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Abstract — The widespread interconnection of com-
puters or workstations is due to high performance,
availability, and extensibility at low cost. These dis-
tributed systems can be utilized for file sharing, multi-
user access and parallel processing. Potential advan-
tages of distributed systems have been studied by
many researchers, often through simulation.

In this paper we combine two tractable perfor-
mance evaluation methodologies, Markovian queue-
ing theory and divisible (i.e. partitionable) schedul-
ing theory [1], to model a load sharing environment.
The environment consists of N computers (nodes). A
given load is solved on a subset of the nodes.

In this work we determine:

e Solution time for a single queue model.

e The optimal number of processors to distribute a
particular load to. This is done using group per-
formance measures such as the equivalent pro-
cessing speed and average utilization of a group
of processors.

o This optimization is done for both homogeneous
and heterogeneous computational environments.

e Finally an algorithm to balance load across sub-
sets of computers is proposed.

This work is noteworthy because of the integration
of Markovian queueing statistics and the associated
analytical expressions. Much past work has relied on
simulation.

I. INTRODUCTION

One of the important topics in distributed systems for mul-
tiple users is load sharing. The purpose of load sharing is to
balance loads over nodes in a distributed system, although
loads arrive according to some irregular pattern. This im-
proves the overall performance of distributed systems. A
taxonomy of load sharing algorithms dividing them between
source-initiative and server-initiative algorithm was proposed
and the algorithms were evaluated using both analysis and
simulation [2], [3]. Load sharing is also classified according to
the level of information dependency. With more information
one expects better performance. However, there is a trade-off
between performance and communication overhead cost. Two
important strategies classified according to the level of infor-
mation are the static strategy and the adaptive strategy. A
static strategy is independent of any system state whereas an
adaptive strategy uses and reacts to the system state.

Another significant part of distributed systems is parallel
processing which leads to improvements of speedup. In this
work, static load sharing strategy is discussed which takes
advantage of parallel processing.

A queueing model for multiple jobs is proposed in chapter
12 of [1]. That is, loads are assumed to arrive at a control pro-
cessor or one processor. In this paper, each node has a queue
and can accept loads. Serveral nodes in a network makes a
set and process a job together. The number of nodes in a set
is discussed to obtain a best overall performance in the sense
of response time. As discussed in Chap. 3 of [5], the number
of nodes in a set never exceeds the number of nodes which
achieves speedup saturation. The number of nodes in a net-
work is also assumed to be much larger than the number of
nodes which achieves speedup saturation.

II. SYSTEM MODEL

A completely connected network is considered for the load
scheduling problem proposed in this paper. Assume that
(M + 1) nodes are completely connected to each other. A
node consists of a processor, a queue and M links. The
inverse communication speed between the i** node and the
4 node is defined as z;;. It is assumed that z;; = zj;
(4,7=10,1,---,M) and z;; =0 (1 =0,1,---, M), that is, the
inverse communication speed between two nodes is symmetric
and the communication delay in the internal node is ignored.

A node can be individually analyzed using an M/M/1
model. The Poisson average arrival rate of loads to the 4t*
node is defined as A;. Load is thus not necessarily uniform.
The total arrival rate in a network is denoted as A7

AT=3"N (1)

Also load size is assumed to be negative exponentially dis-
tributed with mean size, I. Let the processing time depend
on the load size. Then, the average processing time of the 3"
node, pi_l, can be obtained by multiplying mean size, I by

computation speed, w;Tcp.
Hi_l = lwiTep (2)

The utilization factor is the ratio of the average arrival rate
to the average processing rate in a fundamental sense. The
utilization factor, p;, is defined as follows:

i
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The average of p; for all ¢ = 0,1,---, M is denoted as p and
can be obtained as follows:

M
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p—MHZOpi (4)

The response time of the i** node is defined as T, and
obtained by summing the time to wait in the i** node queue
and the time to be processed.

