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Abstract—In this paper, we propose a novel analysis method
for divisible load scheduling in mesh, torus and Gaussian
network, a new type of interconnection network that has
the same node degree as the mesh and torus, but shorter
network diameter and shorter average hop distances under
equal network size. The divisible scheduling in these three
networks are uniformly formulated as the Maximum Finish
Time Minimization (MFTM) problem. It involves minimizing the
makespan of the load distribution and processing. The MTFM
problem, a relaxed MFTM problem, a linear programming
problem version and a heuristic algorithm are described and
solved. The first three of these problems have identical solutions.
The heuristic algorithm is close in performance to the optimal
solution, significantly outperforms the previously described
dimensional algorithm, and has much wider application range
than the previously proposed phase algorithm.

Index Terms—Divisible load scheduling, Gaussian network,
mesh, torus, maximum finish time minimization, linear pro-
gramming.

I. I NTRODUCTION

A divisible load is a computational load that can be divided into
any number of arbitrary small fractions, which are independent
and can be processed in parallel. The divisible load model isa
good approximation of tasks that require large number of identical,
low-granularity computations, thus has been proposed for awide
range of scientific and engineering data processing, such asimage
processing, matrix multiplication, fast-fourier-transformation (FFT),
video encoding/decoding, stereo matching, etc. [1]- [5].

The basic linear divisible load model assumes that the processing
time of divisible load on a single processor and the transmission
time of divisible load from one processor to the other are both
proportional to the divisible load size [6] [7] [8]. In general, the
processing time of a unit divisible load on a standard processor and
the transmission time of a unit divisible load through a linkwith
standard data rate are denoted asTcp and Tcm, respectively. The
aim of divisible load scheduling is to minimize the processing time
by distributing divisible load among multiple processors which are
interconnected by a specific network topology. The processing speed
of these processors can be either homogeneous or heterogenous, as
are the data rates of links in the network [9] [10].

Over the past two decades, there has been extensive researchin
the literature on scheduling divisible load in a variety of network
topologies, such as daisy chain, bus, tree, hypercube, meshand
torus [6]- [8], [11]- [16]. In [6], [7], [8] and [11], the optimal
solution was obtained for divisible load scheduling in daisy chain,
tree, bus and hypercube, respectively. The performance limit of

mesh and torus in scheduling divisible load was provided in [12].
The dimensional algorithm was proposed forN -dimensional mesh
and torus in [13], which decomposes anN -dimensional mesh (or
torus) into linearly connectedN − 1-dimensional meshes (or tori).
Based on the dimensional algorithm, two pipeline algorithms are
proposed in [14] to accelerate load distribution. In [15] and [16],
the phase algorithm was proposed for torus and 3D-mesh, which
divides the load distribution into several phases. In each phase, the
active processors, i.e., processors that finish receiving load, and can
start distributing load to the other processors, are carefully selected
such that the load distribution in the next phase will not encounter
link contention. The phase algorithm considers the startuptime,
i.e., the time for connection establishment between two processors
in the network, which is also studied in [17]- [19]. In [20]- [22], the
multi-installment scheme was proposed in divisible load scheduling,
which allows processors to start processing and distributing load
earlier. The scenario of multiple divisible load sources was studied
in [23]- [25], where load distribution originates from multiple
processors in the network.

In this paper, we propose a novel analysis method for divisible
load scheduling, and adopt it in mesh and torus. As will be seen
in Section V, the algorithm based on our proposed novel analysis
method significantly outperforms the previously proposed dimen-
sional algorithm in [13] due to its higher efficiency in utilizing links
in the network to distribute load, and has much wider application
range than the phase algorithm in [16], which is applicable only
to torus with 5N nodes. In addition to the mesh and torus, we
also study divisible load scheduling in processors interconnected
by a new type of network topology, called aGaussian network,
which is proposed in [26]. The Gaussian network has an equal
node degree as the mesh and torus, but shorter average hop distance
and network diameter than the latter two network topologiesunder
equal network size [27]- [30]. In [28], the Gaussian networkhas
been demonstrated to be a promising candidate for on-chip network,
which outperforms on-chip mesh and torus networks in terms
of communication bandwidth and latency. Moreover, by utilizing
the underlying Hamiltonian cycles in the Gaussian network,a
bufferless routing algorithm has been proposed for the optical Gaus-
sian macrochip, which is a chip-scale optical network architecture
adopting the Gaussian network. The optical Gaussian macrochip
significantly improves the power efficiency, supports much higher
communication bandwidth, and achieves much lower average packet
delay compared with optical macrochips adopting other network
topologies, such as mesh, torus, Clos and fully connected networks
[29] [30]. Divisible load scheduling in the Gaussian network is
studied along with mesh and tori in this paper due to the fact
that the Gaussian network has the same node degree as the mesh
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and the torus so that the divisible load scheduling in these three
networks can be uniformly formulated as the same optimization
problem under our proposed analysis method, as will be discussed
in Section IV.

For presentational convenience, the terminologies of processor
and node will be used interchangeably in the rest of this paper.
We assume homogeneous processing speed and data rate for all
the nodes and links, respectively, in the network, and startup time
is ignored in our paper. Besides, we study the scenario that the
load distribution originates from only one node in the network,
and nodes can start processing and distributing load only after
it finishes receiving load from its neighbors. Since the Gaussian
network is recently proposed, and its interconnection is not as
widely known as the mesh and torus, we begin our discussion with
the Gaussian network, and formulate the divisible load scheduling
in a Gaussian network as an optimization problem, denoted as
maximum finish time minimization (MFTM)problem, in which we
record the time that each node finishes processing the load, i.e.,
the finish timeof each node. The object of the MFTM problem
is to minimize the maximum finish time of all nodes in the
network. By relaxing the constraints of the MFTM problem, we
obtain the relaxed MFTM problem, which is further transformed
into the finish time minimization (FTM)problem. We prove that
these three problems have an equal optimal solution, and design an
optimization algorithm based on linear programming, denote as the
LP-basedalgorithm, for the FTM problem. Considering the high
time complexity of the LP-based algorithm, we further propose a
heuristic algorithm for the FTM problem. After the discussion on
the Gaussian network, we will extend our analysis to mesh and
torus. As mentioned above, the divisible load scheduling inthese
two networks can be formulated as an MFTM problem as well,
which can still be transformed into the FTM problem, and our
proposed LP-based algorithm and heuristic algorithm also apply
to divisible load scheduling in mesh and torus networks.

The rest of the paper proceeds as follows. Section II introduces
the Gaussian network, and some of its related properties to be used
in the following parts of the paper. In Section III, we formulate
divisible load scheduling in Gaussian network as the maximum
finish time minimization (MFTM) problem, transform it into the
finish time minimization (FTM) problem, which has equal optimal
solution to the MFTM problem, and propose an optimal algorithm
based on linear programming, denoted as LP-based algorithm, and
a heuristic algorithm for the FTM problem. We extend our proposed
MFTM problem formulation to mesh and torus in Section IV. In
Section V, we compare the performance of the heuristic algorith-
m with the LP-based algorithm, dimensional algorithm, pipeline
algorithms and phase algorithm in terms of speedup in Gaussian
networks, meshes and tori with respect to different networksizes.
Finally, we conclude the paper in Section VI.

II. GAUSSIAN NETWORKS

In this section, we briefly introduce the Gaussian network, and
some of its related properties, which will be useful in the discussion
of divisible load scheduling in the Gaussian network.

A. Mathematical Background

In this subsection, we provide related mathematical backgrounds,
which are necessary for introducing the Gaussian network.

A Gaussian network is a network topology defined by Gaussian
integers. Gaussian integers are a subset of complex numberswith

integral real and integral imaginary parts, which is definedas

Z[i] = {ω = x+ yi | x, y ∈ Z}

whereZ is the set of integers, andi2 = −1.
Given a non-zero Gaussian integera + bi, and two Gaussian

integersω andω′, if there exist a Gaussian integera′ + b′i such
that

ω − ω′ = (a′ + b′i)(a+ bi)

we say thatω andω′ arecongruent moduloa+bi, which is denoted
as

ω ≡ ω′ mod a+ bi

and thatω and ω′ belong to the samecongruence class modulo
a+ bi. For instance,(6+ i)− (−1+2i) = (1− i)(4+3i), therefore,
6 + i and −1 + 2i belong to the same congruence class modulo
4 + 3i. Congruence modulo is an equivalence relation, which has
symmetry, reflectivity and transitivity. It has been shown that for
Gaussian integera+bi, there area2+b2 different congruence classes
moduloa+ bi in total, and any given Gaussian integer belongs to
one of thesea2 + b2 congruence classes [27] [31]. Next, we define
Gaussian network by the introduced terminologies above.

B. Network Interconnection

In this subsection, we discuss Gaussian network interconnections
and some of its properties.

A Gaussian network defined by a non-zero Gaussian integera+
bi, denoted asGa+bi , has a2 + b2 nodes, each represented by a
Gaussian integer that belongs to a distinguished congruentclass
moduloa+ bi, and the items of Gaussian integer and node will be
used interchangeably in the rest of our paper.

