
2002 Conference on Information Sciences and Systems, Princeton University, March 20–22, 2002

Scalable Scheduling in Parallel Processors

Jui Tsun Hung1 Hyoung Joong Kim2 Thomas G. Robertazzi3

Abstract — A study of scalable data intensive
scheduling involving load distribution on multi-level
fat tree networks is presented.

It is shown that the speedup of processing divisi-
ble loads concurrently on a homogeneous single level
tree increases linearly as the number of processors is
increased. This behavior is markedly different from
that of past research on sequential scheduling where
speedup saturates beyond a certain number of pro-
cessors.

It is demonstrated that the ultimate limiting factor

for speedup is due to hardware, not to the scheduling

strategy on a multi-level fat tree.

I. Introduction

The processing of massive amounts of data on distributed
and parallel networks is becoming more and more common.
Applications include large scientific experiments, database ap-
plications, image processing, and sensor data processing. Over
the past dozen years, a number of researchers have mathemati-
cally modeled such processing using a divisible load scheduling
model [1] ,that is useful for data parallelism applications.

Divisible loads are ones that consist of data that can be ar-
bitrarily partitioned among a number of processors intercon-
nected through some network. Divisible load modeling usually
assumes no precedence relations amongst the data. Due to the
linearity of the divisible model, optimal scheduling strategies
under a variety of environments have been devised.

The majority of the divisible load scheduling literature has
appeared in computer engineering periodicals. However, di-
visible load modeling should be of interest to the networking
community as

1. it models, both computation and network communica-
tion in a completely seamless integrated manner, and

2. it is tractable with its linearity assumption.

It has been used to accurately and directly model such fea-
tures as specific network topologies [1-10], computation versus
communication load intensity [1][2], time varying inputs [10],
multiple job submission [1], and monetary cost optimization
[11][12].

However, researchers in this field have noted an important
performance saturation limit. If speedup (or solution time)
is considered as a function of the number of processors, an
asymptotic constant is reached as the number of processors is
increased. Beyond a certain point, adding processors results
in minimal performance improvement. In other words, the

1Jui Tsun Hung, Department of Electrical and Computer Engi-
neering, University at Stony Brook, E-mail: trent@ece.sunysb.edu

2Hyoung Joong Kim, Department of Control and Instru-
mentation Engineering, Kangwon National University, E-mail:
khj@cc.kangwon.ac.kr

3Thomas G. Robertazzi, a Senior Member, IEEE, Associate Pro-
fessor of Department of Electrical and Computer Engineering, Uni-
versity at Stony Brook, Stony Brook, NY 11794. Phone (631) 632-
8400, Fax (631) 632-8494, E-mail: tom@ece.sunysb.edu

scheduling strategies considered to date have not been scal-
able.

For the first interconnection topology considered in the lit-
erature, the linear daisy chain [2], the saturation limit is usu-
ally explained by noting that, if load originates at a processor
at a boundary of the chain, data must be transmitted and
retransmitted i − 1 times from processor to processor before
it arrives at the ith processor (assuming a node with store
and forward transmission). However, for subsequent inter-
connection topologies considered (e.g. bus, single level tree,
hypercube), the reason for this lack of scalability has been less
obvious.

In this paper, it is demonstrated that the reason why the
saturation occurs is because of the assumption that a node
distributes load sequentially to one of its children at a time.
This is true for both single and multi-installment scheduling
strategies discussed to date [1][5]. It is shown here that in a
single level tree (star topology), if a processor can distribute
load to all of its children concurrently, the speedup is a linear
function of the number of processors. The only scalability
limitations are a proportionality constant which depends on
system parameters and the ability of a processor to distribute
loads concurrently to all of its outgoing links.

How might one implement the strategy that a processor
distributes load concurrently to all its neighbors? A direct
method, similar to what is done in packet switches, is to envi-
sion that a processor has a CPU and an output buffer for each
output link. Scalability can be achieved as long as the CPU
can effectively distribute load to all of its output buffers con-
currently. Naturally, as the number of neighbors of a processor
node is increased, a point will be reached while the CPU can
not load the buffers as fast as those buffers are being emptied.
However, for a given CPU, this architecture allows a better
use of the time shared CPU up to a large number of children
nodes than the earlier assumption that a CPU distributes load
sequentially and completely to one output buffer and link at
a time. Certainly, one can also envision high performance
architectures such as multiple CPUs within the same node.
Through a consideration of concurrent load distribution by a
node to its neighbors, one can see that the ultimate limitation
is on hardware, not scheduling, as it should be.