Ty =Ty, +N;1 (5)

Here, Ty, is defined as the wait time in the it" node queue.
Further, the wait time in the i** node queue can be obtained
by multiplying the mean number in the it" node queue by the
mean processing time of the i*" node.

Ty =qi- ;' (6)

Here /Li_l is the mean processing time of the i** node and ¢;
is the mean number in the ** node queue. From Markovian
queueing theory [4], the mean number in the ** node queue
can be expressed as follows:

R
qz—l_pi (7

Using equation (6) and (7), the response time of the i** node
in equation (5) can be expressed as follows:

Tp, = qi-p; +p (8)
Pi "
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Now the average response time in a network for a individual
queueing model is obtained with respect to a weighted average
sum.
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Further the bracket in the above equation is the mean number
in the i*" node queue in equation (7). Thus, the average
response time in a network can be obtained by dividing the
sum of ¢;’s by the total arrival rate, A” in equation (1).

mind Eé\io qi

Tr T

The above equation is the response time averaged over all
queues and arrivals assuming Markovian statistics. That is,
each node is assumed to process its own load. Each node is
regarded as an M/M/1 queueing system if nodes don’t share
any load. Thus, some nodes can have heavy loads, and some
nodes can have light loads. This may causes worse overall
performance. Thus we seek to load share to improve response
time.

(14)

III. D1vISIBLE LOAD SCHEDULING IN A SET

The load sharing proposed here is not global in nature.
Instead sets of (K (j) + 1) nodes in the completely connected
network constitute a set in which nodes can share loads with
each other. This means that all nodes in a set participate in
processing any load arriving at nodes in a set. The arrival rate
at the " node in the j* set is denoted as Ai,j - In addition,
Ai,; is the sum of arrival rates from all of the nodes to the ith
node in the 7" set.

K(j)
Xig =D e

k=0
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(15)

In this section, divisible load scheduling in a set is pre-
sented. Eventually the inverse equivalent node processing
speed is obtained.

A number of parameters to be used are defined as follows:

e p;;: The i*" node in the ;%" set.

e «; ;: The fraction of the entire processing load assigned
to the ¢** node in the j** set.

e w; ;: A constant inversely proportional to the compu-
tation speed of the i** node in the j** set.

® zi,: A constant inversely proportional to the channel
speed of link between the i** node and the r** node.

e T¢p: Computing intensity constant. The entire load is
processed in w; ;Tep seconds by the i** node in the j**
set.

e T.n: Communication intensity constant. The entire
load can be transmitted in 2; ,T¢,, seconds over the link
between the i** node and the r** node.

e T2 Solution reporting communication intensity con-
stant. The entire solution report can be transmitted in
2+ T2% seconds over the link between the i*" node and
the rt* node.

A homogeneous network is assumed:

(16)
(17)

wij = w

Zi,r — 2

e ¢ : The ratio of the communication time to processing

time.
2Tem

(18)

o=
wTep

e o°°!: The ratio of the reporting time to processing time.

Tsol
Usol — Zlem (19)
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It is assumed that a load arrives at p, ;, the r** node in the
j** set for any r = 0,1,---, K (j) and any j = 1,---, H . Here,
K (§) + 1 is the number of nodes that belongs to the j* set,
and H the number of sets in a completely connected network.
Then, p,; at which a load arrives, becomes the originator
(root) processor and begins to distribute fractions to K (j)
nodes in its set. Furthermore, the root processor and children
processors have front-end processors so that communication
and computation may be processed simultaneously.

The originator node, p,; distributes fractions to K (j)
nodes from po,; to px(j),; in sequence skipping p. ;. Let n



and p), ; be the index and the n*? fraction reception node with
respect to the distribution sequence, respectively: That is the
index, ¢ in p;,; for ¢ = 0,1, - -, K (§) means a processor identi-
fication number but the index n in p), ; for n =0,1,---, K (j)
means the nt? receiving node. Thus, p;w-, the nt* fraction
receiving node, is pn—1,; for 1 < n < r. Also p;, ; is pn; for
r < n < K (j). Further py; or pr; is the originator (root)
node which is p, ;.