Given two nodesω1 and ω2 in Ga+bi , there exists an edge
betweenω1 andω2 if and only if

ω1 − ω2 ≡ ij mod a+ bi (1)

wherej = 0, 1, 2 and3, and we say thatω1 is neighborj of ω2.
According to Eq. (1), all nodes in a Gaussian network are

symmetric [26], and a node in Gaussian networks has as many
as 4 neighbors. In addition, if a Gaussian network has more than
4 nodes, any node in it has 4 neighbors, i.e., the node degree is 4
[26]. Beside, Eq. (1) indicates

ω2 − ω1 ≡ −ij mod a+ bi

therefore,ω2 is neighbor mod4(j + 2) of ω1, where mod4(j + 2)
is j + 2 modulo 4. Note that Gaussian networks with higher node
degree than 4 can be generalized [32], but we only consider those
with node degree of 4 as they have equal node degree as the
mesh and torus, and the divisible load scheduling in these three
networks can be uniformly formulated as theMaximum Finish Time
Minimization (MFTM)problem, to be seen in the following of the
paper. Fig. 1 is an example of Gaussian networkG4+3i with 25
nodes, which are placed in two adjacent meshes in the complex
plane, and node6 + i is neighbor 2 of node2i in G4+3i since
(6 + i) − 2i ≡ i2 mod 4 + 3i, indicating node2i is neighbor 0 of
node6+i. It has been proved in [26] that Gaussian networksG±a±bi

andG±b±ai are isomorphic, therefore, without loss of generality,
we assume thata ≥ b ≥ 0 in the rest of our paper.

The distance between two nodes, say,ω1 and ω2, in Ga+bi ,
denoted asD(ω1, ω2), is given as follows.

D(ω1, ω2) = min{|x|+ |y|, x+ yi ≡ (ω1 − ω2) mod a+ bi} (2)
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Fig. 1. Gaussian networkG4+3i with nodes placed in two adjacent meshes.

That is,D(ω1, ω2) equals the minimum|x|+ |y|, such thatx + yi
andω1 − ω2 belong to the same congruence class moduloa+ bi.

For example, in Fig. 1,D(0, 1 + i) = |1| + |1| = 2, andD(1 +
i, 5+ 2i) is 2 as well since that2i ≡ (1 + i)− (5 + 2i) mod 4+ 3i,
and whenω = 2i, |x|+ |y| is minimized in Eq. (2).

The network diameter of Gaussian networkGa+bi is a whena+b
is even, and isa−1 whena+b is odd, and its average hop distance
is given in Lemma 1 [26]. The Gaussian network has the same node
degree as the mesh and torus, and is advantageous over the latter two
network topologies in terms of average hop distance and network
diameter. For example, Gaussian networkG4+3i has 25 nodes, and
its network diameter is 3, while the network diameters of a mesh and
a torus of the same network size are 8 and 4, respectively. In Table
1 and 2, we list the average hop distances and network diameters of
Gaussian network, mesh and torus with respect to different network
sizes, which show that Gaussian network always has shorter average
hop distance and network diameter than mesh and torus under equal
network size.

Lemma 1:The average hop distance of Gaussian networkGa+bi

is
{

3a(a2+b2)+2b(b2−1)
6(a2+b2−1) if a+ b is even

3a(a2+b2−1)+2b(b2−1)
6(a2+b2−1) if a+ b is odd

TABLE 1
AVERAGE HOP DISTANCE COMPARISON AMONGGAUSSIAN NETWORK, MESH

AND 2D-TORUS

Network size
25 nodes 100 nodes 400 nodes

Gaussian network 2.3333 4.7475 9.4536
Mesh 3.2000 6.6667 13.3333
torus 2.4000 5 10

TABLE 2
NETWORK DIAMETER COMPARISON AMONGGAUSSIAN NETWORK, MESH AND

2D-TORUS

Network size
25 nodes 100 nodes 400 nodes

Gaussian network 3 8 16
Mesh 8 18 38
torus 4 10 20

A Gaussian network is optimal if it accommodates the most
number of nodes among all Gaussian networks with the same
network diameter. It has been proved in [26] that Gaussian network
Ga+bi is optimal if and only ifa = b+1, and its network diameter
is b.
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Fig. 2. Half-open squareSa+bi , which excludes dash-lined boundary, is decom-
posed into four areas. The vertex coordinates of each area are labeled.

C. Symmetric Node Placement for Gaussian Network

In [28], it has been pointed out that any group ofa2+b2 Gaussian
integers in the complex plane that consists of a complete collection
of a2+b2 congruent classes moduloa+bi can be used to represent
nodes in Gaussian networkGa+bi , and the constructed networks
are isomorphic as long as they are interconnected by Eq. (1) [28].
Besides, given a nonzero Gaussian integera+ bi, there area2 + b2

Gaussian integers in ahalf-open squareSa+bi defined by

Sa+bi = {(u+ vi)(a+ bi)|0 ≤ u, v < 1}

as shown in Fig. 2, which excludes dash-lined boundary. These
Gaussian integers each belong to a distinguished congruentclass
moduloa+ bi, therefore, can be used to represent all the nodes in
Gaussian networkGa+bi [26], and Fig. 3 is an example of node
placement in half-open squareS4+3i for Gaussian networkG4+3i ,
which is isomorphic to the node placement in two adjacent meshes
in Fig. 1.

To explore the symmetry of Gaussian networkGa+bi , a node
placement in ahalf-open polygonPa+bi is proposed in [28]. The
half-open polygonPa+bi is constructed by firstly decomposing the
half-open squareSa+bi into four non-overlapping areas, as shown in
Fig. 2, where the vertex coordinates of the four areas are labelled.
The edgesV0Vj+1 and Vj+1Vj+5 belong to Areaj, where j =
0, 1, 2 and3, andV0 belongs to Area 1. These four areas are then
shifted according to Eq. (3), whereωs andωp are the coordinates
of the point before and after the shifting. That is, every point ωs

in Sa+bi is mapped toωp in Pa+bi by Eq. (3). As each Gaussian
integer inSa+bi and its mapped Gaussian integer inPa+bi belong to
the same congruence class moduloa+ bi, all Gaussian integers in
Pa+bi also consists of a complete collection ofa2 + b2 congruence
classes moduloa+bi, and can be used to represent nodes inGa+bi .

ωp =



















ωs if ωs is in Area 0

ωs − (a+ bi) if ωs is in Area 1

ωs − (1 + i)(a+ bi) if ωs is in Area 2

ωs − i(a+ bi) if ωs is in Area 3

(3)
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Fig. 3. Nodes in Gaussian networkG4+3i placed on half-open squareS4+3i .

As shown in Fig. 4, the obtained half-open polygonPa+bi after
shifting is a polygon including partial points on its boundary, and
we use solid line and dash line to depict the boundary thatPa+bi

includes and excludes, respectively. In addition, the common point
of the solid-lined and dash-lined boundary is depicted by a solid dot
if it belongs toPa+bi , otherwise, it is depicted by a hollow dot, and
we can see thatB1, D0 andD3 belong toPa+bi in Fig. 4, which
are named assolid points. An important property of the half-open
polygon is that if the solid pointsB1, D0 andD3 are removed, the
half-open polygon is 4-fold rotational symmetric, i.e., itcan overlap
itself after being rotated by 90 degrees centering at the origin of
the complex plane. Therefore, we label the coordinates of only A0,
B0, C0 andD0 in Fig. 4, which area+b

2 i, a−b
2 + a+b

2 i, a−b
2 + bi

and a
2 + b

2 i, respectively. The remaining vertex coordinates can be
obtained by the rotational symmetry of the half-open polygon.

It is worth mentioning that we can have different assignments
for common edges of the four areas in Fig. 2, which yield different
node placements forGa+bi . For example, if edgesV0Vj+1 and
Vj+1Vj+5 still belong to Areaj, where j = 0, 1, 2 and3, but
V0 belongs to Area 2, and we letV8 belong to Area 0, shifting
the areas according to Eq. 3 yields another half-open polygon,
denoted asP ′

a+bi , in Fig. 5, where the Gaussian integers can also
be used to represent nodes inGa+bi . In Pa+bi andP ′

a+bi , Gaussian
integers belonging to the same congruence class moduloa + bi
represent the same node inGa+bi , which maintains the neighboring
relationship among nodes, i.e., neighborj of a given node inGa+bi

will still be represented by Gaussian integers belonging tothe same
congruence class moduloa + bi in Pa+bi and P ′

a+bi [28]. For
example, whena+ b is even, neighbor 2 of nodea−b

2 +(a+b
2 − 1)i

is a−b
2 + a+b

2 i and−a+b
2 + a−b

2 i in Pa+bi andP ′
a+bi , respectively,

and a−b
2 + a+b

2 i ≡ −a+b
2 + a−b

2 i moduloa + bi. As will be seen
shortly, placing nodes in different half-open polygons reveals several
properties of divisible load scheduling in Gaussian networks.

In our paper, we also place nodes ofGa+bi in Pa+bi . Fig. 6 is
an example of node placement forG4+3i in P4+3i , of which the
boundary is plotted in dash line. As for the node placement for an
optimal Gaussian networkGb+1+bi , we have the following corollary.

Corollary 1: The nodes of an optimal Gaussian networkGb+1+bi

can be placed in the interior of a square, i.e., excluding itsboundary,

A0 : a+b
2 i
B0 : a−b

2 + a+b
2 i
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2 + bi
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2 i
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A2B2
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B1 C1

D1
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Fig. 4. Half-open polygon for node placement ofGa+bi , which excludes dash-lined
boundary and points depicted by hollow dots on the boundary,and is denoted as
Pa+bi . Without the solid points on the boundary, i.e.,B1, D0 andD3, Pa+bi is
4-fold rotational symmetric, i.e., it can overlap with itself after being rotated by 90
degrees. The coordinates ofA0, B0, C0 andD0 are a+b

2
i, a−b

2
+ a+b

2
i, a−b

2
+ bi

and a
2
+ b

2
i, respectively. The remaining vertex coordinates can be obtained by the

rotational symmetry ofPa+bi .

with ± 2b+1
2 and± 2b+1

2 i as the vertices in the complex plane.
Proof: In Pa+bi , if a Gaussian integer, say,ω, is in the triangle

A0B0C0, A1B1C1, A2B2C2 or A3B3C3, it must satisfy either
|x| ≤ a−b

2 or |y| ≤ a−b
2 . Therefore, whena = b + 1, no Gaussian

integers resides in these triangles, and all Gaussian integers inPa+bi

must reside in the square withA1, A2, A3 andA4 as the vertices.
In addition, ifω is on the boundary of the square, we have|x|+

|y| = 2b+1
2 , which is impossible since|x| + |y| must be integer.