Note that previous related work on scalability issues for
parallel processing includes an experimental study of several
real time load balancing schemes [13] and an experimental
study of scalable scheduling for function parallelism on dis-
tributed memory multiprocessors [14]. It has been known on
an intuitive basis that network elements should be kept con-
stantly busy for good performance [15]. This research math-
ematically quantifies that. This paper begins with the devel-
opment of some notation and analytic background in section
II. The parent nodes do both load distribution and data com-
putation in section III. The conclusion appears in section IV.

II. Model, Notation and Load Distribution

In this paper, a homogeneous multi-level fat tree network
where root processors are equipped with a front-end proces-

sor for off-loading communications is considered. Root nodes,
called intelligent roots, process a fraction of the load as well
as distribute the remaining load to their children processors,
(see Fig. 1).

1α1

1α0

1αm
...1α2

1α1

1α0

1αm
1α2

... 1α1

1α0

1αm
1α2

...

...

2α0

kα0 w(Layer k)

the entire load

Level k
kα1

kα2
kαm

zp
k-1

zp
k-1

zp
k-1

zp
k-1

www

w

w ww www w w w

2α1
2α2

2αm

3α1

zp
1

zp
0

Level 1

Level 2

(Layer 0)

(Layer 1)

(Layer 2)

p0 zp
0

zp
0

z p
0

zp
0

zp
0
z p

0
z p

0
z

zp
1

zp
1

zp
2

Figure 1: Homogeneous multi-level fat tree with intelli-
gent root.

First of all, a heterogeneous single level fat tree, level i+1,
with intelligent root is described as follows. All the children
processors are connected to the root (parent) processor via
communication links. Fig. 2 shows that a intelligent root pro-
cesses a fraction of the load as well as distributes the remaining
load to its children processors.

z1

...

w0

Root

z2
zm

w1 wmw2

α1 αmα2

α0

p
i p

i
p

i

Figure 2: A heterogeneous single level fat tree, level i+1,
with intelligent root.

Note that each child processor starts computing and trans-
mitting immediately after receiving its assigned fraction of
load and continues without any interruption until all its as-
signed load fraction have been processed. This is a ”store and
forward” mode of operation for computation and communica-
tion. The root can begin processing at time 0, the time when
all the load is assumed to be present at the root.

The notations for a single heterogeneous tree are

α0 : The load fraction assigned to the root processor.

αi : The load fraction assigned to the ith link-processor
pair.

wi : The inverse of the computing speed of the ith processor.

zi : The inverse of the link speed of the ith link.

Tcp : Computing intensity constant. The entire load can be
processed in wiTcp seconds on the ith processor.

Tcm : Communication intensity constant. The entire load
can be transmitted in ziTcm seconds over the ith link.

Tf : The finish time. Time at which the last processor
accomplishes computation.

Therefore, αiwiTcp is the time to process the fraction αi of
the entire load on the ith processor. Note that the units of
αiwiTcp are [load]× [sec/load]× [dimensionless quantity].

For a multi-level homogeneous fat tree, the notations are

αj
0 : The load fraction assigned to the root processor of an

equivalent jth level tree.

αj
i : The load fraction assigned to the ith link-processor

pair on an equivalent jth level tree.

weqi : The inverse of the equivalent computing speed of the
ith level tree(from level i descending to level 1).

pi : The multiplier of the inverse of expanded capacity of the
links of level i+1 with respect to the inverse of capacity of the
links on level 1. The value of the multiplier, pi, is the inverse
of the total number of children processors descended from this
link. In other words, pi = (

∑i

j=0
mj)−1, and 0 < pi ≤ 1.

The following assumptions are initially made:

• The interconnection network used is a star network (single
level tree network).

• The computing and communication loads are divisible
(i.e. perfectly partitioned with no precedence constraints [1]).

• Transmission and computation time are proportional (lin-
ear) to the size of the problem.

• Each node transmits load concurrently, (simultaneously),
to its children.

• Store and forward is the method of transmission from
level to level.

