Eq. (2).
The network diameter of Gaussian netwaéfk, ;i is a whena+b

is even, and i — 1 whena + b is odd, and its average hop distancéig. 2.
is given in Lemma 1 [26]. The Gaussian network has the same n

degree as the mesh and torus, and is advantageous ovetéhénat

network topologies in terms of average hop distance andarktw
diameter. For example, Gaussian netw6ik, 5i has 25 nodes, and

its network diameter is 3, while the network diameters of shmrend

Gaussian network' sy 3; with nodes placed in two adjacent meshes.
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Half-open squaré, 4, which excludes dash-lined boundary, is decom-

8ased into four areas. The vertex coordinates of each aeckaleled.

C. Symmetric Node Placement for Gaussian Network

In [28], it has been pointed out that any groupzdf-b? Gaussian

a torus of the same network size are 8 and 4, respectivelyalbfeT integers in the complex plane that consists of a completeatan
1 and 2, we list the average hop distances and network digsrate of a2 + b2 congruent classes modudetbi can be used to represent

Gaussian network, mesh and torus with respect to differetwark
sizes, which show that Gaussian network always has shoeeage

nodes in Gaussian netwoik, i, and the constructed networks
are isomorphic as long as they are interconnected by Eq2€1) [

hop distance and network diameter than mesh and torus ugdat eBesides, given a nonzero Gaussian integerbi, there arez? + b2

network size.
Lemma 1:The average hop distance of Gaussian netwigyk,
is
if a+bis even
if a+bis odd

6(a?+b2—1)
3a(a+b%—1)+2b(b*—1)
6(a2 167 —1)

{3a(a +b6%)42b(b%*—1)

TABLE 1
AVERAGE HOP DISTANCE COMPARISON AMONG GAUSSIAN NETWORK, MESH
AND 2D-TORUS

Gaussian integers in laalf-open squares, i defined by
Satvi = {(u+vi)(a+bi)0 <u,v <1}

as shown in Fig. 2, which excludes dash-lined boundary. @hes
Gaussian integers each belong to a distinguished congolesg
moduloa + bi, therefore, can be used to represent all the nodes in
Gaussian networkz, . [26], and Fig. 3 is an example of node
placement in half-open squaff s for Gaussian networks 4 si,
which is isomorphic to the node placement in two adjacentvags

in Fig. 1.

To explore the symmetry of Gaussian netwdrk ., a node
placement in éhalf-open polygonP, ;i is proposed in [28]. The
half-open polygonP, ;i is constructed by firstly decomposing the
half-open squaré, . into four non-overlapping areas, as shown in
Fig. 2, where the vertex coordinates of the four areas ardlh
The edgesly V41 and V;41Vj45 belong to Areaj, wherej =

0,1,2 and3, andV; belongs to Area 1. These four areas are then
shifted according to Eq. (3), whete, andw, are the coordinates

Network size
25 nodes| 100 nodes| 400 nodes
Gaussian network| 2.3333 4.7475 9.4536
Mesh 3.2000 6.6667 13.3333
torus 2.4000 5 10
TABLE 2
NETWORK DIAMETER COMPARISON AMONG GAUSSIAN NETWORK, MESHAND
2D-ToORuUS
Network size
25 nodes| 100 nodes| 400 nodes
Gaussian networK 3 8 16
Mesh 8 18 38
torus 4 10 20

A Gaussian network is optimal if it accommodates the most
number of nodes among all Gaussian networks with the same
network diameter. It has been proved in [26] that Gaussi&nark
G4 is optimal if and only ifa = b+ 1, and its network diameter

is b.

of the point before and after the shifting. That is, everynpoi,

in Sq1i is mapped tav, in P14 by Eq. (3). As each Gaussian
integer inS, 44 and its mapped Gaussian integetfip, ;i belong to
the same congruence class modale bi, all Gaussian integers in
P, also consists of a complete collectionof+ b? congruence
classes modula +bi, and can be used to represent nodes jn;.

W if wsisin Area 0
— (a+bi) if ws isin Area 1
—(1+i)(a+0bi) if wsisin Area?2

ws — i(a + bi) if ws isin Area 3

(.Up:

®3)
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Fig. 3. Nodes in Gaussian netwok, 3; placed on half-open squar®, s;.

As shown in Fig. 4, the obtained half-open polygéq,; after
shifting is a polygon including partial points on its boungeand
we use solid line and dash line to depict the boundary fat
includes and excludes, respectively. In addition, the compoint
of the solid-lined and dash-lined boundary is depicted bglia slot
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Fig. 4. Half-open polygon for node placement(®f, , i, which excludes dash-lined
boundary and points depicted by hollow dots on the boundamy, is denoted as
P, i Without the solid points on the boundary, i.82;, Do and D3, P, is
4-fold rotational symmetric, i.e., it can overlap with ifsafter being rotated by 90
degrees. The coordinates 4, Bo, Co and Do are 2F2i, 2-b 4 atbj a=b 4 p
and ¢ + %i, respectively. The remaining vertex coordinates can beindéd by the
rotational symmetry ofP, ; ;.

with +£2251 and +22H as the vertices in the complex plane.

Proof: In P, 4, if a Gaussian integer, say, is in the triangle
AQBQCO, A1BCy, A3B>Cy or AngCg, it must SatiSfy either
lz| < 25t or |y| < 25L. Therefore, whem = b+ 1, no Gaussian

integers resides in these triangles, and all GaussianardégP, 1 i

if it belongs toP,_.,i, otherwise, it is depicted by a hollow dot, andnust reside in the square with;, A, A3 and A, as the vertices.
we can see thaB;, D, and D5 belong to P, in Fig. 4, which In addition, ifw is on the boundary of the square, we havet+
are named asolid points An important property of the half-open|yl = 25, which is impossible sincéz| + [y| must be integer.
polygon is that if the solid point®;, D, and D5 are removed, the Hence, there are no Gaussian integers on the boundary afttiees
half-open po'ygon is 4-fold rotational symmetriC, |ecan Over|ap and all Gaussian integers must be in the interior of the mNdMCh
itself after being rotated by 90 degrees centering at thgiroof can be used to represent all nodesGp, 1. u
the complex plane. Therefore, we label the coordinates lyf dp, ~ Sinc€Gaysi is an optimal Gaussian network, we can see from
By, Co and Dy in Fig. 4, which are“T*bi, aT—b + aT+bi, aT—b +bi Fig. 6 that gll of its nod_es reside in the interior of the s@uaith
and £ + i, respectively. The remaining vertex coordinates can pey and£3i as the vertices. _
obtained by the rotational symmetry of the half-open polygo Next, We_W|II formulate the d|V|§|b_Ie I_oad scheduling prebi

It is worth mentioning that we can have different assignmenif) @ Gaussian network as an optimization problem based on the
for common edges of the four areas in Fig. 2, which yield défe introduced node p_lacement._ ) o .
node placements o6, ;. For example, if edged; V., and In th.e next section, we will discuss divisible load schedglin
Vi+1Vj4s still belong to Areaj, wherej = 0,1,2 and3, but Gaussian networks.
Vo belongs to Area 2, and we I8 belong to Area 0, shifting |||, SCHEDULING A DIVISIBLE LOAD IN GAUSSIAN NETWORKS
the areas according to Eq. 3 yields another half-open polygo
denoted asP, ,,;, in Fig. 5, where the Gaussian integers can alﬁg
be used to represent nodes(f . In P, and P;eri, Gaussian
integers belonging to the same congruence class moduobi
represent the same nodeGh, i, which maintains the neighboring
relationship among nodes, i.e., neighbaf a given node irG,1si
will still be represented by Gaussian integers belonginip¢éosame
congruence class module + bi in P, and P, .. [28]. For
example, whem + b is even, neighbor 2 of nod&s? + (%E> — 1)
is 252 + «bj and —2£2 4 220 in P,y and P,_,;, respectively,
and 25t + 2tbj = —atb 4 a-bj moduloa + bi. As will be seen
shortly, placing nodes in different half-open polygonsag several
properties of divisible load scheduling in Gaussian neksor

In our paper, we also place nodes@f i in P, . Fig. 6 is
an example of node placement f6fy, s in Py 3, of which the
boundary is plotted in dash line. As for the node placemenafo
optimal Gaussian netwoik, 114, we have the following corollary.