Hence, there are no Gaussian integers on the boundary of the square,
and all Gaussian integers must be in the interior of the square, which
can be used to represent all nodes inGb+1+bi .

SinceG4+3i is an optimal Gaussian network, we can see from
Fig. 6 that all of its nodes reside in the interior of the square with
± 7

2 and± 7
2 i as the vertices.

Next, we will formulate the divisible load scheduling problem
in a Gaussian network as an optimization problem based on the
introduced node placement.

In the next section, we will discuss divisible load scheduling in
Gaussian networks.

III. SCHEDULING A D IVISIBLE LOAD IN GAUSSIAN NETWORKS

In this section, we formulate the divisible load schedulingprob-
lem in Gaussian network as an optimization problem, which is
denoted asmaximum finish time minimization (MFTM)problem,
and propose an optimal algorithm for it.

A. Problem Formulation

As mentioned in Section I, we assume homogeneous processing
speed and link data rate in our paper. In the Gaussian network,
the processing time of a unit divisible load on a single processor
is denoted asTcp, and we denote the transmission time of a unit
divisible load through a link in the network asTcm. Since every
node is symmetric in Gaussian networks, without loss of generality,
we assume that the load originates from the node at the originof
the complex plane, and spreads to the surrounding nodes hop by
hop.

In our model, a node, say,ω, in Ga+bi can only receive load
from (or send load to) its neighbors that are closer to (or further
away from) the origin than itself, and its neighborj is denoted as
nj(ω). Nodeω is allowed to receive load from (or send load to)
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Fig. 5. Another half-open polygon, denoted asP ′

a+bi , for node placement ofGa+bi ,
whereB2, D0 andD3 on the boundary are solid points.

one of its neighbors for at most once, and the amount of loadω
receives from neighbornj(ω) is denoted asβj(ω). After ω finishes
receiving load from all its neighbors, it starts processingand sending
out load simultaneously. We denote the amount of loadω processes
by itself asα(ω), and the time it starts and finishes processing load
asTs(ω) andTf (ω), respectively. For presentational convenience,
if ω sends load to neighbornj(ω), we letβj(ω) < 0, which means
that neighbornj(ω) receives−βj(ω) load fromω. As mentioned
in Section II-B,ω is also neighbor mod4(j + 2) of nj(ω), and we
have thatβj(ω) = −βk(nj(ω)), wherek = mod4(j+2). Take Fig.
7 for example, nodeω receives 0.15 load from its neighbor 3, and
sends 0.03 load to each of the rest neighbors.

By the definition ofβj(ω), we have thatβj(ω) ≥ 0, βj(ω) ≤
0 and βj(ω) = 0 when D(0, ω) > D(0, nj(ω)), D(0, ω) <
D(0, nj(ω)) and D(0, ω) = D(0, nj(ω)), respectively, based on
which we divide allβj(ω)s into 3 sets,U+

β , U−
β andU0

β , as follows
to facilitate the problem formulation of divisible load scheduling in
Gaussian network.

U+
β = {βj(ω)|D(0, ω) > D(0, nj(ω))}

U−
β = {βj(ω)|D(0, ω) < D(0, nj(ω))}

U0
β = {βj(ω)|D(0, ω) = D(0, nj(ω))}

Clearly,βj(ω) ≥ 0 if βj(ω) ∈ U+
β , βj(ω) ≤ 0 if βj(ω) ∈ U−

β and
βj(ω) = 0 if βj(ω) ∈ U0

β . In addition, sinceβj(ω) = −βk(nj(ω)),
wherek = mod4(j + 2), βj(ω) ∈ U+

β if and only if βk(nj(ω)) ∈

U−
β , vice versa.
The divisible load scheduling problem in Gaussian networksis

then formulated as the optimization problem in Table 3, which is
denoted asmaximum finish time minimization (MFTM)problem.

The objective of the MFTM problem is to minimize the maximum
finish time of all nodes in the network. Constraint (4) means that it
takesα(ω)Tcp time for nodeω to process its load. Constraint (5)
and (6) indicates that the load originates from node 0, and a node
starts processing the load when it finishes receiving all load from its
neighbors. Note that if a node receives no load from its neighbors,
its starting time is set as 0, as stated by constraint (7). Thenext 4
constraints originate from our rules ofβj(ω), as discussed above.
Constraint (12) and (13) state that the load nodeω keeps for itself
equals the difference between the load it receives and sendsout,
and that the total load is 1, implying that

∑

α(ω) = 1. The last
constraint means that a node can not send out more load than it
receives.

14 15 16

17 18 19 20 21

22

23 24 25 1 2 3 4

5

6 7 8 9 10

11 12 13

real

imaginary

Fig. 6. Node placement ofG4+3i in P4+3i , the boundary of which is plotted in
dash line.

ω
β0(ω) = −0.03

β1(ω) = −0.03

β2(ω) = −0.03

β3(ω) = 0.15

Fig. 7. Nodeω receives 0.15 load from its neighbor 3, and sends 0.03 load toeach
of its rest 3 neighbors.

TABLE 3
MAXIMUM FINISH T IME M INIMIZATION (MFTM) PROBLEM FORMULATION

FOR DIVISIBLE LOAD SCHEDULING IN A GAUSSIAN NETWORK

Minimize: max{Tf(ω), ω ∈ Ga+bi}

Subject to:

Tf(ω) = Ts(ω) + α(ω)Tcp (4)

Ts(0) = 0 (5)

Ts(ω) = max{Ts(nj(ω)) + βj(ω)Tcm|βj(ω) > 0} (6)

Ts(ω) = 0, if ∀j ∈ {0, 1, 2, 3}, βj(ω) = 0 (7)

βj(ω) ≥ 0, if βj(ω) ∈ U+
β (8)

βj(ω) ≤ 0, if βj(ω) ∈ U−
β (9)

βj(ω) = 0, if βj(ω) ∈ U0
β (10)

βj(ω) = −βk(nj(ω)), if k = mod4(j + 2) (11)

α(ω) =

3
∑

j=0

βj(ω), if ω 6= 0 (12)

α(0) = 1 +

3
∑

j=0

βj(0) (13)

α(ω) ≥ 0 (14)

We say that

U = U+
β ∪ U−

β ∪ U0
β ∪ {α(ω), Ts(ω), Tf (ω)|ω ∈ Ga+bi}
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is a feasible solution of MFTM problem if elements inU satisfy all
the constraints of the MFTM problem, and the optimal solution is
denoted asU∗. It is worthwhile to mention that given the location
of source node, we can identifyU+

β , U−
β and U0

β for mesh and
torus, with which divisible load scheduling in these two networks
can also be formulated as the MFTM problem in Table 3, as will
be seen in Section IV.

Before solving the MFTM problem, we firstly analyze the char-
acteristics ofU∗ by exploring the symmetry of Gaussian network.
We have the following lemma and corollaries.

Lemma 2: In U∗, if ω1 and ω2 = ω1 · i are both inPa+bi ,
βj(ω1) = βk(ω2), wherek = mod4(j + 1).

Proof: As mentioned above, nodes inGa+bi can also be placed
in P ′

a+bi , whereD0, D1 and B2 are solid points, as well as in
Pa+bi . For convenience, if we place nodes inP ′

a+bi , the loadω
sends tonj(ω) is denoted asβ′

j(ω), and the optimal solution for
the corresponding MFTM problem is denoted asU ′∗.

We notice that after being counterclockwisely rotated by 90
degrees,Pa+bi will overlap with P ′

a+bi , which means that ifω1 is
in Pa+bi , ω2 = ω1 · i is in P ′

a+bi andβj(ω1) = β′
k(ω2), wherek =

mod4(j + 1). Besides, as Gaussian integers belonging to the same
congruence class moduloa + bi in Pa+bi andP ′

a+bi represent the
same node inGa+bi , which maintains the neighboring relationship
among nodes, the load that a node inGa+bi sends to its neighbor
k is independent of the node placement. Therefore, ifω2 is also in
Pa+bi , we have thatβk(ω2) = β′

k(ω2) asω2 ≡ ω2 moduloa+ bi.

Corollary 2: In U∗, βj(−
a+b
2 + a−b

2 i) = βk(−
a+b
2 + a−b

2 i),
wherek = mod4(j + 1), whena+ b is even.