Pr.j ifn=20
Pnj =14 Pn-1; ifl1<n<r (20)
Dn.j ifr<n<K(j)

Furthermore, the fraction of the entire processing load as-
signed to the n** reception node in the j* set is defined
as ay, ;. Also wy, ; and z,, are relative to pj, ;. Here the
primed terms represent the actual distribution sequence. The
subscription, 0 in 2, denotes the originator node. Thus
links between the originator node and the n** node for n =
1,---, K (j) will be used.

For homogeneous processor and link speed, solutions are
reported in the same sequential processor order that load is
received (see Chap. 2 of [5]). The equation for the originator
node is expressed as follows:

azf:(jl) XKD 41 4 g%t
(L+0) S XKGD=n 4 14 g

For heterogeneous processor and link speeds, solutions are
reported in the reverse sequential processor order that load is

received in (see Chap. 2 of [5]).
The load fraction, ap ; for node r is obtained as follows:
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Once the load fraction assigned to the originator node is
obtained, the finish time of (¥ () + 1) nodes can be expressed
as follows when a load is arrives at p; ;:

Ty (K ()2 100d at Pr,j

Speedup is the ratio of the time to process a load by one node
to the time taken to process the same load by (K (j) +1)

= a(),jwél,chp (23)

nodes. The speedup of (K (j)+ 1) nodes is defined as
S(K (7))
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Now a set of (K (j)+ 1) nodes can be regarded as one
equivalent node in the sense of processing speed. The equiva-
lent node processing speed when a load arrives at the 7" node

in the j** set is defined as follows:
eq Wr,j
wid = - (25)
i S (K (J))la load at p, ;
= O,jWr;j 26
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Here ar,; is the load fraction assigned to the originator p,;
node at which a load arrives. Further w; ; is the inverse node

speed of the originator node p,;. If p,; doesn’t share its
arrived load, a; is one. Thus in this case w2 %, the equivalent
node processing speed is the same as w j, the processing speed
of Pr,j-

The object of load balancing is to balance loads over sets
in the network in order to improve overall performance. Let
H be the number of sets in the completely connected network.
There exist H equivalent nodes in the completely connected
network. A single set can be analyzed as an M/M/1 model.
The (K (j) + 1) nodes in a set can simultaneously process one
load which arrives to any node in the set. The arrival rate in
a set is defined as )\j‘” for j =1,2,---, H and can be obtained
by summing the individual node arrival rates in a set.

K(j)
A= > Ny (27)
i=0
= Xij+Ai (28)
Here, )\;; denotes the arrival rate at the i*" node in the j*
set.
Further, (K (j) + 1) nodes in a set can be regarded as one

equivalent node. The average processing time of the equiv-
. . 1

alent node which represents nodes in a set, (p]“t) can be

expressed in terms of the inverse equivalent node processing

speed, w“t

(H;et) -1 _ Z'wj'EtTcp

(29)
Here | is the mean size of the negative exponentially dis-
tributed load. The equivalent node processing speed can vary
depending on which node in a set accepts a load arrival and
distributes fractions to the K (j) nodes in a set. Thus, it is
assumed that the inverse equivalent set processing speed is

obtained using a weighted sum.

K@)
set __
wit = K(;) PBRSERL (30)
E ’J =0
Here, w;?; denotes the inverse equivalent node processing

speed when a load arrives at the 5** node in the 5 set. This
was obtained in equation (25). Equation (30) is substituted

into (29), for:
K(j)
set\—1 ch
(u.] ) = K(])p Z )\ 0,5 ° 1 ] (31)
E ’] =0

Now, the utilization factor of a set is defined as follows:

p;,fet — )\;et A (H.‘{et)_

¥ (32)

Equation (27) and (31) are substituted into the above equa-
tion.