Corollary 1: The nodes of an optimal Gaussian netwo | 1 i
can be placed in the interior of a square, i.e., excludingatsndary,

In this section, we formulate the divisible load schedulprgb-

m in Gaussian network as an optimization problem, which is
denoted agnaximum finish time minimization (MFTMyoblem,
and propose an optimal algorithm for it.

A. Problem Formulation

As mentioned in Section |, we assume homogeneous processing
speed and link data rate in our paper. In the Gaussian network
the processing time of a unit divisible load on a single pssoe
is denoted ag,, and we denote the transmission time of a unit
divisible load through a link in the network 88.,,. Since every
node is symmetric in Gaussian networks, without loss of gaitg
we assume that the load originates from the node at the ooigin
the complex plane, and spreads to the surrounding nodes yiop b
hop.

In our model, a node, say, in G,44 can only receive load
from (or send load to) its neighbors that are closer to (othir
away from) the origin than itself, and its neighbpris denoted as
n;(w). Nodew is allowed to receive load from (or send load to)
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Fig. 5. Another half-open polygon, denoted/as, ., for node placement af, | 1,
where B2, Do and D3 on the boundary are soTid points.

. . Fig. 6. Node placement aff443; in P43, the boundary of which is plotted in
one of its neighbors for at most once, and the amount of loadgsen ine. et T i P

receives from neighbaot; (w) is denoted ag;(w). After w finishes
receiving load from all its neighbors, it starts processing sending
out load simultaneously. We denote the amount of logatocesses
by itself asa(w), and the time it starts and finishes processing load
asT,s(w) andTy(w), respectively. For presentational convenience,
if w sends load to neighber;(w), we lets;(w) < 0, which means
that neighbom ;(w) receives—g;(w) load fromw. As mentioned
in Section 1I-B,w is also neighbor mod;j + 2) of n;(w), and we _ o
have that3; (W) = —ﬁk(ng‘ (w)), wherek = mod, (j + 2). Take Fig. Fig. 7. Nodew receives 0.15 load from its neighbor 3, and sends 0.03 loaad¢h

. : ; of its rest 3 neighbors.
7 for example, node receives 0.15 load from its neighbor 3, and

sends 0.03 load to each of the rest neighbors. TABLE 3
By the definition of 3;(w), we have that3;(w) > 0, §;(w) < MAXIMUM FINISH TIME MINIMIZATION (MFTM) PROBLEM FORMULATION
0 and B;(w) = 0 when D(0,w) > D(0 n(w))_ D(0,w) < FORDIVISIBLE LOAD SCHEDULING IN A GAUSSIAN NETWORK
J - ) ) Iy ) )

D(0,7n,(w)) and D(0,w) = D(0,n;(w)), respectively, based on
which we divide allg;(w)s into 3 setsUg, U; andUj, as follows
to facilitate the problem formulation of divisible load sztuling in
Gaussian network.

Minimize: max{T;(w),w € Ga+si}

Ug = {Bj(w)|D(0,w) > D(0,n;(w))} Subject to:
Ug = {Bj(w)|D(0,w) < D(0,n;(w))} Tp(w) = Ts(w) + a(w)Tep 4)
US = {8;(w)[D(0,w) = D(0, n;(w))} T.(0) =0 5)
B;(w) = 01if 8;(w) € UY. In addition, since3; (w) = —Bx(n;(w)), Tow) =0, it ¥j €{0,1,2,3}, f(w) =0 @)
wherek = mod,(j + 2), §;(w) € UJ if and only if Bx(n;(w)) € Bj(w) >0, if Bj(w) € Uy (8)
Uy, vice versa. Bi(w) <0, if Bj(w) € Uy 9)
The divisible load schedgling problem in G_aussian netwd_r_sks Bi(w) =0, if B;(w) € Ug (10)
then formulated as the optimization problem in Table 3, Wwhi , ,
denoted asnaximum finish time minimization (MFTNdyoblem. Bj(w) = =Br(nj(w)), if k=modi(j +2) (11)
The objective of the MFTM problem is to minimize the maximum 3 ,
finish time of all nodes in the network. Constraint (4) mearat it a(w) = ZBJ (w), if w#0 (12)
takesa(w)Te, time for nodew to process its load. Constraint (5) J=0
and (6) indicates that the load originates from node 0, andden B 3 3
starts processing the load when it finishes receiving ad foam its o(0) =1+ Z 5;(0) (13)
neighbors. Note that if a node receives no load from its risgh =0
its starting time is set as 0, as stated by constraint (7).rehxt 4 a(w) 20 (14)

constraints originate from our rules @f(w), as discussed above:
Constraint (12) and (13) state that the load nadkeeps for itself
equals the difference between the load it receives and seuls
and that the total load is 1, implying that a(w) = 1. The last  We say that

constraint means that a node can not send out more load than it

receives. U=U;UU; UUZU{a(w), Ts(w), Tr(w)|w € Gaysi}



is a feasible solution of MFTM problem if elementsinsatisfy all /,__imagi”ary
the constraints of the MFTM problem, and the optimal soluti® g
denoted ad/*. It is worthwhile to mention that given the location
of source node, we can identiftyg, Us and Ug for mesh and
torus, with which divisible load scheduling in these twovnetks
can also be formulated as the MFTM problem in Table 3, as will
be seen in Section IV. L Balw ) Bl +31) ._real

Before solving the MFTM problem, we firstly analyze the char- e -
acteristics ofU* by exploring the symmetry of Gaussian network. 52(*"” —v folz=yi) .
We have the following lemma and corollaries.

Lemma 2:In U*, if w; andws = wy -1 are both in Py,
Bj(w1) = Br(ws2), wherek = mody (5 + 1).

Proof: As mentioned above, nodes@, ;i can also be placed

in P;H)i, where Dy, D; and By are solid points, as well as in
P.+si. For convenience, if we place nodes Rj+bi, the loadw

‘ : ) ; .

sends ton;(w) is denoted ag3)(w), _and the optl/mal solution for Fig. 8. The symmetry of the square renders thatz + yi) = fo(z — yi) —

the corresponding MFTM problem is denoted&s. Br(—y + ai) = Bily + @i) = Ba(—z — i) = Ba(—z + 4i) = Ba(y — zi) =
We notice that after being counterclockwisely rotated by 9&(—y — =i) in U* when the Gaussian network is optimal.

degrees P, will overlap with P;H)i, which means that ifv; is

in Poypi, w2 =wi -iisin P!, andB;(w1) = B, (w2), wherek = _ . . .
mod,(j + 1). Besides, as Gaussian integers belonging to the SameSectlon lIl-D, taking these dependencies among varsabie

congruence class moduto+ bi in P, and P,_,; represent the consi_deration can ‘”.‘p_ro"e the_ efficiency of our proposediut
same node irG, 5, Which maintains the neighboring relationshipgjllgorlthm and heunstl_c a!g(_)nthm. Next, we solye the__MFTM
among nodes, the load that a nodedp., sends to its neighbor pro_blems by_transformmg it into other problems with an it

k is independent of the node placement. Thereforeyifs also in optimal solution.