Proof: By the proof of Lemma 2, since−a−b
2 − a+b

2 i =
(−a+b

2 + a−b
2 i) · i, βj(−

a+b
2 + a−b

2 i) = β′
k(−

a−b
2 − a+b

2 i), where
k = mod4(j + 1). In addition,−a+b

2 + a−b
2 i and −a−b

2 − a+b
2 i

belong to the same congruence class moduloa + bi, therefore,
βk(−

a+b
2 + a−b

2 i) = β′
k(−

a−b
2 − a+b

2 i).
Corollary 3: In U∗, βj(

a
2 +

b
2 i) = βk(

a
2 +

b
2 i) andβj(

b
2 −

a
2 i) =

βk(
b
2 − a

2 i), wherek = mod4(j + 2), whena andb are both even.
Proof: Sincea

2+
b
2 i = ( b2−

a
2 i)· i and− b

2+
a
2 i = (a2 +

b
2 i)· i, we

have thatβj(
b
2−

a
2 i) = β′

k′ (a2+
b
2 i) andβk′(a2 +

b
2 i) = β′

k(−
b
2+

a
2 i),

wherek′ = mod4(j+1) andk = mod4(k′+1). In addition,b2−
a
2 i ≡

− b
2 + a

2 i moduloa + bi, and a
2 + b

2 i in Pa+bi andP ′
a+bi represent

the same node ofGa+bi , therefore,βk(
b
2 −

a
2 i) = β′

k(−
b
2 +

a
2 i) and

βk′(a2+
b
2 i) = β′

k′(a2+
b
2 i). Hence, we haveβj(

b
2−

a
2 i) = βk(

b
2−

a
2 i),

wherek = mod4(j +2), andβj(
b
2 −

a
2 i) = βk′ (a2 + b

2 i), indicating
that βj(

a
2 + b

2 i) = βk(
a
2 + b

2 i) also holds.
Corollary 4: In U∗, β0(x+ yi) = β0(x− yi) = β1(−y + xi) =

β1(y+xi) = β2(−x−yi) = β2(−x+yi) = β3(y−xi) = β3(−y−
xi) if the Gaussian network is optimal.

Proof: Corollary 1 says that nodes in an optimal Gaussian
network, say,Gb+1+bi , can be placed in the interior of a square
with ± 2b+1

2 and± 2b+1
2 i as the vertices. A square has 4 axes of

symmetry, the symmetric points ofx + yi with respect to these 4
axes of symmetry are−x + yi, x − yi, y + xi and −y − xi, as
shown in Fig. 8. Therefore, we haveβ0(x+ yi) = β2(−x+ yi) =
β0(x− yi) = β1(y + xi) = β3(−y − xi).

Moreover, since the square is also 4-fold rotational symmetric, by
Lemma 2, we have thatβ0(x+yi) = β1(−y+xi) = β2(−x−yi) =
β3(y − xi).

With the above lemma and corollaries, we can reduce the number
of independent variables in the MFTM problem. As will be seen

real

imaginary

β0(x+ yi)

β
1
(y

+
x

i)

β
1
(−

y
+
x

i)

β2(−x+ yi)

β2(−x− yi)

β
3
(−

y
−
x

i)

β
3
(y

−
x

i)

β0(x− yi)

Fig. 8. The symmetry of the square renders thatβ0(x + yi) = β0(x − yi) =
β1(−y + xi) = β1(y + xi) = β2(−x − yi) = β2(−x + yi) = β3(y − xi) =
β3(−y − xi) in U∗ when the Gaussian network is optimal.

in Section III-D, taking these dependencies among variables into
consideration can improve the efficiency of our proposed optimal
algorithm and heuristic algorithm. Next, we solve the MFTM
problems by transforming it into other problems with an identical
optimal solution.

B. Linear Relaxation of MFTM

In order to solve the MFTM problem, we first relax constraint (6)
of the MFTM problem into a linear constraint as follows, and denote
the new optimization problem as therelaxed MFTMproblem.

Ts(ω) ≥ Ts(nj(ω)) + βj(ω)Tcm, if βj(ω) > 0 (15)

Since constraint (15) is relaxed from constraint (6),U∗, i.e., the
optimal solution of the MFTM problem must be a feasible solution
of the relaxed MFTM problem, and we have the following theorems
on the optimal solution of the relaxed MFTM problem.

Theorem 1:When the relaxed MFTM problem is optimized, if
Ts(ω) > 0, Tf (ω) = Tf(0).

Proof: We prove the theorem by contradiction, and assume that
there exist one node with different finish time from node 0, and its
start time is positive. By constraint (6) and (7), we know that if
Ts(ω) > 0, ω must receive nonzero load from at least one of its
neighbors, and thatTf (ω) = 0 if ω 6= 0 andTs(ω) = 0, therefore,
max{Tf(ω)|ω ∈ Ga+bi} is eitherTf (0) or max{Tf(ω)|Ts(ω) >
0}.

Next, we will reducemax{Tf (ω)|ω ∈ Ga+bi} by redistributing
load among nodes in the network such that nodes with maximum
finish time can have less load to process, and the nodes with earlier
finish time process more load. For presentational convenience,
we denote the start and finish time of nodeω after the load
redistribution asT ′

s(ω) and T ′
f (ω), respectively, and the loadω

kept for itself after the load redistribution is denoted asα′(ω).
Two cases are considered in the proof.
Case 1:Tf(0) < max{Tf(ω)|ω ∈ Ga+bi}.
In this case,

max{Tf(ω)|ω ∈ Ga+bi} = max{Tf(ω), Ts(ω) > 0}

and we suppose that a node with maximum finish time ish hops
away from node0, which is denoted asωh, i.e.,

Tf (ωh) = max{Tf (ω)|ω ∈ Ga+bi}
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0

0

ω1

ω1

ω2

ω2 ωh

ωh

β1 β2 β3 βh

β1 − δβ β2 − δβ β3 − δβ βh − δβ

Fig. 9. Load redistribution whenTf (0) < Tf (ωh) = max{Tf (ω)|ω ∈ Ga+bi},
whereβk > 0, andβk is reduced byδβ (0 < δβ < βk) for all 1 ≤ k ≤ h.

replacements

0

0

ω1

ω1

ω2

ω2 ωh′

ωh′

β1 β2 β3 βh′

β1 + δβ1 β2 + δβ2 β3 + δβ3 βh′

+ δβh′

Fig. 10. Load redistribution whenTf (ωh′ ) < Tf (0) = max{Tf (ω)|ω ∈ Ga+bi},
whereβk > 0, andβk is increased byδβk (δβk > 0) for all 1 ≤ k ≤ h′.

Since the load originates from the node0, there must exist at least
oneh-hop long path from node0 to ωh, and each node along the
path receives nonzero load from the previous node, as shown in
Fig. 9, where nodeωk (1 ≤ k ≤ h) along the path isk hops away
from node 0. For presentational convenience, we denote the load
received by nodeωk asβk, andβk > 0 for all 1 ≤ k ≤ h. We then
reduce the finish time ofωh by redistributing load as follows.

We decreaseβk by δβ, and keep0 < δβ < βk for all 1 ≤
k ≤ h, as shown in Fig. 9. After the load redistribution, we have
that T ′

f(0) = Tf (0) + δβTcp by constraint (13) in Table 3. As
Tf (0) < max{Tf(ω)|ω ∈ Ga+bi}, we choose sufficiently smallδβ,
such thatT ′

f(0) is still earlier thanmax{Tf(ω)|ω ∈ Ga+bi}.
By constraint (12) in Table 3, we have thatα′(ωk) = α(ωk) for

1 ≤ k < h, andα′(ωh) = α(ωh)− δβ after the load redistribution.
Sinceωk receivesδβ less load from its neighbor, we can keep the
start time ofωk unchanged after the load redistribution for1 ≤
k ≤ h, i.e., T ′

s(ωk) = Ts(ωk), and constraint (15) of the relaxed
MFTM problem is still satisfied. Therefore, we have thatT ′

f(ωk) =
Tf (ωk) when 1 ≤ k < h, and T ′

f (ωh) = Tf (ωh) − δβTcp <
max{Tf(ω)|ω ∈ Ga+bi}.

Since the finish time of node 0 is still smaller than
max{Tf(ω)|ω ∈ Ga+bi} after the load redistribution, we can further
reduce the finish time of the rest nodes with maximum finish time
one by one in the network by redistributing load as above, and
obtain a smallermax{Tf(ω)|ω ∈ Ga+bi}, which contradicts the
fact thatmax{Tf(ω)|ω ∈ Ga+bi} is already minimized.

Case 2:Tf (0) = max{Tf(ω)|ω ∈ Ga+bi}.
In this case, there must exist a node with earlier finish time

than Tf (0), and it receives nonzero load from at least one of its
neighbors. We assume that the node ish′ hops away from node 0,
and denote it asωh′ , i.e.,

Tf (ωh′) < max{Tf(ω)|ω ∈ Ga+bi}

Similarly, we find oneh′-hop long path from 0 toωh′ , where
every node receives nonzero load from its previous node along the
path, as shown in Fig. 10, we denote the load received by node
ωk as βk, where1 ≤ k ≤ h′. Next, we firstly reduce the finish
time of node 0 without prolonging the maximum finish time by
redistributing load as follows.

ωk

−βk+1 − δβk − 2∆Ts(ωk)
Tcm

− ∆Ts(ωk)
Tcp

β1(ωk) +
∆Ts(ωk)

Tcm

βk + δβk

β3(ωk) +
∆Ts(ωk)

Tcm

Fig. 11. After the load redistribution,T ′

s(ωk) = ∆Ts(ωk) + Ts(ωk), to avoid
delaying the start time of its neighbor 1 and 3, the load sent to these two neighbors,
i.e., β1(ωk) and β3(ωk), are each reduced by∆Ts(ωk)

Tcm
. Sinceωk receivesδβk

more load from its neighbor 2, it has to sendδβk +
2∆Ts(ωk)

Tcm
+

∆Ts(ωk)
Tcp

more

load to its neighbor 0, such thatα′(ωk) = α(ωk) −
∆Ts(ωk)

Tcp
, and its finish time

remains the same before and after the load redistribution.

We increaseβk by δβk, and have thatT ′
f (0) = Tf (0)− δβ1Tcp.