III. Intelligent Root Fat Tree

• Single Level Tree, Level i + 1, with Intelligent Root

A single level tree network, level i+1, with intelligent root,
which has m+1 processors and m links, (see Fig. 2). All chil-
dren processors are connected to the root processor via direct
communication links. The intelligent root processor, assumed
to be the only processor at which the divisible load arrives,
partitions a total processing load into m + 1 fractions, keeps
its own fraction α0, and distributes the other fractions α1,
α2,..., αm to the children processors respectively and concur-
rently. Each processor begins computing immediately after
receiving its assigned fraction of load and continues without
any interruption until all of its assigned load fraction has been
processed. In order to minimize the processing finish time, all
of the utilized processors in the network must finish comput-
ing at the same time [1]. The process of load distribution can
be represented by Gantt chart-like timing diagrams, as illus-
trated in Fig. 3. Note that this is a completely deterministic
model.

From the timing diagram, Fig. 3, an equation for the root
and 1st child’s solution time is

α0w0Tcp = α1piz1Tcm + α1w1Tcp (1)

Communication

Computation
1

α1 z1Tcm

α1w1Tcp

Communication

Computation
α0w0Tcp

Root

Communication

Computation
2

α2 z2Tcm

α2w2Tcp

Communication

Computation
m

.

.

.

αm zmTcm

αmwmTcp

pi

pi

pi

Tf

Tf

Tf

Tf

Figure 3: Timing diagram of single level fat tree, level
i + 1, with intelligent root.

The fundamental recursive equations of the system can be
formulated as follows:

α1piz1Tcm + α1w1Tcp

= α2piz2Tcm + α2w2Tcp (2)

αi−1pizi−1Tcm + αi−1wi−1Tcp

= αipiziTcm + αiwiTcp (3)

αm−1pizm−1Tcm + αm−1wm−1Tcp

= αmpizmTcm + αmwmTcp (4)

The normalization equation for the single level tree with
intelligent root is

α0 + α1 + α2 + ... + αm = 1 (5)

This gives m + 1 linear equations with m + 1 unknowns.
For a multi-level fat tree with intelligent root (see Fig. 1),

the normalization equation for each level j (equivalent to a
single level tree) is

αj
0 + αj

1 + αj
2 + ... + αj

m = 1 j = 1, 2, ... (6)

Here αj
i is the fraction of load which one of layer j’s processor

(one root node in level j) distributes to the ith child processor.
Now, one can manipulate equation (2) - (4) to yield the

solution,

αi = (
pizi−1Tcm + wi−1Tcp

piziTcm + wiTcp
)αi−1 i = 2, 3, ..., m (7)

Let

fi−1 =
pizi−1Tcm + wi−1Tcp

piziTcm + wiTcp
(8)

then

αi = fi−1αi−1 =

(
i−1∏
j=1

fj

)
α1 (9)

= (
piz1Tcm + w1Tcp

piziTcm + wiTcp
)α1 i = 2, 3, ..., m (10)

From equation (8),
∏k

l=1
fl can be simplified as

k∏
l=1

fl =
piz1Tcm + w1Tcp

pizk+1Tcm + wk+1Tcp
k = 1, 2, ..., m− 1 (11)

In order to solve the set of equations, qi is defined as:

qi =
w0Tcp

piz1Tcm + w1Tcp
=

α1

α0
(12)

If one substitutes this equation into the normalization equa-
tion, the normalization equation becomes

1

qi
α1 + α1 + f1α1 + · · ·+ f1f2 . . . fm−1α1 = 1 (13)

Utilizing equation (11) and solving once again for α1:

α1 =
1

1
qi

+ 1 +
∑m−1

k=1
(
∏k

l=1
fl)

=

1
1
qi

+ 1 + (piz1Tcm + w1Tcp)×∑m−1

k=1
(1

pizk+1Tcm+wk+1Tcp
)

=
1

1
qi

+ (piz1Tcm + w1Tcp)×∑m−1

k=0
(1

pizk+1Tcm+wk+1Tcp
)

Accordingly,

α0 =
1
qi

1
qi

+ (piz1Tcm + w1Tcp)×∑m−1

k=0
(1

pizk+1Tcm+wk+1Tcp
)

(14)

More generally, if we define
∏0

j=1
fj = 1, then

αi = ∏i−1

j=1
fj

1
qi

+ (piz1Tcm + w1Tcp)×
∑m−1

k=0
(1

pizk+1Tcm+wk+1Tcp
)

(15)

for i = 1, 2, . . . , m.
From Fig. 4, the finish time at which a solution is achieved

as:

Tf,m = α1(piz1Tcm + w1Tcp) =

piz1Tcm + w1Tcp

1
qi

+ (piz1Tcm + w1Tcp)×
∑m−1

k=0
(1

pizk+1Tcm+wk+1Tcp
)

(16)

As a special case, consider the situation of a homogeneous
network where all children processors have the same inverse
computing speed and all links have the same inverse trans-
mission speed (i.e. wi = w and zi = z for i = 1, 2, . . . , m).
Therefore, from (8), fi is equal to 1, (for i = 1, 2, ..., m − 1).
Note for the root w0 can be different from wi.