P, 4, we have that;(wz) = 8}, (w2) aSws = we moduloa + bi. B. Linear Relaxation of MFTM

Bi(—y+ i T,
B1(y + i)

=y i)
Ba(y — i

u In order to solve the MFTM problem, we first relax constrasit (
Corollary 2: In U*, 8;(—%% + 45%0) = Br(—%52 + 25%),  ofthe MFTM problem into a linear constraint as follows, arehdte
wherek = mod,(j + 1), whena + b is even. the new optimization problem as thelaxed MFTMproblem.
Proof: By the proof of Lemma 2, since-25% — afbj = _
(—akb 1 asbiy i gi(—atb 4 azbiy g a—b "atbi) \yhere Ts(w) > Ts(nj(w)) + B (w)Tem, if Bj(w) >0 (15)
k = mod,(j + 1). In addition, —“T*b + “T‘bi and —“T‘b - %’“bi Since constraint (15) is relaxed from constraint @, i.e., the
belong to the same congruence class module bi, therefore, optimal solution of the MFTM problem must be a feasible sSolut
Br (=4 + 2520) = B (— 252 — «£2i). B of the relaxed MFTM problem, and we have the following thease

Corollary 3: In U*, B;(% + 5i) = Br(% + %i) and3;(5 — %i) = on the optimal solution of the relaxed MFTM problem.
Br(% — i), wherek = mod,(j + 2), whena andb are both even.  Theorem 1:When the relaxed MFTM problem is optimized, if
Proof: Since4 +2i = (5 —&i)-i and—§+§i = (2+5i)i,we Ti(w) >0, Ty(w) =Ty (0).
have that3; (5 — 2i) = B}, (%+25i) and By (§+ 31) = B, (=2 +2i), Proof: We prove the theorem by contradiction, and assume that
wherek’ = mod,(j+1) andk = mod;(k’+1). In addition,2 —%i = there exist one node with different finish time from node 0] &s
_g + 2 moduloa + bi, and ¢ + %i in P,y and P, represent start time is positive. By constraint (6) and (7), we knowttHa _
the same node af, i, thereforeﬂk(% —2j) = 512(—% + 2i) and Ts(w) > 0, w must receive nonzero load from at least one of its
(2 b)) = 3 (24 bj (b_aiy _%3 (2 a; neighbors, and thaf;(w) = 0 if w # 0 andTs(w) = 0, therefore,
B (§+351) = B (+35i). Hence, we havg; (3 —%i) = Br(3—%i), g flw)="0
wherek = mod,(j + 2), and3;(% — 4i) = By (& + 4i), indicating max{Ty(w)lw € Gassi} is eitherTy(0) or max{Ty(w)[Ts(w) >
that 8; (% + 2i) = Bi(£ + i) also holds. m 0 . o
Corollary 4: In U*, Bo(x 4+ yi) = Bo(x — yi) = Bi(—y + i) = Next, we will redgcemax{Tf(w)w € Gayi} by redistributing
Br(y+ai) = Ba(—z—yi) = Ba(—z+yi) = Bs(y— i) = B3(—y— Ipa_ld among nodes in the network such that nodes with maximum
zi) if the Gaussian network is optimal. finish time can have less load to process, and the nodes witarea

Proof: Corollary 1 says that nodes in an optimal Gaussidfish time process more load. For presentational convesien
network, say,Gy.1.4i, can be placed in the interior of a squard/e denote the sltart and f";"Sh time of nodeafter the load
with +225L and £ 265 as the vertices. A square has 4 axes (lg(pd|str|bt_1t|on asT{(w) and T}(w), respectively, and the load
symmetry, the symmetric points af + yi with respect to these 4 ept for itself after the_load re_d|str|but|on is denotedcdgw).
axes of symmetry are-x + yi, x — yi, y + xi and —y — zi, as Two cases are considered in the proof.
shown in Fig. 8. Therefore, we hay®(z + yi) = fo(—x + yi) = Case 1:77(0) < max{Ty(w)lw € Gasi}-

Bo(z — yi) = B1(y + i) = B3(—y — =i). In this case,
Moreover, since the square is also 4-fold rotational symimety max{Tj(w)|w € Gatpi} = max{Tr(w),Ts(w) > 0}
;j(myria;), we have tha(o+41) = A1(~y+al) = Pal~o—4l) = and we suppose that a node with maximum finish timé isops

With the above lemma and corollaries, we can reduce the num \évay from node), which is denoted agy, i.e.,

of independent variables in the MFTM problem. As will be seen Ty (wn) = max{Tt(w)|w € Gatsi}
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ﬁk + Sﬁk 7“3k+1 _ 6[3}” _ 2A1,I:.s<wk) _ ATy (wk)
i Wi em en
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Fig. 9. Load redistribution wheffy (0) < Tf(wp) = max{Tf(w)|w € Gqypi}, Fig. 11. After the load redistributionl}(wy) = ATs(wy) + Ts(wk), to avoid
where3* > 0, and 8* is reduced bysg (0 < 68 < g¥) forall 1 < k < h. delaying the start time of its neighbor 1 and 3, the load setihése two neighbors,
i.e., 81(wg) and B3(wy), are each reduced b?gs(—wk) Sincew;, receivesss®

cm

2ATs (wi) + AT (wg)
T,

more load from its neighbor 2, it has to sefid* + more

B B B B em c
0 @ @ ---- wh . . o AT, (wy) A
N 2/ load to its neighbor 0, such that (wy) = a(wi) — ===, and its finish time

i remains the same before and after the load redistribution.

1 1 2 2 3 3 gh' sgh’ .
@8 +65/u:{3 +65®ﬂ +OF" B Hﬂ@ We increase3® byﬁﬂ{“, and have thal;(0) = T (0) — 0B Tep.
"/ Y After the load redistribution, we denot®!(wy) — Ts(wy) as

Fig. 10. Load redistribution whefiy (wy:) < T (0) = max{T} (@)l € Gassi}. _ATS(wk), the time whenw, finishes receiving load fromu_
where 8% > 0, and g is increased bys* (56% > 0) forall 1 < k < h'. is then delayed bYAT(wy—1) + 63* Ty, wherel < k < h'.
Note that whenk = 1, w1 = 0, andT}(0) = T5(0) = 0. We
let T/ (wy) = Ts(wr) + ATs(wy) such that constraint (15) is still
Since the load originates from the nodlethere must exist at leastsatisfied after the load redistribution. Singel’(w;) = 7.(0) —
one h-hop long path from nodé to wy,, and each node along thels(0)+ 05 Tom = 6 Term and AT (wi) = ATy (wi—1)+ 08" Tem,
path receives nonzero load from the previous node, as showrwherel < k£ </, we have that

Fig. 9, where nodey; (1 < k < h) along the path ig hops away k

from node 0. For presentational convenience, we denotecte | ATy (wy) = Z&ﬁchm (16)

received by nodey, asg*, ands* > 0 for all 1 < k < h. We then =1

reduce the finish time ab;, by redistributing load as follows. for 1 < k < k’. To avoid increasing the finish time of, when
We decreased® by 43, and keepd < 68 < BF forall 1 < 1<k </, we let

k < h, as shown in Fig. 9. After the load redistribution, we have AT, (wr)

that T7;(0) = Ty(0) + 681, by constraint (13) in Table 3. As o (w) = a(wy) — ;7

T¢(0) < max{Ty(w)|w € Gatsi }, We choose sufficiently smadl3, P

such thatT’}(0) is still earlier thanmax{T(w)|w € Gasi}- and have thal’; (wx) = Ty(w) by constraint (4).
By constraint (12) in Table 3, we have thaft(w;) = a(wy) for In addition, since each node in Gaussian network has 4 neighb