After the load redistribution, we denoteT ′
s(ωk) − Ts(ωk) as

∆Ts(ωk), the time whenωk finishes receiving load fromωk−1

is then delayed by∆Ts(ωk−1) + δβkTcm, where 1 ≤ k ≤ h′.
Note that whenk = 1, ωk−1 = 0, andT ′

s(0) = Ts(0) = 0. We
let T ′

s(ωk) = Ts(ωk) + ∆Ts(ωk) such that constraint (15) is still
satisfied after the load redistribution. Since∆Ts(ω1) = T ′

s(0) −
Ts(0)+δβ1Tcm = δβ1Tcm and∆Ts(ωk) = ∆Ts(ωk−1)+δβkTcm,
where1 < k ≤ h′, we have that

∆Ts(ωk) =

k
∑

l=1

δβlTcm (16)

for 1 ≤ k ≤ h′. To avoid increasing the finish time ofωk when
1 ≤ k < h′, we let

α′(ωk) = α(ωk)−
∆Ts(ωk)

Tcp

and have thatT ′
f (ωk) = Tf(ωk) by constraint (4).

In addition, since each node in Gaussian network has 4 neighbors,
ωk may also send load to another 2 neighbors besidesxk+1+yk+1i
when1 ≤ k < h′, as shown in Fig. 11, where we assume thatωk

sends nonzero load to its neighbor 1 and 3, and thatxk+1 + yk+1i
is its neighbor 0 without loss of generality. To prevent increasing
the start time ofn1(ωk) andn3(ωk) due to the delayed start time of
ωk, in the worst case,β1(ωk) andβ3(ωk) each have to be decreased
by ∆Ts(ωk)

Tcm
in Fig. 11. Therefore, we have that

δβk+1 = δβk +
2∆Ts(ωk)

Tcm

+
∆Ts(ωk)

Tcp

in the worst case for1 ≤ k < h′.
On the other hand, ifωk sends no load ton1(ωk) or n3(ωk),

δβk+1 = δβk +
∆Ts(ωk)

Tcp

Hence, we have that

δβk+
∆Ts(ωk)

Tcp

≤ δβk+1 ≤ δβk+
2∆Ts(ωk)

Tcm

+
∆Ts(ωk)

Tcp

(17)

in general.
The above inequality indicates thatδβl−1 ≤ δβl for 1 ≤ l ≤ k,

applying Eq. (16), we have that

∆Ts(ωk) ≤ kδβkTcm (18)

for 1 ≤ k ≤ h′, which implies

δβk+1 ≤ δβk(1 + 2k +
Tcm

Tcp

k) (19)
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ωh′

β0(ωh′) + ∆Ts(ωh′ )
Tcm

β1(ωh′) + ∆Ts(ωh′ )
Tcm

βh′

+ δβh′

β3(ωh′) + ∆Ts(ωh′ )
Tcm

Fig. 12. After the load redistribution,T ′

s(ωh′ ) = ∆Ts(ωh′ ) + Ts(ωh′ ), to avoid
delaying the start time of its neighbor 0, 1 and 3, the load sent to these 3 neighbors,
i.e., β0(ωh′ ), β1(ωh′ ) and β3(ωh′ ), are each reduced by

∆Ts(ωh′ )

Tcm
. Sinceωh′

receivesδβh′
more load from its neighbor 2, we have thatα′(ωh′ ) = α(ωh′ ) +

3∆Ts(ωh′ )

Tcm
+ δβh′

after the load redistribution.

therefore,

δβk ≤ δβ1
k−1
∏

l=0

(1 + 2l+
Tcm

Tcp

l) (20)

and

∆Ts(ωk) ≤ kδβ1Tcm

k−1
∏

l=0

(1 + 2l +
Tcm

Tcp

l) (21)

where1 ≤ k ≤ h′.
As for nodeωh′ , since T ′

s(ωh′) = Ts(ωh′) + ∆Ts(ωh′), and
ωh′ may send load to its 3 neighbors other thanxh′−1 + yh′−1i,
as shown in Fig. 12, where we assume thatωh′ sends nonzero
load to its neighbor 0, 1 and 3, andxh′−1 + yh′−1i is its neighbor
2 without loss of generality. To avoid delaying the start time of
n0(ωh′) n1(ωh′) andn3(ωh′), in the worst case,β0(ωh′), β1(ωh′),
β3(ωh′) each have to be decreased by∆Ts(ωh′). Therefore, we
have that

α′(ωh′) = α(ωh′) + δβh′

+
3∆Ts(ωh′)

Tcm

in the worst case, and

T ′
f (ωh′) = Tf (ωh′)+∆Ts(ωh′)+(δβh′

+
3∆Ts(ωh′)

Tcm

)Tcp (22)

By Eq. (20), (21) and (22), we have that

T ′
f (ωh′) ≤ Tf (ωh′) + δβ1Tcp

h′−1
∏

l=0

(1 + 2l +
Tcm

Tcp

l)+

(1 + 3
Tcp

Tcm

)h′δβ1Tcm

h′−1
∏

l=0

(1 + 2l+
Tcm

Tcp

l) (23)

Since Tf(ωh′) < max{Tf(ω)|ω ∈ Ga+bi} before the load
redistribution, we can choose sufficiently smallδβ1 > 0, such that
T ′
f (ωh′) is still earlier thanmax{Tf (ω)|ω ∈ Ga+bi} after the load

redistribution.
In summary, after the load redistribution, we have that

T ′
f(0) = Tf (0)− δβ1Tcp < max{Tf(ω)|ω ∈ Ga+bi}

T ′
f (ωh′) < max{Tf(ω)|ω ∈ Ga+bi} and T ′

f(ωk) = Tf (ωk) when
1 ≤ k < h′. SinceT ′

f(0) is now smaller thanmax{Tf(ω)|ω ∈
Ga+bi}, we can reduce all nodes with maximum finish time in the
network by the load redistribution in case 1 to obtain a smaller
max{Tf(ω)|ω ∈ Ga+bi}, which also contradicts that the relaxed
MFTM problem is optimized before the load redistribution.

Hence, if Ts(ω) > 0, Tf(ω) must equal toTf (0) when the
relaxed MFTM problem is optimized.

Theorem 1 indicates the following corollary.
Corollary 5: When the relaxed MFTM problem is optimized,

∀ω 6= 0, Ts(ω) > 0.
Proof: We prove the corollary by contradiction, and assume

that there existω 6= 0, such thatTs(ω) = 0. By Theorem 1,
∀ω 6= 0, Tf(ω) equals to eitherTf (0) or 0, therefore, we can
always find a pair of neighboring nodes, say,ω1 andω2, such that
Tf(ω1) = Tf(0), Ts(ω2) = Tf(ω2) = 0, andω1 is either node 0 or
closer to node 0 thanω2. Next, we redistribute load by lettingω1

send a sufficiently small fraction of load toω2, such that the finish
time of ω2 is nonzero, but smaller thanmax{Tf(ω)|ω ∈ Ga+bi}.
In addition,ω1 processes less load after the load redistribution, and
should finish processing load earlier. Therefore, the load redistribu-
tion will not result in a greater maximum finish time of all nodes
in Ga+bi , but nowω2 receives nonzero load fromω1, and its finish
time is smaller thanmax{Tf(ω)|ω ∈ Ga+bi}, which contradicts
Theorem 1.

Theorem 1 and Corollary 5 in conjunction prove Theorem 2.
Theorem 2:When the relaxed MFTM problem is optimized,

Tf(ω) must be equal for allω ∈ Ga+bi .
With Theorem 2, we show that the MFTM problem and relaxed

MFTM problem share identical optimal solution in the next theo-
rem.

Theorem 3:U∗ is the optimal solution of the relaxed MFTM
problem.

Proof: Since constraint (15) is relaxed from constraint (6),U∗

is feasible for the relaxed MFTM problem. Therefore, the MFTM
problem can not have a better optimal solution than the relaxed
MFTM problem.

We then prove the theorem by showing that the optimal solution
of the relaxed MFTM problem is also a feasible solution of the
MFTM problem, which means that the relaxed MFTM problem
has no better optimal solution than the MFTM problem either,and
these two problems must have equal optimal solution.

Assume that the optimal solution of the relaxed MFTM problem
is not feasible for the MFTM problem, there must exist at least one
node, say,ω, such that

Ts(ω) > max{Ts(nj(ω)) + βj(ω)Tcm|βj(ω) > 0}

Therefore, we can assignω an earlier start time, denoted asT ′
s(ω),

and

T ′
s(ω) = max{Ts(nj(ω)) + βj(ω)Tcm|βj(ω) > 0}

The new solution is still optimal for the relaxed MFTM problem,
but the finish time ofω is now earlier thanmax{Tf(ω)|ω ∈ Ga+bi},
which contradicts Theorem 2, i.e., all nodes should have equal finish
time when the relaxed MFTM problem is optimized. Hence, the
assumption is false, and the optimal solution of the relaxedMFTM
problem is feasible for the MFTM problem.

With the Theorem 2 and 3, we further transfer the relaxed MFTM
problem to thefinish time minimization (FTM)problem, of which
the optimal solution is alsoU∗, in the next subsection, and propose
an optimal algorithm for the FTM problem.

C. Finish Time Minimization (FTM) Problem

Since all nodes have to finish processing load simultaneously
by Theorem 2 when the relaxed MFTM problem is optimized,
constraint (4) can be replaced by

Tf = Ts(ω) + α(ω)Tcp



9

and the object of the relaxed MFTM problem is to minimizeTf .
In addition, allβj(ω)s satisfying constraint (15) must be positive,
thus belong toU+

β . Theseβj(ω)s consist of a subset ofU+
β ,

which we denote asS+
β . Therefore, if we can determineS+

β in
the optimal solution of the MFTM problem, all constraints and the
object function become linear, indicating an optimal solution by
linear programming. By the above analysis, we propose thefinish
time minimization (FTM)problem in Table 4.