For a single level tree, let T h
f,0 be the solution time for the

entire divisible load solved on the root processor and let T h
f,m

be the solution time solved on the whole tree.

T h
f,0 = α0w0Tcp Here, α0 = 1

T h
f,m = (

1
1
qi

+ m
)(pizTcm + wTcp) (17)

Consequently,

Speedup =
T h

f,0

T h
f,m

=
w0Tcp

pizTcm + wTcp
(
1

qi
+ m)

= qi(
1

qi
+ m) = 1 + qim (18)

Here, speedup is the effective processing gain in using m+1
processors. Our finding is that the speedup of the single level
homogeneous tree is equal to Θ(m), which is proportional to
the number of children, per node m. Speedup is linear as long
as the root CPU can concurrently (simultaneously) transmit
load to all of its children. That is, the speedup of the single
level tree does not saturate (in contrast to the sequential load
distribution as in [1]).

•Multiple Level Fat Tree with Intelligent Root

Consider a homogeneous multi-level fat tree network where
all processors have the same inverse computing speed, w, and
links of level i+1 have the transmission speed, piz, (see Fig. 1).

piz =

[(
i∑

j=0

mj

)−1]
z (19)

The process of load distribution for the multi-level fat tree
network using store and forward strategy for computing and
communicating can be represented by Gantt chart-like timing
diagrams, (see Fig. 4).

For the lowest single level tree, level 1, (see Fig. 5), the in-
verse computational speed of an equivalent processor is defined
as weq1 . This is a valid concept as the model is a linear one (as
in a Norton’s equivalent queue, for instance [16]). Therefore,
from equation (12) and (17), the computation time of level 1
is :

weq1Tcp =
p0zTcm + wTcp

1
q0

+ m
(20)

for q0 = wTcp/(p0zTcm + wTcp).
Let σ = zTcm/wTcp, then

1

q0
= 1 + p0σ (21)

If weq0 is defined as w, γ0 can be defined as
weq0/w = 1. Hence, equation (21) can be transformed
to

1

q0
= 1 + p0σ = γ0 + p0σ (22)

The goal here is to find an expression for an equivalent pro-
cessor that has the same load processing characteristics as the
entire homogeneous fat tree. Our strategy is to replace each
of the lowest most single level tree networks (which we call
level 1) with an equivalent processor. Proceeding recursively
up the tree, we replace each of the current lowest most single
level subtrees with an equivalent processor. This continues
until the entire homogeneous fat tree network is replaced by

Communication

Computation

αi zTcm
kpk-1

α0
k-1wTcp

Communication

Computation
α0 wTcp

Root

Communication

Computation

zTcmαj
k-1pk-2

wTcp

Communication

Computation

Tf

.

.

.

z Tcmαl
1p0

wTcpαl
1

(Layer k)

(Layer k-1)

(Layer k-2)

(Layer 0)

k

(Node i
i=1,2,...,m)

α0
k-2

(Node j
j=1,2,...,m)

(Store and forward)

(Store and forward)

(Store and forward)

(Node l
l=1,2,...,m)

Figure 4: Timing diagram of multi-level fat tree using
store and forward strategy

α 1
1

z

...

α 0
1

z z

weq0

w

weq0
weq0

α m
1α 2

1

α 1,2,...,m
2

= w = w = w

p
0 p

0 p
0

Figure 5: Level 1 of multi-level fat tree with intellginent
root.

a single equivalent processor, with inverse processing speed
weqk . Here, k is the kth level. Levels here are numbered from
the bottom level upwards. In terms of notation, this is done
from level 1 (this is the two bottom most layers), level 2 (cur-
rently next bottom most two layers), up to the top level (top
two layers), (see Fig. 1).