1 <k < h, anda’(wp) = a(wy,) — 48 after the load redistribution. wx May also send load to another 2 neighbors besiges +yj. 11
Sincewy, receivess/3 less load from its neighbor, we can keep thwhen1 <k < 7', as shown in Fig. 11, where we assume that
start time ofwj, unchanged after the load redistribution for< Sends nonzero load to its neighbor 1 and 3, and that + k.1l
k < h,ie., T/(wx) = Ts(wy), and constraint (15) of the relaxediS its nelghbor 0 without loss of generality. To prevent gasing
MFTM problem is still satisfied. Therefore, we have ti{w,) = the start ime o, (wy,) andn;(wy) due to the delayed start time of
Ty(we) whenl < k < h, and Tj(wp) = Ty(wn) — 08T < @k N the worst case?; (wy,) andfs(wy) each have to be decreased
max{7Tf(w)|w € Gatsi}- ' by Agif:j’“) in Fig. 11. Therefore, we have that

Since the finish time of node O i_s gtill smaller than . L 2ATu(wp)  ATy(wy)
max{T(w)|w € G.4i} after the load redistribution, we can further o =46p" +

C = T . . A Tem Tep

reduce the finish time of the rest nodes with maximum finiskretim
one by one in the network by redistributing load as above, aftithe worst case fot Sk< W.
obtain a smallemax{T}(w)|w € Gays}, Which contradicts the ~©On the other hand, i&; sends no load te, (wi) Or ng(wk),
fact thatmax{T(w)|w € Ga4si } is already minimized. 54+ — sk 4 ATy (wy)

Case 2:T%(0) = max{Tf(w)|w € Gatsi}- - Tep

In this case, Fhere must exist a node with earlier finish t"nsence, we have that
than T (0), and it receives nonzero load from at least one of its

. -
neighbors. We assume that the nodé/i$iops away from node O, 6Bk+AT57(wk) < 688 < 55k 2AT(wr) n AT, (wr)
and denote it asy, i.e., Tep Tem Tep

(17)

in general.
The above inequality indicates th&s'~' < §3' for 1 <1 < k,
Similarly, we find oneh/-hop long path from 0 tav,,, where @Pplying Eq. (16), we have that

every node receives nonzero load from its previous nodegatios AT, (wi) < k6B T, (18)

path, as shown in Fig. 10, we denote the load received by node , T

wi as ¥, wherel < k < &’. Next, we firstly reduce the finish for 1 <k < A', which implies

time of node O without prolonging the maximum finish time by k1 & Tem

redistributing load as follows. 0F7 < F(L+ 2k + T., k) (19)

Ty(wn) < max{Ty(w)lw € Garbi}




Bi(wnr) + 2enr) Theorem 1 indicates the following corollary.
Corollary 5: When the relaxed MFTM problem is optimized,

R’ R’ . AT (wyr)
R Wh! Poleow) + Tem Yw 7é 07 Ts(w) > 0.
Proof: We prove the corollary by contradiction, and assume
Ba(wnr) + AT:enr) that there existv # 0, such thatT(w) = 0. By Theorem 1,

Yw # 0, T¢(w) equals to eitherlr(0) or O, therefore, we can

Fig. 12. After the load redistributior”’ (wy,/) = ATs(wps) + Ts(wp), to avoid always find a pair of neighboring nodes, S@y’. an(.j wa, such that
delaying the start time of its neighbor 0, 1 and 3, the load &ethese 3 neighbors, Tp(wi) = T§(0), Ts(w2) = T¢(w2) = 0, andw is either node 0 or
i.e., Bo(wps), B1(wns) and Bs(wps), are each reduced baéTT(—w’) Sincew,, closer to node 0 thaw,. Next, we redistribute load by letting;
receivess3" more load from its neighbor 2, we have thﬁ‘t(uj;;) — a(wy )+ send a sufficiently small fraction of load te, such that the finish
3“;7?/) + 68" after the load redistribution. time of wy is nonzero, but smaller thamax{T(w)|w € Gqisi}-

In addition,w; processes less load after the load redistribution, and

should finish processing load earlier. Therefore, the |@atistribu-

therefore, tion will not result in a greater maximum finish time of all rexd
k-1 T in Ga4i, but nowws receives nonzero load fromy, and its finish
ot <o 1+ 20+ Tcml) (20) time is smaller thanmax{T}(w)lw € Gays}, which contradicts
1=0 & Theorem 1. [ ]
and Theorem 1 and Corollary 5 in conjunction prove Theorem 2.
1 M Tem Theorem 2:When the relaxed MFTM problem is optimized,
ATs(wr) < kOB Tem H(l T2+ T. ) (21) T¢(w) must be equal for alb € G4
=0 ? With Theorem 2, we show that the MFTM problem and relaxed
wherel <k < }'. MFTM problem share identical optimal solution in the nexédh
As for nodewy, since Ti(wp) = Ts(ww) + AT(wp), and  rem.
wp may send load to its 3 neighbors other than_; + yu i, Theorem 3:U* is the optimal solution of the relaxed MFTM
as shown in Fig. 12, where we assume thgt sends nonzero problem.
load to its neighbor 0, 1 and 3, ang:_1 + yx_1i is its neighbor Proof: Since constraint (15) is relaxed from constraint (&},

2 without loss of generality. To avoid delaying the startdimf is feasible for the relaxed MFTM problem. Therefore, the MFT
no(wnr) n1(wpr) andng(wy), in the worst casedo(wn:), f1(wn’), problem can not have a better optimal solution than the eelax
Bs(wys) each have to be decreased W', (wy/). Therefore, we MFTM problem.

have that We then prove the theorem by showing that the optimal salutio
, wo 3AT(wp) of the relaxed MFTM problem is also a feasible solution of the
o (wi) = awn) + 08" + T T, MFTM problem, which means that the relaxed MFTM problem

has no better optimal solution than the MFTM problem eithed
these two problems must have equal optimal solution.
3ATs(wh) Assume that the optimal solution of the relaxed MFTM problem
T)Tcp (22) s not feasible for the MFTM problem, there must exist at {ease

By Eq. (20), (21) and (22), we have that node, say, such that
TS(w) > maX{TS(nj (w)) + B; (w)Tcmlﬂj (w) > 0}

in the worst case, and

Th(wi) = Ty (wn) + AT (wpr) + (38" +

R'—1
Ti(wp) < Tp(wnr) + 68" Tep H (1+20+ Tc_mz)_;_ Therefore, we can assignan earlier start time, denoted &$(w),
1=0 cp and
B -1
(1+ 3&)h/§ﬁchm H (1+20+ Tcml) (23) Ty(w) = max{Ts(n;(w)) + B;(w)Tem|Bj(w) > 0}
em 1=0 Tep The new solution is still optimal for the relaxed MFTM probilg

Since Ty(wp) < max{Tj(w)lw € Gays} before the load but_the finish ti_me ofv is now egrlierthamax{Tf(wﬂw € Gafrb_i},
redistribution, we can choose sufficiently sma#i' > 0, such that Which contradicts Theorem 2, i.e., all nodes should havekifqush
T (wn) is still earlier thanmax{T}(w)|w € Ga44i} after the load time when the relaxed MFTM problem is optimized. Hence, the

redistribution. assumption is false, and the optimal solution of the reld¥&d’M
In summary, after the load redistribution, we have that problem is feasible for the MFTM problem. u
) ) With the Theorem 2 and 3, we further transfer the relaxed MFTM
T5(0) = T¢(0) — 68 Tep < max{Ty(w)|w € Gasi} problem to thefinish time minimization (FTMproblem, of which

the optimal solution is als&’*, in the next subsection, and propose

Ti(wp) < T € Gyqpit and T, =T hen X X
flwn) < max{Ty(w)lw +oi} ) = Ty(wr) W an optimal algorithm for the FTM problem.