K(j) T K(j)
set — cp
pi = Z)"J' K(]))\ Z)"]' irnd
i.J =0

K(j)

= IT,- Z)\”- e

The above equation indicates that the utilization of the j*
set is the sum of the utilization of the i*" node for i =
0,1,---, K (j) in the j**

(33)



Let 5°°* be the average set utilization.

H
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Here H is the number of sets in a network. Equation (33) is
substituted into the above equation.

(34)
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It is desired that each set is as close as possible to p*** in order

to balance load over sets in a network.

IV. LoAD BALANCING OVER SETS

Sets act like an equivalent node with utilization factor, p“t
using divisible load scheduling. The load balancing over sets
discussed in this section is a static strategy. The strategy
is independent of any system state. That is, loads are bal-
anced over sets using the arrival rates of nodes, \;’s for all
1 =0,1,---,M. Thus it is important to make a set whose
utilization factor is close to those of the other sets.
The optimal number of processors in a set, K*, is discussed
to obtain the best performance in the sense of response time.
Originally the speedup can vary depending on which node
in a set accepts a load arrival, particularly in a heterogeneous
network. To estimate for the heterogeneous network, w and z,
the average inverse computation and communication speeds,
let:

(38)

and

w)
Il

(39)

Then speedup is estimated as S (K) which is function of K
and is identical no matter which node a load arrives at. For a
homogeneous network, @ and z reduce w and z, respectively.
The network parameters are defined as follows:

/Z\'I’cm
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Thus the estimated speedup can be obtained in a manner
similar to that of a homogeneous network.

() = 1+3) 38 XK " 4+145°
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Consequently the estimated version of w;
expressed follows:

q - . .
% in equation (25) is
@
S(K)
From equation (31), the estimated set processing time can
be expressed as follows:

(43)
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Now the equation (36) is estimated as follows:
H K(j
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The two summation in equation (47) denote all nodes in the
completely connected network. The term in the bracket in
this equation can be expressed as follows:

B3

Here \; - lw;T., can be expressed as p; from equation (3).
From equation (4 ) the right side of the above equation can
be expressed as follows:

M

_ 1 _
Noj - Twi,Tep = 7 2; Xi - TwiTsp

(48)

uM%

M
1 - M+1_
i=0
= (K+1)p (50)
Here, M; L can be considered to be the number of nodes in a

set. This can be expressed as (K + 1).
Therefore from above the estimated set utilization can be
expressed as follows:

(K+1p
S(K)

Aset

(51)

Next we wish to find the optimal value of K* nodes in
the sense of response time. A set behaves like a node with
equivalent node speed. We use the estimated speedup, equiv-
alent set speed and set utilization factor obtained in equation
(42), (45) and ( 51). The estimated response time in a set of
(K + 1) nodes is defined as T (K).
(10, 7

Similarly in equation
set (K) is expressed as follows:

o~ 1 ~sety —
Tser (K) = (Tﬁset) ()™

(52)



Equation (45) and (51) are substituted into the above equa-
tion.

~ _ 1 T,
) =\ TTam | 5
S(K)
T,y

S(K) - (K+1)p
Here:

S(K)> (K+1)p (53)

To obtain the optimal value of K™ to minimize Thet (K), a
difference equation is used:

Tr(K*) — Ta(K*—1) =0 (54)
or

[§(K*) (K" + 1)p] - [§(K* “1)-K'Bl =0 (55

Obtaining K* to hold the above equation, K* can be ex-
pressed as follows (Appendix C in [5]).

~ , ~sol
e For g #£5°" :
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K= (57)
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Here A1 and A are given in the appendix. Here |-] is
rounding down to the nearest integer. Although the num-
ber of nodes in a set is larger than the value before rounding
down in the above equation, the response time in a set doesn’t
decrease.