Note that for the entire initial (1st) level equivalent proces-
sor replacement, both parent and children processors have the
same inverse speed w, (see Fig. 5). At the kth level, (equiva-
lent to a single level tree), the parent will have inverse speed,
w, and its children will have equivalent speed weqk−1 , (see
Fig. 6). Referring to equation (20) and (22), the equivalent

α 1
k

z

...

α 0
k

z z

weqk-1

w

weqk-1
weqk-1

α m
k

α 2
k

the entire load

p
k-1 p

k-1

p
k-1

Figure 6: Level k of multi-level fat tree with intelligent
root.

computation time for the 1st level can be defined as:

weq1Tcp =
p0zTcm + wTcp

m + γ0 + p0σ
(23)

For level 2, (see Fig. 7), the equivalent inverse computational
speed is defined as weq2 . Therefore, from equation (17), the

α 1
2

zp
1

...

α 0
2

weq1

w

weq1
weq1

α m
2α 2

2

α 1,2,...,m
3

zp
1 zp

1

Figure 7: Level 2 of multi-level fat tree with intelligent
root.

computation time

weq2Tcp =
p1zTcm + weq1Tcp

1
q1

+ m
(24)

Here, from equation (12), w0 = w ,and
w1 = w2 = · · · = wm = weq1 ,

q1 =
wTcp

p1zTcm + weq1Tcp
(25)

Let γ1 = weq1/w, then

1

q1
=

weq1

w
+ p1σ = γ1 + p1σ (26)

Referring to equation (24), the equivalent computation time
of level 2 is given as follows:

weq2Tcp =
p1zTcm + weq1Tcp

m + γ1 + p1σ
(27)

Therefore, the equivalent equation of a kth level subtree, (see
Fig. 1), the equivalent computation time

weqkTcp =
pk−1zTcm + weqk−1Tcp

m + γk−1 + pk−1σ
(28)

Referring to equation (28),

γk =
weqk

w
=

weqkTcp

wTcp

=
γk−1 + pk−1σ

m + γk−1 + pk−1σ
(29)

=
γk−1 + (

∑k−1

j=0
mj)−1σ

m + γk−1 + (
∑k−1

j=0
mj)−1σ

(30)

Consequently, γk is a recursive function. The value, 1/γk, is
the speedup of a multi-level fat tree network with concurrent
load distribution on each level and with store and forward
computation and communication from level to level.

Let T e
f,0 be the equivalent solution time for the entire di-

visible load solved on only one processor and let T e,k
f,m be the

equivalent solution time of a whole homogeneous k-level fat
tree network, on which each level has m children processors
as well as the root processor. Then,

T e
f,0 = 1 · wTcp the entire load = 1

T e,k
f,m = 1 · weqkTcp the entire load = 1

Consequently,

Speedup =
T e

f,0

T e,k
f,m

=
wTcp

weqkTcp
=

w

weqk

=
1

γk

=
m + γk−1 + (

∑k−1

j=0
mj)−1σ

γk−1 + (
∑k−1

j=0
mj)−1σ

(31)

= 1 +
m

γk−1 + (
∑k−1

j=0
mj)−1σ

(32)

• if m = 1 and pi = 1, this model is the same as an linear
network with store and forward strategy.

• if m = 2, this model is a binary fat tree. If m = 3, this
model is a ternary fat tree.

• if pi = 1, this model is not a fat tree. Each link in this
model has the same transmission speed.

• if (
∑i−1

j=0
mj)−1σ approaches to zero, the model ap-

proaches an ideal case. Each node can receive the load in-
stantly and compute the data immediately. In such assump-
tion, the recursive function (30) can be simplified as

γk =
γk−1

m + γk−1
(33)

A closed form solution

γk =
1

m0 + m1 + m2 + · · ·+ mk
(34)

Speedup =

k∑
j=0

mi (35)

Speedup is proportional to the total number of nodes, which
is m0 + m1 + m2 + · · ·+ mk.

Note, from (33), we can derive

Speedup =
1

γk
= 1 + m(

1

γk−1
) (36)

This equation expresses that the speedup of k-level fat tree
is the sum of the speedup of root and all the speedup from
m children. The speedup of k-level equivalent tree is Θ(m),
which is proportional to the number of children, per node
m. The number of levels of a tree increases, the speedup will
approach a linear function. Therefore, the multi-level fat tree
will not saturate.