1 < k < I'. SinceT}(0) is now smaller thammax{T}(w)|w €
Ga+si}, We can reduce all nodes with maximum finish time in the. Finish Time Minimization (FTM) Problem
network by the load redistribution in case 1 to obtain a senall
max{Tf(w)|lw € Gaysi}, Which also contradicts that the relaxec{)
MFTM problem is optimized before the load redistribution.
Hence, if Ts(w) > 0, Ty(w) must equal toT(0) when the
relaxed MFTM problem is optimized. | Ty = Ts(w) + a(w)Tep

Since all nodes have to finish processing load simultangousl
y Theorem 2 when the relaxed MFTM problem is optimized,
constraint (4) can be replaced by



and the object of the relaxed MFTM problem is to minimizg.

In addition, all 8;(w)s satisfying constraint (15) must be positive,

thus belong toU;. These 3;(w)s consist of a subset of/,
which we denote as5}. Therefore, if we can determing} in
the optimal solution of the MFTM problem, all constraintddahe
object function become linear, indicating an optimal solutby
linear programming. By the above analysis, we proposefittigh
time minimization (FTM)roblem in Table 4.

TABLE 4
FINISH TIME MINIMIZATION (FTM) PROBLEM FORMULATION FOR DIVISIBLE
LOAD SCHEDULING IN A GAUSSIAN NETWORK

Minimize: Ty (S7)

Subject to
Tf(Sg') = Ts(w) + a(w)Tep (24)
Ts(0)=0 (25)
To(w) > Ts(nj(w)) + B (w)Tem, if Bj(w) € S5 (26)
ﬂj(w) > O, if Bj(&)) S Ulg_ (27)
Bi(w) <0, if Bj(w) € Uy (28)
Bi(w) =0, if B;(w) e USU (UF - 57) (29)
Bj(w) = —=Br(n;(w)), if k=modi(j +2) (30)
3
aw) = B(w), if w#0 (31)
j=0
3
a(0) =1+ 8;(0) (32)
j=0
a(w) >0 (33)
Sy cuUy (34)

Inthe FTM problemS7 can be any subset 6f;, and if 3;(w) €
Ui — S5, we let3;(w)
share the same finish time, which is a functioﬁg‘f, and is denoted
asTy(S} ). The object of the FTM problem is to minimiz& (S} ),
and we have the following theorem on the optimal solutionhaf t
FTM problem.

Theorem 4:U* is the optimal solution of the FTM problem.

Proof: Since all nodes have equal finish time in the optima(ﬁ

solution of the relaxed MFTM problem, and thﬁg can be any
subset of U

the FTM problem. On the other hand, given a feasible soluti
of the FTM problem, if3;(w) > 0, we have that3;(w) € S7,
and constraint (26) is satisfied, therefore, any feasibletiso of
the FTM problem should also be feasible for the relaxed MF
problem, therefore, the FTM problem has no better optimiaitiEm

= 0, as stated by constraint (29). All nodes

when the FTM problem is optimizecﬂ[;r = S5
Proof: Since if §;(w) > 0, 8;(w) € U7, we have thatS; C
U;. In addition, by Theorem 4/* is the optimal solution of the
FTM problem, thus, ifS} = S, constraint (26) and (29) will both
be satisfied. [ |
Next, we propose an optimal algorithm based on linear pragra
ming, denoted a4 P-basedalgorithm, for the FTM problem by
Lemma 3.
We notice that constraint (24)-(33) are all linear, therefdor
a given S;;, to minimize Tf(Sg) becomes a linear optimization
problem, which we denote anP(Sg). That is, for a given subset
of Uy, S5, LP(S}) is a linear optimization problem, which
minimizesTf(Sg) under constraint (24)-(33) in Table 4. By Lemma
3, the FTM problem will be optimized wheSij = Sj. SinceU;

has2!V/ | subsets, we can try each of them, and sale | linear
optimization problems to find out the optimal solution.

Itis worth mentioning that; has some features, which are useful
in determining whethel‘“f(S;) is the minimum finish time. In other
words, if a givenSZ{ does not have the same featuresSgs we
will not find the optimal solution of the FTM problem by solgn
LP(S;;). These features are listed as follows.

VYw € Gy andw # 0, 35 € {0, 1,2, 3} such thatg;(w) €

St.

Bf(wl) SH if and only if B (w2) € Sk wherews = w1 -1,

k =mod(j + 1).

Whena andb are both even, if3; (4 + 4i) (or 8;(4 — 4i)) is

in 57, then Bi.(4 + i) (or Br(5 — 4i)) is also inS}, where

k= mod(j + 2).

If Gotpi is an optimal Gaussian networBs (x+yi), Bo(z—yi),

Br(—y-+ai), Ba(y+ai), o~z —ui), Ba(—x +i), Bs(y —ai)

and gs3(—y — zi) are all in S;; if one of them is inS;;.

Whena + b is even, Bo(— %2 + %3%), Bi(—%52 + 23%0),
Ba(—45 + 4500) and B3 (— 2452 + 452i) are all in 57,

The first feature originates from the fact that all nodes &hou
have equal finish time iV* by T¢(w), therefore, every node except
for the source node in the network should receive load frofaasit
one of its neighbors.

By Lemma 2,5;(w1) = Br(w2) Whenwy, = wy -1 andk =
mod,(j + 1) in U*, thus, they are in or not i concurrently.
Similarly, S has the next two features by Corollary 2 and 3.

Since that when+b is even 8y (— %2 +252i), B; (— <E2 4 222j),
52(_%%+a74)i) andﬁ3(—“7+b+“7*bi) are equal irU* by Corollary
4, and at least one of them is BY; according to the first feature
f S5, therefore, they are all ity;.

With these features ofj, a high-level description of the LP-
based algorithm is given in Table 5.

5, U”, the optimal solution of the relaxed MFTM  gjnce there are total(a? + b?) links in Gaussian networ&,  ;,
problem, must be feasible for the FTM problem, meaning thak have

the relaxed MFTM problem has no better optimal solution than . ot . . .
(9% Ug, e, 2721, might grow exponentially with network size.

U5 | < 2(a’+b*), which means that the number of subsets

Though the features d&f; can help exclude some subsetﬂg‘f, the
number of linear optimization problems that the LP-basgdrithm

Ti# Table 5 needs to solve is expected to increase quickly @s th

network size grows, and we will analyze its time complexitythie

than the relaxed MFTM problem either, and these two problefigXt subsection.

must have equal optimal solution.
Lemma 3:Define

Si ={Bj(w)|Bj(w) >0, 8;(w) € U™}

Considering the high time complexity of the LP-based alttoni
we propose a heuristic algorithm for the FTM problem, whiclves
only one linear optimization problem. The idea of the hdiais
algorithm is that every node in the network receives loadnfro
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TABLE 5 . .
HIGH-LEVEL DESCRIPTION OFTHE LP-BASED ALGORITHM FORTHE FTM that the dependencies among variables by Lemma 2 and Qgrolla