TABLE 4
FINISH T IME M INIMIZATION (FTM) PROBLEM FORMULATION FOR DIVISIBLE

LOAD SCHEDULING IN A GAUSSIAN NETWORK

Minimize: Tf (S
+
β )

Subject to:

Tf (S
+
β ) = Ts(ω) + α(ω)Tcp (24)

Ts(0) = 0 (25)

Ts(ω) ≥ Ts(nj(ω)) + βj(ω)Tcm, if βj(ω) ∈ S+
β (26)

βj(ω) ≥ 0, if βj(ω) ∈ U+
β (27)

βj(ω) ≤ 0, if βj(ω) ∈ U−
β (28)

βj(ω) = 0, if βj(ω) ∈ U0
β ∪ (U+

β − S+
β ) (29)

βj(ω) = −βk(nj(ω)), if k = mod4(j + 2) (30)

α(ω) =
3

∑

j=0

βj(ω), if ω 6= 0 (31)

α(0) = 1 +
3

∑

j=0

βj(0) (32)

α(ω) ≥ 0 (33)

S+
β ⊆ U+

β (34)

In the FTM problem,S+
β can be any subset ofU+

β , and ifβj(ω) ∈

U+
β −S+

β , we letβj(ω) = 0, as stated by constraint (29). All nodes
share the same finish time, which is a function ofS+

β , and is denoted
asTf (S

+
β ). The object of the FTM problem is to minimizeTf (S

+
β ),

and we have the following theorem on the optimal solution of the
FTM problem.

Theorem 4:U∗ is the optimal solution of the FTM problem.
Proof: Since all nodes have equal finish time in the optimal

solution of the relaxed MFTM problem, and thatS+
β can be any

subset ofU+
β , U∗, the optimal solution of the relaxed MFTM

problem, must be feasible for the FTM problem, meaning that
the relaxed MFTM problem has no better optimal solution than
the FTM problem. On the other hand, given a feasible solution
of the FTM problem, ifβj(ω) > 0, we have thatβj(ω) ∈ S+

β ,
and constraint (26) is satisfied, therefore, any feasible solution of
the FTM problem should also be feasible for the relaxed MFTM
problem, therefore, the FTM problem has no better optimal solution
than the relaxed MFTM problem either, and these two problems
must have equal optimal solution.

Lemma 3:Define

S∗
β = {βj(ω)|βj(ω) > 0, βj(ω) ∈ U∗}

when the FTM problem is optimized,S+
β = S∗

β.
Proof: Since if βj(ω) ≥ 0, βj(ω) ∈ U+

β , we have thatS∗
β ⊆

U+
β . In addition, by Theorem 4,U∗ is the optimal solution of the

FTM problem, thus, ifS+
β = S∗

β , constraint (26) and (29) will both
be satisfied.

Next, we propose an optimal algorithm based on linear program-
ming, denoted asLP-basedalgorithm, for the FTM problem by
Lemma 3.

We notice that constraint (24)-(33) are all linear, therefore, for
a givenS+

β , to minimize Tf (S
+
β ) becomes a linear optimization

problem, which we denote asLP (S+
β ). That is, for a given subset

of U+
β , S+

β , LP (S+
β ) is a linear optimization problem, which

minimizesTf(S
+
β ) under constraint (24)-(33) in Table 4. By Lemma

3, the FTM problem will be optimized whenS+
β = S∗

β . SinceU+
β

has2|U
+

β
| subsets, we can try each of them, and solve2|U

+

β
| linear

optimization problems to find out the optimal solution.
It is worth mentioning thatS∗

β has some features, which are useful
in determining whetherTf(S

+
β ) is the minimum finish time. In other

words, if a givenS+
β does not have the same features asS∗

β, we
will not find the optimal solution of the FTM problem by solving
LP (S+

β ). These features are listed as follows.
• ∀ω ∈ Ga+bi andω 6= 0, ∃j ∈ {0, 1, 2, 3} such thatβj(ω) ∈

S∗
β.

• βj(ω1) ∈ S∗
β if and only if βk(ω2) ∈ S∗

β , whereω2 = ω1 · i,
k = mod4(j + 1).

• Whena andb are both even, ifβj(
a
2 + b

2 i) (or βj(
b
2 −

a
2 i)) is

in S∗
β , thenβk(

a
2 + b

2 i) (or βk(
b
2 − a

2 i)) is also inS∗
β , where

k = mod4(j + 2).
• If Ga+bi is an optimal Gaussian network,β0(x+yi), β0(x−yi),

β1(−y+xi), β1(y+xi), β2(−x−yi), β2(−x+yi), β3(y−xi)
andβ3(−y − xi) are all inS∗

β if one of them is inS∗
β.

• When a + b is even,β0(−
a+b
2 + a−b

2 i), β1(−
a+b
2 + a−b

2 i),
β2(−

a+b
2 + a−b

2 i) andβ3(−
a+b
2 + a−b

2 i) are all inS∗
β .

The first feature originates from the fact that all nodes should
have equal finish time inU∗ by Tf (ω), therefore, every node except
for the source node in the network should receive load from atleast
one of its neighbors.

By Lemma 2,βj(ω1) = βk(ω2) when ω2 = ω1 · i and k =
mod4(j + 1) in U∗, thus, they are in or not inS∗

β concurrently.
Similarly, S∗

β has the next two features by Corollary 2 and 3.
Since that whena+b is even,β0(−

a+b
2 +a−b

2 i), β1(−
a+b
2 +a−b

2 i),
β2(−

a+b
2 +a−b

2 i) andβ3(−
a+b
2 +a−b

2 i) are equal inU∗ by Corollary
4, and at least one of them is inS∗

β according to the first feature
of S∗

β , therefore, they are all inS∗
β .

With these features ofS∗
β , a high-level description of the LP-

based algorithm is given in Table 5.
Since there are total2(a2+b2) links in Gaussian networkGa+bi ,

we have|U+
β | ≤ 2(a2+b2), which means that the number of subsets

of U+
β , i.e., 2|U

+

β
|, might grow exponentially with network size.

Though the features ofS∗
β can help exclude some subsets ofU+

β , the
number of linear optimization problems that the LP-based algorithm
in Table 5 needs to solve is expected to increase quickly as the
network size grows, and we will analyze its time complexity in the
next subsection.

Considering the high time complexity of the LP-based algorithm,
we propose a heuristic algorithm for the FTM problem, which solves
only one linear optimization problem. The idea of the heuristic
algorithm is that every node in the network receives load from
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TABLE 5
HIGH-LEVEL DESCRIPTION OFTHE LP-BASED ALGORITHM FOR THE FTM

PROBLEM

for eachS+
β ⊆ U+

β

if S+
β has the same features asS∗

β

solveLP (S+
β ), which minimizesTf (S

+
β )

under constraint (24)-(33) in Table 4;
end if;

end for;
The FTM problem andLP (S+

β ) with minimum
object function value have equal optimal solution.
End

all its neighbors that are closer to node 0. Hence, in the heuristic
algorithm, we letS+

β = U+
β , and solve the linear optimization

problemLP (U+
β ). The optimal solution ofLP (U+

β ) is then used as
the solution of the heuristic algorithm. As will be seen in Section V,
the performance of our proposed heuristic algorithm is extremely
close, and even equal in many cases, to the LP-based algorithm in
terms of finish time.

D. Time Complexity Analysis

In this subsection, we analyze the time complexity of the LP-
based algorithm and the heuristic algorithm relative to thenetwork
size. Since the LP-based algorithm solves numerous linear opti-
mization problemsLP (S+

β ), whereS+
β ⊆ U+

β , and the heuristic
algorithm solves onlyLP (U+

β ), we begin with the analysis of the
time complexity of solvingLP (S+

β ).
The standard form of the linear optimization problem is to

maximize cT x (c, x ∈ Rn) over all vectorsx such thatAx = b
andx ≥ 0. In 1979, Khachiyan showed that a linear optimization
problem can be solved in polynomial time relative to the length of
the binary encoding of the input, denoted asL [33]. In other words,
L is the number of bits encodingA, b andc.

To convertLP (S+
β ) to the above standard form, we eliminate all

βj(ω)s that are zero by constraint (29), substituteβj(ω) ∈ U−
β with

−βk(nj(ω)), whereβk(nj(ω)) ∈ U+
β , k = mod4(j + 2), and add

nonnegative slack variables, denoted asTj(ω), in constraint (26) to
transform the inequality to equality, i.e.,

Ts(ω) = Ts(nj(ω)) + βj(ω)Tcm + Tj(ω)

After these operations, there are2(a2+ b2+ |S+
β |)+ 1 nonnegative

variables and2(a2 + b2) + |S+
β |+ 1 equalities inLP (S+

β ).
By the features ofS∗

β listed in the previous subsection, we have
the following equation regarding the cardinality ofS+

β .

|S+
β | ≥



















a2 + b2 + 2, a, b are both odd

a2 + b2 + 4, a, b are both even

a2 + b2 − 1, a+ b is odd, anda > b+ 1

a2 + b2 − 1 + 4⌊ b
2⌋, a = b+ 1

(35)

In addition,

|U+
β | =

{

2(a2 + b2), a+ b is even

2(a2 + b2 − 2a+ 1), a+ b is odd
(36)

and |S+
β | ≤ |U+

β |, indicating thatL in LP (S+
β ) is polynomial to

the network size, the time complexity of solvingLP (S+
β ) is thus

also polynomial to the network size by Khachiyan’s result. Note

that the dependencies among variables by Lemma 2 and Corollary
2-4 can reduce the number of variables and equalities by a factor
of 4 (or 8 when the Gaussian network is optimal), which can help
improve the efficiency of solvingLP (S+

β ) in practice despite the
same time complexity in theory.