IV. Kim Type Scheduling

We note that the use of Kim type scheduling [17], where
processing at a child node commences as soon as load begins
to be received, can be analyzed in a similar manner to that de-
scribed here. Performance should improve somewhat because
of the expedited computing in this case.

V. Discussion and Conclusions

This research confirms two important points. Firstly, up
to the limit of CPU speed, concurrent load distribution for
a single level tree leads to a linear speedup as a function of
the number of children. Secondly, the use of store and for-
ward load distribution for a fat tree leads to a speedup which
approaches a linear speedup.

Acknowledgments

The support of NSF grant CCR9912331 in the course of
this research is gratefully acknowledged.

References

[1] V. Bharadwaj, D. Ghosee, V. Mani, and T.G. Robertazzi,
“Scheduling divisible loads in parallel and distributed systems,”
IEEE Computer Society Press, Los Alamitos CA, 1996.

[2] Y.C. Cheng and T.G. Robertazzi, “Distributed computation
with communication delays,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 22, pp. 60–79, 1988.

[3] G. D. Barlas, “Collection aware optimum sequencing of opera-
tions and closed form solutions for the distribution of divisible
load on arbitrary processor trees,” IEEE Transactions on Par-
allel and Distributed Systems, vol. 9, no. 5, pp. 429–441, May
1998.

[4] S. Bataineh and T. G. Robertazzi, “Bus oriented load sharing
for a network of sensor driven processors,” IEEE Transactions
on Systems, Man and Cybernetics, vol. 21, no. 5, pp. 1202–1205,
1991.

[5] V. Bharadwaj, D. Ghosee, and V. Mani, “Multi-installment
load distribution in tree networks with delay,” IEEE Transac-
tion on Aerospace and Electronic Systems, vol. 31, no. 2, pp.
555–567, 1995.

[6] V. Bharadwaj, D. Ghosee, and V. Mani, “An efficient load
distribution strategy for a distributed linear network of proces-
sors with communication delays,” Computers and Mathematics
with Applications, vol. 29, no. 9, pp. 95–112, 1995.

[7] J. Blazewicz and M. Drozdowski, “Scheduling divisible jobs on
hypercubes,” Parallel Computing, vol. 21, no. 12, pp. 1945–
1956, 1995.

[8] J. Blazewicz and M. Drozdowski, “The performance limits of a
two dimensional network of load sharing processors,” Founda-
tions of Computing and Decision Sciences, vol. 21, no. 1, pp.
3–15, 1996.

[9] J. Blazewicz and M. Drozdowski, “Distributed processing of di-
visible jobs with communication start-up costs,” Discrete Ap-
plied Mathematics, vol. 76, no. 1-3, pp. 21–41, May 1997.

[10] J. Sohn and T. G. Robertazzi, “Optimal time varying load
sharing for divisible loads,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 34, no. 3, pp. 907–924, July 1998.

[11] J. Sohn, T. G. Robertazzi, and S. Luryi, “Optimizing comput-
ing costs using divisible load analysis,” IEEE Transactions on
Parallel and Distributed Systems, vol. 9, pp. 225–234, March
1998.

[12] S. Charcranoon, T. G. Robertazzi, and S. Luryi, “Cost effi-
cient load sequencing in single-level tree networks,” in Proceed-
ings 1998 Conference on Information Sciences and Systems,
Princeton, NJ, March 1998, Princeton University.

[13] V. Kumar, A.Y. Grama, and N. R. Vempaty, “Scalable load
balancing techniques for parallel computers,” Journal of Par-
allel and Distributed Computing, vol. 22, pp. 60–79, 1994.

[14] S. Pande, D.P. Agrawal, and J. Mauney, “A scalable schedul-
ing scheme for functional parallelism on distributedmemory
multiprocessor systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 6, pp. 388–399, 1995.

[15] David E. Culler, and Jaswinder Pal Singh, “Parallel Com-
puter Architecture: A Hardware/Software Approach,” Morgan
Kaufmann Publishers, 1999.

[16] Herzog, U., Woo, L. and Chandy, K.M., “Solution of Queueing
Problems by a Recursive Technique,” IBM Journal of Research
and Development, pp. 295-300, May 1975.

[17] H.-J Kim, “A Novel Load Distribution Algorithm for Divisible
Loads,” Special Issue of Cluster Computing on Divisible Load
Scheduling, Summer/Fall, 2002.