PROBLEM 2-4 can reduce the number of variables and equalities bytarfac
of 4 (or 8 when the Gaussian network is optimal), which cam hel

for eachS; C Uy improve the efficiency of solvind.P(S7) in practice despite the
if S5 has the same features & same time complexity in theory.
solve LP(S7 ), which minimizesT'(S7) Next, we discuss the number of linear optimization problems
under constraint (24)-(33) in Table 4; that the LP-based algorithm solves. Af(w - i/), wherej =
end if; 0,1,2 and3, are inSZ concurrently by the second feature 81,
end for; and whem = b+1, So(z+yi), So(x—yi), f1(—y+ai), B1(y+ai),
The FTM problem and.P(S5) with minimum Ba(—z —yi), Ba(—x +yi), Ba(y — 2i) and B3(—y — zi) are in S
object function value have equal optimal solution. concurrently accor(iing to the forth feature 9, we can construct
End at Ieast2w subsets ong whena # b+ 1, and no
\UF |—min{|S{ 1}
all its neighbors that are closer to node 0. Hence, in theistaur less than2 s subsets ofU whena = b + 1, which

algorithm, we letS} = U7, and solve the linear optimizationshare all features of;. Besides,Ug has2!U# | subsets in total,
problemLP(U;). The optimal solution oLP(U;) is then used as therefore, the number of linear optimization problems that LP-
the solution of the heuristic algorithm. As will be seen ircn V, based algorithm in Table 5 needs to solve increases expaltgnt
the performance of our proposed heuristic algorithm isesrely with the network size, and the LP-based algorithm has expaie
close, and even equal in many cases, to the LP-based algarith time complexity relative to network size.
terms of finish time. It is worth pointing out that the ellipsoid algorithm, whietas
used by Khachiyan to prove his result, is not useful for sgj\inear
optimization problems in practice. On the other hand, thdelyi
In this subsection, we analyze the time complexity of the LRised simplex algorithm for solving linear optimization plems
based algorithm and the heuristic algorithm relative torthevork s very efficient in practice despite that there exist carad
size. Since the LP-based algorithm solves numerous linpts Oexamples which require exponential time by the simplex rétigm.
mization problemsL.P(S7), where S C UZ, and the heuristic Hence, we also use the simplex algorithm to sab/(S7) in our
algorithm solves onI;LP(Ug), we begin with the analysis of the paper.
time complexity of soIvingLP(Sg). As mentioned in Section |, our proposed MFTM problem for-
The standard form of the linear optimization problem is toulation of divisible load scheduling in Gaussian netwogk be
maximizec’x (c,x € R™) over all vectorsx such thatAx = b readily extended to mesh and torus, which will be discussatie
andx > 0. In 1979, Khachiyan showed that a linear optimizationext section.
problem can be solved in polynomial time relative to the thngf
the binary encoding of the input, denoted/ag33]. In other words,
L is the number of bits encoding, b andc. ) ) )
To convertLP(Sg) to the above standard form, we eliminate all In this section, we extend the MFTM problem formulation to
B;(w)s that are zero by constraint (29), substitdfé) € U; with mesh and torus. o _
Bl (w)), where By, (n;(w)) U;, k = modi(j + 2), and add Since the coordinates of nodes are Gaussian integers in the

nonnegative slack variables, denotedla&v), in constraint (26) to ,MF;—M probllem,lwe place HOdech of Xé mes_h a_nda x b torus
transform the inequality to equality, i.e., in the complex plane as well, and use Gaussian integers in-an

rectangle with0, a — 1, (b —1)i and(a — 1) + (b — 1)i as vertices
Ts(w) = Ts(nj(w)) + B (w)Tem + Tj(w) to represent nodes in the network. Fig. 13 is an example oénod

. 9| 12 v . placement of5 x 5 mesh and5 x 5 torus in the complex plane,
After these operations, there aten” +5° + |S/3 |) + 1 nonnegative where Gaussian integers inbax 5 square represent nodes in the

variables an@(a? + b2*) + |SB+_| + 1 equalities inLP(Sér). network. |

By the features (?15‘[3 listed in the previous _subsecﬂon, we have |, the meshy is adjacent tav + i/, wherej = 0,1,2 and3, if
the following equation regarding the cardinality ﬁg. w + i’ is in the mesh, and we say that+ i’ is neighborj of w,
ie.,

D. Time Complexity Analysis

IV. EXTENSION OFMFTM PROBLEM FORMULATION TO MESH
AND 2D-TORUS

a’® +b>+2, a,b are both odd

nj(w) =w +1i’, if n;(w) is in the mesh 37
a’® + b% + 4, a,b are both even i) i) 37)

|SE;| z b —1 a+bisodd ands> b+ 1 (35) In the torus, noder + yi is adjacent to magdx + 1) + yi, = +
a2+b2—1’+4L2J a=bt1 mod,(y + 1)i, and we let
24 -

In addition mod,(z+ 1) +yi ifj=0
’ . z+mod(y+1)i ifj=1

[ j )= 38

U = {2(a2+bz), a+bis even | (36) n;(x + yi) mod,(z — 1)+ yi ifj = 2 (38)
2(a*+b*—2a+1), a+bis odd s4mod(y— i ifj=3

and [S7| < |U; |, indicating thatL in LP(S}) is polynomial to By Eg. (37) and (38), given two nodes, say, = 1 + yii and
the network size, the time complexity of soIving(S;;) is thus  wy = za+y9i, we have thaD(wy,w»), i.e., the distance between
also polynomial to the network size by Khachiyan's resulatdN andws, is |z2 — 1|+ |y2 —y1| andmin{mod, (z2 — 1), mod, (1 —
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imaginary imaginary

phase algorithm[16] in the Gaussian network, mesh and torus
with respect to different network sizes. As mentioned inti®ac
lll, we rely on simplex algorithm to soIveLP(S;;). To evaluate
the efficiency of the simplex algorithm, we count the numbkr o
iterations by the simplex method to soIWﬁP(Ug) in the heuristic
algorithm.

In [13], the dimensional algorithm is proposed fgrdimensional
mesh and torus, in which am x as x ... X ay mesh (or torus) is
considered asy linearly connected; x as x ... x ay_1 meshes (or
tori), and a single node is regarded as the 0-dimensionah rfees

@) () torus). Sinc_e a daisy chain network, i.e., Iingarly coneé_ﬂodes, of
processors is equal to a single processor with faster psimespeed
Fig. 13. Node placement &f x 5 mesh ands x 5 torus in a square with 0, 4j4 [6], an N-dimensional mesh (or torus) can recursively be equivalent
and4 + 4i as the vertices in the complex plane. to a single processor under the dimensional algorithm. dasehe
dimensional algorithm, two pipeline algorithms, named g&lne
1 algorithm and pipeline 2 algorithm, respectively, arepmsed in
[14] to reduce the overhead of distributing load in one digiem.
Pipeline 1 algorithm allows the node to start transmittiogd
before finishing receiving load, but all nodes except forsbarce
node in the same dimension must start processing load afielr |

r2)} + min{mod,(y2 — y1),Mod,(y1 — »2)} in mesh and torus,
respectively. Suppose that the load originates from nagev can
only receive load from its neighbors that are closexgdhan itself,
meaning that3;(w) > 0 if D(wo,w) > D(wp,n;j(w)). In addition,
according to Eq. (37) and (38), is still neighbor mod(; + 2) distribution completes in the dimension. In pipeline 2 aityon,

of mj(w) in mesh and torus, hencg;(w) = —fi(n;(w)), where o 4as are allowed to start both processing and transmiktiad

k = mod,(j + 2). Note that since nodes on the boundary of thﬁefore finishing receiving load

axb recta_ngle in the mesh haV(_e Ies; Fhan 4 neighbors, and we Ie‘f’he phase algorithm is proposed for divisible load scheduli
Bj(w) = 0 if w does not have neighbgrin the mesh. Alsow can i, 515 networks in [16]. In the phase algorithm, the citcui
start sending out and processing load after it finishesvipioad switching mechanism is adopted such that a node can send load

from all its nelghbors_._ i i i to remote nodes directly as long as no link along the routiati p