Next, we discuss the number of linear optimization problems
that the LP-based algorithm solves. Asβj(ω · ij), where j =
0, 1, 2 and3, are inS+

β concurrently by the second feature ofS∗
β ,

and whena = b+1, β0(x+yi), β0(x−yi), β1(−y+xi), β1(y+xi),
β2(−x− yi), β2(−x+ yi), β3(y− xi) andβ3(−y− xi) are inS+

β

concurrently according to the forth feature ofS∗
β , we can construct

at least2
|U

+

β
|−min{|S

+

β
|}

4 subsets ofU+
β when a 6= b + 1, and no

less than2
|U

+

β
|−min{|S

+

β
|}

8 subsets ofU+
β when a = b + 1, which

share all features ofS∗
β . Besides,U+

β has 2|U
+

β
| subsets in total,

therefore, the number of linear optimization problems thatthe LP-
based algorithm in Table 5 needs to solve increases exponentially
with the network size, and the LP-based algorithm has exponential
time complexity relative to network size.

It is worth pointing out that the ellipsoid algorithm, whichwas
used by Khachiyan to prove his result, is not useful for solving linear
optimization problems in practice. On the other hand, the widely
used simplex algorithm for solving linear optimization problems
is very efficient in practice despite that there exist constructed
examples which require exponential time by the simplex algorithm.
Hence, we also use the simplex algorithm to solveLP (S+

β ) in our
paper.

As mentioned in Section I, our proposed MFTM problem for-
mulation of divisible load scheduling in Gaussian network can be
readily extended to mesh and torus, which will be discussed in the
next section.

IV. EXTENSION OFMFTM PROBLEM FORMULATION TO MESH

AND 2D-TORUS

In this section, we extend the MFTM problem formulation to
mesh and torus.

Since the coordinates of nodes are Gaussian integers in the
MFTM problem, we place nodes ofa × b mesh anda × b torus
in the complex plane as well, and use Gaussian integers in ana× b
rectangle with0, a− 1, (b− 1)i and(a− 1) + (b− 1)i as vertices
to represent nodes in the network. Fig. 13 is an example of node
placement of5 × 5 mesh and5 × 5 torus in the complex plane,
where Gaussian integers in a5 × 5 square represent nodes in the
network.

In the mesh,ω is adjacent toω + ij , wherej = 0, 1, 2 and3, if
ω + ij is in the mesh, and we say thatω + ij is neighborj of ω,
i.e.,

nj(ω) = ω + ij , if nj(ω) is in the mesh (37)

In the torus, nodex + yi is adjacent to moda(x ± 1) + yi, x +
modb(y ± 1)i, and we let

nj(x+ yi) =



















moda(x+ 1) + yi if j = 0

x+ modb(y + 1)i if j = 1

moda(x− 1) + yi if j = 2

x+ modb(y − 1)i if j = 3

(38)

By Eq. (37) and (38), given two nodes, say,ω1 = x1 + y1i and
ω2 = x2+y2i, we have thatD(ω1, ω2), i.e., the distance betweenω1

andω2, is |x2−x1|+ |y2−y1| andmin{moda(x2−x1),moda(x1−
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imaginary
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imaginary

(a) (b)

Fig. 13. Node placement of5× 5 mesh and5× 5 torus in a square with 0, 4, 4i
and4 + 4i as the vertices in the complex plane.

x2)} + min{modb(y2 − y1),modb(y1 − y2)} in mesh and torus,
respectively. Suppose that the load originates from nodeω0, ω can
only receive load from its neighbors that are closer toω0 than itself,
meaning thatβj(ω) ≥ 0 if D(ω0, ω) > D(ω0, nj(ω)). In addition,
according to Eq. (37) and (38),ω is still neighbor mod4(j + 2)
of nj(ω) in mesh and torus, hence,βj(ω) = −βk(nj(ω)), where
k = mod4(j + 2). Note that since nodes on the boundary of the
a× b rectangle in the mesh have less than 4 neighbors, and we let
βj(ω) = 0 if ω does not have neighborj in the mesh. Also,ω can
start sending out and processing load after it finishes receiving load
from all its neighbors.

To formulate the divisible load scheduling problem in mesh and
torus as the MFTM problem,U+

β , U−
β and U0

β are defined as
follows. In the mesh,

U+
β = {βj(ω)|D(ω0, ω) > D(ω0, nj(ω))}

U−
β = {βj(ω)|D(ω0, ω) < D(ω0, nj(ω))}

U0
β = {βj(ω)|ω does not have neighborj}

As for the torus,

U+
β = {βj(ω)|D(ω0, ω) > D(ω0, nj(ω))}

U−
β = {βj(ω)|D(ω0, ω) < D(ω0, nj(ω))}

U0
β = {βj(ω)|D(ω0, ω) = D(ω0, nj(ω))}

By definingU+
β , U−

β andU0
β as above, we still have thatβj(ω) ≥ 0,

βj(ω) ≤ 0 and βj(ω) = 0 for βj(ω) in U+
β , U−

β and U0
β ,

respectively. The divisible load scheduling in mesh and torus is then
formulated as the MFTM problem in Table 3 as well, which can
be transformed into the FTM problem in Table 4 by Theorem 2, 3
and 4, and we can obtain the optimal solution of the corresponding
FTM problem by solving2|U

+

β
| linear optimization problems. Also,

we can letS+
β = U+

β , and use the solution ofLP (U+
β ) as the

suboptimal solution for the FTM problem. Hence, the heuristic
algorithm proposed in the previous section applies to mesh and
torus networks as well.

Next, we will compare the performance of our proposed heuristic
algorithm with the LP-based algorithm, and the previously proposed
dimensional algorithm and phase algorithm.

V. PERFORMANCEEVALUATION

In this section, we compare the performance of our proposed
heuristic algorithm with the LP-based algorithm, and the previously
proposeddimensional algorithm[13], pipeline algorithms [14] and

phase algorithm[16] in the Gaussian network, mesh and torus
with respect to different network sizes. As mentioned in Section
III, we rely on simplex algorithm to solveLP (S+

β ). To evaluate
the efficiency of the simplex algorithm, we count the number of
iterations by the simplex method to solveLP (U+

β ) in the heuristic
algorithm.

In [13], the dimensional algorithm is proposed forN -dimensional
mesh and torus, in which ana1 × a2 × ...× aN mesh (or torus) is
considered asaN linearly connecteda1×a2×...×aN−1 meshes (or
tori), and a single node is regarded as the 0-dimensional mesh (or
torus). Since a daisy chain network, i.e., linearly connected nodes, of
processors is equal to a single processor with faster processing speed
[6], anN -dimensional mesh (or torus) can recursively be equivalent
to a single processor under the dimensional algorithm. Based on the
dimensional algorithm, two pipeline algorithms, named as pipeline
1 algorithm and pipeline 2 algorithm, respectively, are proposed in
[14] to reduce the overhead of distributing load in one dimension.
Pipeline 1 algorithm allows the node to start transmitting load
before finishing receiving load, but all nodes except for thesource
node in the same dimension must start processing load after load
distribution completes in the dimension. In pipeline 2 algorithm,
nodes are allowed to start both processing and transmittingload
before finishing receiving load.

The phase algorithm is proposed for divisible load scheduling
in torus networks in [16]. In the phase algorithm, the circuit
switching mechanism is adopted such that a node can send load
to remote nodes directly as long as no link along the routing path
is occupied, which is quite different from the other algorithms in our
comparison, which allow nodes to send load only to their neighbors.
For example, the phase algorithm allows load being sent fromnode
0 to node 2 directly in the5× 5 torus in Fig. 13 (b) along the link
from node 0 to node 1 and the link from node 1 to node 2, which
bypasses node 1. The load is distributed to nodes in the network in
several phases. In phase 0, the node where load originates starts load
distribution, and sends load to 4 nodes since each node has 4 ports
in the torus. Next, in phase 1, 5 nodes hold load, and each of them
distributes load to another 4 nodes in the network. Therefore, in
phaseN , load will be distributed to5N nodes in total. To prevent
link contention in each phase, a node may have to send load to
remote nodes, which will incur a long startup time, for simplicity,
we set the startup time to be zero in our comparison. The closed
form solutions of load distribution by the above 4 algorithms are
given in the corresponding references.

In the performance comparison, we setTcp as 1, and increaseTcm

from 0.01 to 10, corresponding to computation-intensive load and
communication-intensive load, and the incremental steps are 0.01,
0.1 and 1 in intervals [0.01,0.1], [0.1,1] and [1,10], respectively.
The performance of the compared algorithms is evaluated in terms
of speedup, which is the ratio between the finish time of totalload
by a single node and that by the whole network.

A. Comparison in Gaussian Networks

In this subsection, we compare the performance of the heuristic
algorithm with the LP-based algorithm in Gaussian networks, and
adopt three optimal Gaussian networks,G4+3i , G5+4i andG6+5i ,
such that we can reduce the computation complexity, especially
when adopting the LP-based algorithm, by taking advantage of the
network symmetry to the maximum extent.