The purpose of this section is to find the best choice for
the number of sets, H* in the sense of response time. Let
(K* +1) be the number of nodes in a set, which produces
the best performance in the sense of response time. Thus the
number of sets, H* in the network can be obtained as follows:

* M + ].
H _[[K*J+1-‘ (58)
Here [-] is rounding up to the nearest integer in the case that
(M +1) is not divisible by (|[K*|+1). Once the optimal
number of a set is obtained by rounding up to the nearest
integer the actual nodes in a set, K (j) for j = 1,2,--- ,H*
may be less than K*. The reason to make K (j) to be less than
K™ is that the response time worsens K (j) is made greater
than K*.

A set behaves like a node with an equivalent set processing
speed, w;et, as in equation (30) under divisible load schedul-
ing. In this section, an algorithm to balance load among nodes
is proposed. This algorithm ensures that the response time
for each set is close to each other. Load balancing over sets
is a static strategy. The static strategy is independent of any

system state. Once the arrival rates of nodes, A;’s for all
1 =0,1,--+, M are experimentally determined, the utilization
factor of each node, p; can be obtained. The response time
of each node, Tp, in equation (10) can be calculated with p,
and w;. Let I'g be the descending sorting order of T, for
i=0,1,---,M.

o= T,o

P

T,

p Ty | (59)

P
Here T,;) < T},;) if ¢ < j. Further, p' is the processor with
the (i + 1)*" largest response time.

Now the functions used in the algorithm are defined as
follows:

e Let S be the set matrix. The processors in a column of
S make a set.

[ Do, DPo,2 Do, H*
P11 P12 P1,H*
S = . .
L PK,1 pf,z pf,H*
= [ S1 S SH* ] (60)
ro
ri
= . (61)
L Tk

Here, s; is the j** column which consists of nodes in the
§t" set and r; is the (i 4+ 1)*"

e Let D be the sum of the response time of processors in
column of S

D:[d1 oo dj dH*] (62)
Here: _
K

dj = ZTm,j (63)
=0

e Let ISORT (D) return the index after sorting D in as-
cending order.

e Let GETID (Tp(i)) return the node identification num-

ber, p; with respect to p(i).
Algorithm

STEP 1. Set K = [2t1].
STEP 2. Sort Ty, for ¢ =0,1,---, M in descending order.
Ty = [ T,y

T, Ty |

STEP 3. Initialize a set matrix.
S=|

STEP 4. Set k = 0.
STEP 5. While T'y, is not empty.
STEP a) Set k =k + 1.
STEP b) If k is odd,
Take out the first H™
T'x—; and then put them into rg.

elements from

Tpo1=[te | Tk



STEP d) Else,
Take out the last H* elements from
T'x_1 and put them into rg.

Tpo1 = [T | ts]

STEP g) Calculate D.
STEP h) Set I = ISORT (D).
STEP i) Obtain t°"* from sorting tj in terms of If.
STEP j) Set ry = GETID (t;°"") .
STEP 6. End
The above algorithm ensures that the response time over
sets is as similar as possible. Similarly in equation (10), the
response time of the 5" set can be expressed as follows:

set) 1
TSJ' = (1 ]_p)s'et (64)

Here (u;”)_l and pjet are defined in equation (31) and (33),
respectively.

Then, the average response time in a network for a set
queueing model is obtained as follows:

H*

——set 1 se
Th' = Sy 2T N (65)

set
Z]‘:I )‘j j=1

1 < (I'L‘;et)_l set
= H* A8 Z _ pset -AJ' (66)

- 1 Pj
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Here AT is the total arrival rate. The best response times are
achived under optimal set size.

V. CONCLUSION

This chapter discusses the problem of load sharing in a
multiprocessor environment where multiple jobs are submit-
ted. The network is divided into sets of processors that load
share within each other. Using a divisible load model and
analysis, the optimal size of a set in terms of response time
is found. Also found is the optimal allocation of load to pro-
cessors for a given set size for both heterogeneous and ho-
mogeneous networks. Finally, expressions for response time
for both the cases with and without load sharing are found.
Simulation results indicate load sharing significantly reduces
response time.
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