To formulate the divisible Ioaischt_adulmg poroblem m_meekj dis occupied, which is quite different from the other algomiis in our
torus as the MFTM probleml/;’, U and Uy are defined as .,y narison, which allow nodes to send load only to their iedgs.
follows. In the mesh, For example, the phase algorithm allows load being sent frode

Us = {8;(w)|D(wo,w) > D(wo, n;(w))} 0 to node 2 directly in thé x 5 torus in Fig. 13 (b) along the link
_ from node 0 to node 1 and the link from node 1 to node 2, which
Ug = {Bj(w)|D(wo,w) < D(wo,n;j(w))} bypasses node 1. The load is distributed to nodes in the niefwo

Uj = {B;(w)|w does not have neighbgs several phases. In phase 0, the node where load originatesistid
distribution, and sends load to 4 nodes since each node hagst p
in the torus. Next, in phase 1, 5 nodes hold load, and eacheaf th
Ug = {B;(w)|D(wo,w) > D(wo,nj(w))} distributes load to another 4 nodes in the network. Theegfor
U> = {8;(w)|D(wo, ) < D(wo, n; (w))} phaseN, load will be distributed t>"" nodes in total. To prevent

B J 0 0% link contention in each phase, a node may have to send load to
Ug = {B;(w)|D(wo,w) = D(wo, n;j(w))} remote nodes, which will incur a long startup time, for siuipy,
we set the startup time to be zero in our comparison. The @lose
form solutions of load distribution by the above 4 algorithiare
given in the corresponding references.

In the performance comparison, we g} as 1, and increasg.,,,

om 0.01 to 10, corresponding to computation-intensiadland
communication-intensive load, and the incremental step0a1,
0.1 and 1 in intervals [0.01,0.1], [0.1,1] and [1,10], rectpely.

As for the torus,

By definingUg, Ug andU} as above, we still have tha(w) > 0,
Bjw) < 0 and Bj(w) = 0 for ;(w) in UF, Uy and U,
respectively. The divisible load scheduling in mesh andgas then
formulated as the MFTM problem in Table 3 as well, which c
be transformed into the FTM problem in Table 4 by Theorem 2,
and 4, and we can obtain the optimal solution of the corredingn

. |U+\ . L. . | L .
FTM problem by solvingz™# " linear optimization problems. Also, T performance of the compared algorithms is evaluateering

+ _ 7t ; +
we can letSy = Uy, and use the solution oLP(Uy) as the ot gheedup, which is the ratio between the finish time of titadi
suboptimal solution for the FTM problem. Hence, the heumstby a single node and that by the whole network.

algorithm proposed in the previous section applies to mesh a
torus networks as well. A. Comparison in Gaussian Networks

Next, we will compare the performance of our proposed h&aris In this subsection, we compare the performance of the Hauris
algorithm with the LP-based algorithm, and the previousbposed algorithm with the LP-based algorithm in Gaussian netwogksl
dimensional algorithm and phase algorithm. adopt three optimal Gaussian networks,  si, G514 and Gesi,
such that we can reduce the computation complexity, edpecia
when adopting the LP-based algorithm, by taking advantdgleeo

In this section, we compare the performance of our proposeetwork symmetry to the maximum extent.
heuristic algorithm with the LP-based algorithm, and thevously The comparison results are plotted in Fig. 14, from which we
proposeddimensional algorithnj13], pipeline algorithms [14] and can see that our proposed heuristic algorithm has extreoiese,

V. PERFORMANCEEVALUATION
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and almost equal, performance to the LP-based algorithnerundligorithms broadens as tfig,, increases. Whed.01 < T.,, < 0.2,

all network sizes. The underlying reason is that all thedirik our proposed heuristic algorithm increases the speedupbbyta
the network are assumed to be active, i.e., used to traneamt, | 12% in theb x5 mesh, and the speedup improvement reaches around
in the heuristic algorithm, though the assumption might het 25% and over 30% in th& x 7 and9 x 9 meshes, respectively.
true in the optimal load distribution, taking advantage bbfiaks The reason is that the dimensional algorithm fails to effitie

in the network to transmit load is an efficient load distribnt use all the links in the network to distribute load. For exs&mp
scheme. Considering that the heuristic algorithm solveg one since node 0, 1, 2, 3 and 4 equal to a single process in the
linear optimization problem, and has much lower time coxipfe 5 x 5 mesh by the dimensional algorithm, node 1 can receive
than the LP-based algorithm, the performance of our prapodead only from node 2, while node 1 can receive load from node
heuristic algorithm is quite satisfactory. We also obsehat larger 2 and 1 + i in the heuristic algorithm, which shortens the load
network size and smalléf,,,, results in higher speedup under botlransmission time. As the network size grows, the networe si
algorithms. This is because that larger network providesatgr grows, andT.,, increases, which brings about higher overhead
computing power and smallef,,, introduces less overhead inwhen distributing load, the inefficiency of the dimensioalglorithm
load distribution. On the other hand, load distributiondoees less in utilizing links deteriorates, and the advantage of theristic
economical under largéf.,,, and we can see that larger networlalgorithm becomes greater. Though the pipeline 1 algorigmud

size brings about little speedup improvement whep, > 0.2, the pipeline 2 algorithm can shorten load distribution timeone
which will also be observed in mesh and torus under a variéty dimension, they still suffer inefficient utilization of ks inherited

divisible load scheduling algorithms. from the dimensional algorithm, and even though nodes cansinit
and receive load concurrently in the pipeline 1 algorithitmeaver
s Gaussian network _ outperforms the heuristic algorithm. Allowing nodes to gess and
N B-LP-basedin G transmit load while receiving load provides pipeline 2 aitjon
“ 0\0 R gfﬁf;:ts';”fté@ great advantages over the heuristic algorithm, nevesbeli is
2. R,8 Heuristic in %4“ only §I|ghtly better than the heurls.t|c glgonthm. Furm@re,‘ as
3 v&@% o LP-basedin G, the pipeline schemes adopted by pipeline 1 algorithm anelipigp
@ 207 b, Heuristic in G, | 2 algorithm are independent of divisible load schedulimgpethms,

we can integrate them in the heuristic algorithm as well tyéase
| its performance. Under lardg.,,,, distributing load to remote nodes
'Geaml becomes uneconomical, the majority of load is thus prockbye
T 10 the source node and a few nearby nodes, and the speedup & almo
independent of the scheduling algorithms.

Fig. 14. Speedup comparison between LP-based algorithnhemdstic algorithm — Fig 16 plots the comparison results in the tori. Note thatei

with respect to different network sizes and inverse datasrat Gaussian networks. . .
the 5 x 5 torus can adopt the phase algorithm, we also take it into
consideration in our comparison, as shown in Fig. 16 (a).dfese

B. Comparison in Meshes and Tori algorithm can use all ports of a node to distribute load irhqatase,

therefore, it achieves better performance than the otlyarithms.