The comparison results are plotted in Fig. 14, from which we
can see that our proposed heuristic algorithm has extremelyclose,
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and almost equal, performance to the LP-based algorithm under
all network sizes. The underlying reason is that all the links in
the network are assumed to be active, i.e., used to transmit load,
in the heuristic algorithm, though the assumption might notbe
true in the optimal load distribution, taking advantage of all links
in the network to transmit load is an efficient load distribution
scheme. Considering that the heuristic algorithm solves only one
linear optimization problem, and has much lower time complexity
than the LP-based algorithm, the performance of our proposed
heuristic algorithm is quite satisfactory. We also observethat larger
network size and smallerTcm results in higher speedup under both
algorithms. This is because that larger network provides greater
computing power and smallerTcm introduces less overhead in
load distribution. On the other hand, load distribution becomes less
economical under largerTcm, and we can see that larger network
size brings about little speedup improvement whenTcm ≥ 0.2,
which will also be observed in mesh and torus under a variety of
divisible load scheduling algorithms.
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Fig. 14. Speedup comparison between LP-based algorithm andheuristic algorithm
with respect to different network sizes and inverse data rates in Gaussian networks.

B. Comparison in Meshes and Tori

In this subsection, we evaluate the performance of our proposed
heuristic algorithm in meshes and tori with respect to the LP-based
algorithm, heuristic algorithm, dimensional algorithm, pipeline 1
algorithm, pipeline 2 algorithm and phase algorithm.

As in the previous subsection, for the purpose of reducing
computation complexity from the network symmetry, we use three
square meshes and tori in our comparison, they are5 × 5, 7 × 7
and 9 × 9 meshes and tori. Since the nodes are asymmetric in
the mesh, and the performance of mesh in scheduling divisible
load is related to the position ofω0, i.e., the node where the load
originates. Generally speaking, the mesh has better performance in
scheduling divisible load whenω0 is closer to the geometric center,
and we letω0 be the geometric centers of the selected meshes in
our comparison, such that we can observe the best performance
of these meshes under given algorithms. The geometric centers of
the 5 × 5, 7 × 7 and 9 × 9 meshes are2 + 2i, 3 + 3i and4 + 4i,
respectively. As nodes in a torus are symmetric, the divisible load
scheduling is independent of the position ofω0, nevertheless, we
still choose2 + 2i, 3 + 3i and4 + 4i asω0 in the 5× 5, 7× 7 and
9× 9 tori, respectively.

The comparison results among these algorithms in the meshesare
in Fig. 15. We can see that the heuristic algorithm still havealmost
equal performance to the LP-based algorithm in the mesh, andthat
our proposed heuristic algorithm achieves much higher speedup
than the dimensional algorithm, and the gap between these two

algorithms broadens as theTcm increases. When0.01 < Tcm < 0.2,
our proposed heuristic algorithm increases the speedup by about
12% in the5×5 mesh, and the speedup improvement reaches around
25% and over 30% in the7 × 7 and 9 × 9 meshes, respectively.
The reason is that the dimensional algorithm fails to efficiently
use all the links in the network to distribute load. For example,
since node 0, 1, 2, 3 and 4 equal to a single process in the
5 × 5 mesh by the dimensional algorithm, node 1 can receive
load only from node 2, while node 1 can receive load from node
2 and 1 + i in the heuristic algorithm, which shortens the load
transmission time. As the network size grows, the network size
grows, andTcm increases, which brings about higher overhead
when distributing load, the inefficiency of the dimensionalalgorithm
in utilizing links deteriorates, and the advantage of the heuristic
algorithm becomes greater. Though the pipeline 1 algorithmand
the pipeline 2 algorithm can shorten load distribution timein one
dimension, they still suffer inefficient utilization of links inherited
from the dimensional algorithm, and even though nodes can transmit
and receive load concurrently in the pipeline 1 algorithm, it never
outperforms the heuristic algorithm. Allowing nodes to process and
transmit load while receiving load provides pipeline 2 algorithm
great advantages over the heuristic algorithm, nevertheless, it is
only slightly better than the heuristic algorithm. Furthermore, as
the pipeline schemes adopted by pipeline 1 algorithm and pipeline
2 algorithm are independent of divisible load scheduling algorithms,
we can integrate them in the heuristic algorithm as well to increase
its performance. Under largeTcm, distributing load to remote nodes
becomes uneconomical, the majority of load is thus processed by
the source node and a few nearby nodes, and the speedup is almost
independent of the scheduling algorithms.

Fig. 16 plots the comparison results in the tori. Note that since
the 5× 5 torus can adopt the phase algorithm, we also take it into
consideration in our comparison, as shown in Fig. 16 (a). Thephase
algorithm can use all ports of a node to distribute load in each phase,
therefore, it achieves better performance than the other algorithms.
However, as mentioned above, only torus with5N nodes can adopt
the phase algorithm, which restricts its application. Moreover, the
phase algorithm may result in long startup time when sendingload
to remote nodes, which is ignored in our comparison, while the other
algorithms will not since nodes only send load to neighbors in these
two algorithms. Therefore, the advantages of the phase algorithm
over the other algorithms will shrink in real world application when
taking the potential long startup time into consideration,which
might even render it disadvantageous compared with the other
algorithms.

Finally, we notice that mesh and torus of equal network size
achieve identical performance when adopting the same algorithm.
This is because that when the load originates from the geomet-
ric center of the mesh, a given scheduling algorithm resultsin
identical load distribution in the mesh and torus. For example,
when adopting the LP-based algorithm and the heuristic algorithm,
these two networks have equalU+

β , U−
β andU0

β , meaning that the
MFTM problems for them have identical optimal solution, andthe
suboptimal solutions from the heuristic algorithm will be the same
as well.

C. Efficiency of the Simplex Algorithm

As mentioned previously, we rely on the simplex algorithm
to solve theLP (S+

β ) in the LP-based algorithm and heuristic
algorithm. In this subsection, we evaluate the efficiency ofthe
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Fig. 15. Speedup comparison among LP-based algorithm, heuristic algorithm, dimensional algorithm, pipeline 1 algorithm and pipeline 2 algorithm with respect to
different network sizes and inverse data rates in meshes. (a) 5× 5 mesh. (b)7× 7 mesh. (c)9× 9 mesh.
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Fig. 16. Speedup comparison among LP-based algorithm, heuristic algorithm, dimensional algorithm, pipeline 1 algorithm, pipeline 2 algorithm and phase algorithm with
respect to different network sizes and inverse data rates intori. (a) 5× 5 torus. (b)7× 7 torus. (c)9× 9 torus.

simplex algorithm in terms of the number of iterations takenby
the simplex algorithm to solveLP (U+

β ) in the heuristic algorithm,
as shown in Fig. 17. Note thata × a mesh anda × a torus
share an identical suboptimal solution by the heuristic algorithm in
our simulation, therefore, the number of iterations by the simplex
algorithm are equal in these two networks, and we use the line
with legenda× a in Fig. 17 to represent both networks. From Fig.
17, we can see that the number of iterations is small with respect
to the corresponding network size, and relatively stable asTcm

increases from 0.01 to 10, which is a positive evidence indicating a
satisfactory efficiency of the simplex algorithm in solvingLP (U+

β ).
Take the image processing problem of converting an RGB color
map to an HSV color map, a typical divisible load task, in the
9×9 mesh (or torus) for example. If each processor in the network
has equal computing power as a single core of the Intel Core 2
Quad Core Q9400, it takes roughly 0.5µs to convert a pixel by
such a processor according to our test. Suppose an 8-byte pixel size
is used, which is the same as the IKONOS satellite image [34],and
that the inter-processor bandwidth is 1GB/s [35], then to transmit
a pixel would be 8ns. In this case,Tcm

Tcp
= 0.016, and the speedup

of the network is 53 by running the heuristic algorithm, which takes
0.0395 seconds in a single processor. Therefore, the runtime of the
heuristic algorithm equals the processing time of about 4 million
pixels, the size of which is 32MB, by the network. Considering
that the RAM size of a PC can be easily scaled up to tens and even
hundreds ofGB nowadays, the overhead of running the heuristic
algorithm should be negligible when the size of processed images
is comparable to the RAM size.

In summation, our proposed heuristic algorithm has a signif-
icantly lower time complexity than the LP-based algorithm,but
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Fig. 17. Number of iterations by the simplex method in solving LP (U+
β
) with

respect to different network sizes and topologies.

maintains almost equally good performance compared to the latter
one. In addition, the heuristic algorithm significantly outperforms
the dimensional algorithm, and is much more widely applicable than
the phase algorithm.

VI. CONCLUSIONS

In this paper, we have formulated the divisible load scheduling
in mesh, torus and Gaussian network as the maximum finish time
minimization (MFTM) problem, which minimizes the maximum
finish time of all nodes in the network. By linearly relaxing the
constraints of MFTM problem, we obtain the relaxed MFTM prob-
lem, which is proved to have equal optimal solution as the MFTM
problem. We showed that the all nodes should have equal finish
time when the relaxed MFTM problem is optimized, and further
transform it into the finish time minimization (FTM) problem. The
FTM problem and MFTM problem have equal optimal solutions
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as well, and we propose an optimal algorithm based on linear
programming, denoted as the LP-based algorithm, for the FTM
problem. Considering the high time complexity of the LP-based
algorithm, a heuristic algorithm is also proposed.

Our simulation results demonstrate that the heuristic algorithm
achieve extremely close, and even equal, performance to theLP-
based algorithm in terms of speedup in all the studied networks.
In addition, our proposed heuristic algorithm outperformsthe
previously proposed dimensional algorithm, and has much wider
application range than the phase algorithm. Hence, the MFTM
problem formulation is efficient for divisible load scheduling in
the Gaussian network, mesh and torus, and our proposed heuristic
algorithm greatly improves the performance of mesh and torus
in scheduling divisible load, which is a promising scheduling
algorithm for real world application.
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