However, as mentioned above, only torus with nodes can adopt

the phase algorithm, which restricts its application. Mwes, the

In this subsection, we evaluate the performance of our Ee@po
heuristic algorithm in meshes and tori with respect to theblaBed

algor@thm, h_eur_istic algorit_hm, dimensional aIgc_>rithrrip¢iine 1 phase algorithm may result in long startup time when senltiag
alg';A(\)nthm,hplpellne_ 2 algorlljthm gnd F]:hasi algorithm. ¢ red .to remote nodes, which is ignored in our comparison, whiteather

S In the previous subsection, for the purpose of re UCIN§5orithms will not since nodes only send load to neighboithese
computation complexity from the network symmetry, we ugedh two algorithms. Therefore, the advantages of the phaseitidgo

sqléare mesheshand t%” In _ouSr. compharlsond, they5are5, 7 x 7 ._aver the other algorithms will shrink in real world applicat when
and 9 x 9 meshes and tori. Since the nodes are asymmetric, ing the potential long startup time into consideratiarich

the ”.‘ESh' and the perfo_r_mance c_)f mesh in scheduling dieisi ight even render it disadvantageous compared with ther othe
load is related to the position afy, i.e., the node where the Ioadalgorithms

originates. Generally speaking, the mesh has better peafure in Finally, we notice that mesh and torus of equal network size

scheduling divisible load Whecqo is closer to the geometric Center'achieve identical performance when adopting the same itigar
and we letw, be the geometric centers of the selected meshesqiis is pecause that when the load originates from the geomet
our comparison, such that we can observe the best perfoEMaRe center of the mesh, a given scheduling algorithm resinits
of these meshes under given algorithms. The geometricrseate joniica| joad distribution in the mesh and torus. For extemp
the 5 x _5’ 7x 7and9 X_9 meshes are + 2i, 3 T 3i and_4_+_ A \when adopting the LP-based algorithm and the heuristicritigo,
respectlyely: As nodes in a torus are symmetric, the didibad 1 oce two networks have eqtﬁg. U5 and Ug, meaning that the
scheduling is independent of the position«yj, nevertheless, we MFTM problems for them have identical optimal solution, ahd

still choose2 +2i, 3 4 3i and4 + 4i aswy in the 5 x 5, 7x 7 and suboptimal solutions from the heuristic algorithm will betsame
9 x 9 tori, respectively. as well

The comparison results among these algorithms in the mesaes - ) _
in Fig. 15. We can see that the heuristic algorithm still haieost C- Efficiency of the Simplex Algorithm
equal performance to the LP-based algorithm in the meshfteatd As mentioned previously, we rely on the simplex algorithm
our proposed heuristic algorithm achieves much higher dygee to solve the LP(S7) in the LP-based algorithm and heuristic
than the dimensional algorithm, and the gap between these tlgorithm. In this subsection, we evaluate the efficiencythod
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Fig. 15. Speedup comparison among LP-based algorithmijstieualgorithm, dimensional algorithm, pipeline 1 algbm and pipeline 2 algorithm with respect to
different network sizes and inverse data rates in meshg$. xa5 mesh. (b)7 x 7 mesh. (c)9 x 9 mesh.
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Fig. 16. Speedup comparison among LP-based algorithmistieualgorithm, dimensional algorithm, pipeline 1 algbm, pipeline 2 algorithm and phase algorithm with
respect to different network sizes and inverse data ratésrin(a) 5 x 5 torus. (b)7 x 7 torus. (c)9 x 9 torus.

Simplex algorithm

simplex algorithm in terms of the number of iterations tak®n
the simplex algorithm to soIvéP(U;) in the heuristic algorithm, Gy

o
L

as shown in Fig. 17. Note that x a mesh anda x a torus G\ \
share an identical suboptimal solution by the heuristio@igm in 3 _*_SSgSi

our simulation, therefore, the number of iterations by tmepsex
algorithm are equal in these two networks, and we use the line
with legenda x a in Fig. 17 to represent both networks. From Fig.
17, we can see that the number of iterations is small withegtsp
to the corresponding network size, and relatively stablel’as 0
increases from 0.01 to 10, which is a positive evidence atdig a Tom
satisfactory efficiency of the simplex algorithm in solviﬂg?(Ug).
Take the image processing problem of converting an RGB co
map to an HSV color map, a typical divisible load task, in the
9 x 9 mesh (or torus) for example. If each processor in the network
has equal computing power as a single core of the Intel Coremaintains almost equally good performance compared toatter |
Quad Core Q9400, it takes roughly 0.5 to convert a pixel by one. In addition, the heuristic algorithm significantly pettforms
such a processor according to our test. Suppose an 8-bykspie  the dimensional algorithm, and is much more widely applieshan
is used, which is the same as the IKONOS satellite image E8%], the phase algorithm.
that the inter-processor bandwidth is71B/s [35], then to transmit
a pixel would be 8. In this case,%: =0.016, and the speedup VI. CONCLUSIONS
of the network is 53 by running the heuristic algorithm, whtekes | this paper, we have formulated the divisible load schiedul
0.0395 seconds in a single processor. Therefore, the rergfrthe in mesh, torus and Gaussian network as the maximum finish time
heuristic algorithm equals the processing time of about Hiani  mjnimization (MFTM) problem, which minimizes the maximum
pixels, the size of which is 32/ B, by the network. Considering finish time of all nodes in the network. By linearly relaxiniget
that the RAM size of a PC can be easily scaled up to tens and e¥@Rstraints of MFTM problem, we obtain the relaxed MFTM prob
hundreds ofGB nowadays, the overhead of running the heuristigm, which is proved to have equal optimal solution as the MFT
algorithm should be negligible when the size of processeags problem. We showed that the all nodes should have equal finish
is comparable to the RAM size. time when the relaxed MFTM problem is optimized, and further
In summation, our proposed heuristic algorithm has a signifansform it into the finish time minimization (FTM) problerhe
icantly lower time complexity than the LP-based algorithbot FTM problem and MFTM problem have equal optimal solutions

-@-7x7
9x9

Number of iterations

(;elg 17. Number of iterations by the simplex method in scgvibP(U;r) with
pect to different network sizes and topologies.
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as well, and we propose an optimal algorithm based on lingas] S. Suresh, V. Mani and S. N. Omkar, “The effect of stat-delays in
programming denoted as the LP-based algorithm for the FTM scheduling divisible load on bus networks: An alternaterapgh,” Comput-

problem. Considering the high time complexity of the LPdzhs
algorithm, a heuristic algorithm is also proposed.

Our simulation results demonstrate that the heuristic rdtyo
achieve extremely close, and even equal, performance td.Rhe

ers and Mathematics with Applicationsol. 46, no. 10C11, pp. 1545-1557,
NovemberCDecember 2003.

[20] Y. Chang, J. Wu, C. Chen and C. Chu, “Improved Methods Burisible
Load Distribution on k-Dimensional Meshes Using Multi-dalément,” IEEE
Transactions on Parallel and Distributed Systerwsl. 18, no. 11, pp. 1618-
1629, Nov. 2007.

based algorithm in terms of speedup in all the studied nddsvor[21] M. Shang and S. Sun, “Optimal multi-installments altfon for divisible load

In addition, our proposed heuristic algorithm outperforthe
previously proposed dimensional algorithm, and has mudhemwi

scheduling,” 2005. Proceedings. Eighth International Conference onhHig
Performance Computing in Asia-Pacific Regiduly 2005.
22] Y. Yang, K. van der Raadt and H. Casanova, “Multiroundy@ithms for

application range than the phase algorithm. Hence, the MFTM Scheduling Divisible Loads,JEEE Trans. Parallel Distrib. Systvol. 16, no.

problem formulation is efficient for divisible load scheuhg in

the Gaussian network, mesh and torus, and our proposedstieur

11, pp. 1092-1102, Nov. 2005.
M. A. Moges, D. Yu and T. G. Robertazzi, “Grid schedulidgisible load

23]
{ from two sources,Comput. Math. Applvol. 58, no. 6, pp., 1081-1092, Sept.

algorithm greatly improves the performance of mesh andstoru 2009.

in scheduling divisible load, which is a promising schedgli
algorithm for real world application.
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