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Abstract —

In this paper the equivalence between various di-
visible load-scheduling policies and continuous time
Markov chains is demonstrated. The problem is to
show optimal divisible load schedules for various net-
work topologies have Markov chain analogs. This pa-
per is a continuation of our initial short paper [1] that
introduced this unification between divisible load the-
ory and Markov chain models for the first time. A
detailed analytical analysis of linear daisy chains and
single and two level tree networks is presented in this
paper. While most of the Markov chains are one di-
mensional in topology, the labeling of transitions is
different from the usual practice in queueing theory.

I. Introduction

Divisible load scheduling theory (DLT) involves the study
of the optimal distribution of partitionable loads among a
number of processors and links [2,3,4]. A partitionable data
parallel load is one that can be arbitrarily distributed among
the processors and links in a system. Thus there are no
precedence relations among the data. Applications include
grid computing, parallel and distributed processor network
scheduling, data intensive computing and metacomputing.
The approach is particularly suited to the processing of very
large data files as in signal processing, Kalman filtering, im-
age processing, experimental data processing, multimedia and
computer utility applications.

There has been an increasing amount of study on divisible
load scheduling theory since the work of Cheng and Rober-
tazzi [5] in 1988. Most of these studies develop an efficient
allocation of load to processors over a network by forcing the
processors to all stop processing at the same time. Intuitively,
this is because the solution could be improved by transfer-
ring load if some processors were idle while others are still
busy [6]. Optimal allocation of loads using a set of recursive
equations were presented for network topologies including lin-
ear daisy chains [5], bus networks [7] and tree networks [8].
For complex networks, the concept of equivalent networks was
presented in [9]. There have been further studies in terms of
load distribution policies for two and three dimensional meshes
[10] and hypercubes [11]. In [12] the concept of time varying
processor speed and link speed are introduced. In [13] the
integration of monetary cost optimization and divisible load
theory is presented. Scheduling policy research includes inde-
pendent task scheduling [14,15], multi-installment sequential
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scheduling [16], multi-round algorithms [17], fixed communi-
cation charges [18], detailed parameterization and solution re-
porting time optimization [19] and combinatorial optimization
[20]. An important reason for using divisible load scheduling
theory is its tractability, flexibility and realism for a large class
of data intensive, data parallel, computational problems.

In this paper equivalent continuous time Markov chain
models [21,22,23] for various network topologies and load
scheduling policies currently modeled by divisible load theory
are introduced. Our initial motivation for introducing this
unification between divisible load theory and Markov chain
models is that they have a number of commonalities between
them. In their basic form the two theories are linear ones.
That is, they can be solved in theory by solving the associ-
ated linear set of equations. Other common features include
a schematic language, recursive or linear equation solutions,
the concept of equivalent networks, the possibility for time
varying modeling and solutions for infinite size homogeneous
networks.

This paper presents examples of this equivalence. While
most of the Markov chains are one dimensional in topology,
the labeling of transitions is different from the usual practice
in queueing theory. This equivalence is somewhat surprising
since divisible load theory is deterministic while Markov chain
models are stochastic. This new equivalence provides a novel
and apparently powerful modeling tool.

The remainder of this paper is organized as follows. In sec-
tion II, basic model description and notation and definitions
used through out this paper are presented. Sections III, IV
and V discuss models for linear daisy chains, single level tree
and two level tree networks, respectively. Finally, the conclu-
sion is contained in section VI.

II. Model Description

In this section, some assumptions for scheduling in divisible
load theory are described along with some notation and defini-
tions. As mentioned earlier, the network topologies discussed
in detail in this paper include linear daisy chains, and single
and two level tree networks. The models discussed in this
paper account also for both homogeneous and heterogeneous
processing and link speeds and various load scheduling poli-
cies.

As mentioned earlier, it will be assumed that the total
data parallel processing load is arbitrarily divisible into frac-
tions of loads to be assigned to each processor over a network.
The root processor where the total processing load originates,
keeps some processing load for itself and sends out the rest of
the load to the remaining processors over the network. There
are different scenarios for the processors, depending whether



or not they can compute and communicate at the same time.
In general, we will consider two cases: with front end pro-
cessors and without front end processors. In the case of pro-
cessors with front end processors, it is assumed that some of
the processors in the network are equipped with front ends
so that they are able to compute their own load fraction and
communicate (if necessary) simultaneously. In the case of net-
works without front end processors, it is assumed that none
of the processors are equipped with front ends and the pro-
cessors can only compute or communicate at one time. It is
assumed that solution reporting time (back to the load origi-
nating node) is negligible compared to load distribution time
and so is neglected. However, solution reporting time can be
naturally modeled for divisible loads when necessary.

A Notations and Definitions:

αi : The fraction of load that is assigned to processor i by
the load originating processor.

ωi : A constant that is inversely proportional to the
computation speed of processor i in the network.

zi : A constant that is inversely proportional to the speed
of link i in the network.

Tcp : Computation intensity constant. This is the time
that it takes the ith processor to process the entire
load when ωi = 1. The entire load can be processed
on the ith processor in time ωiTcp.

Tcm : Communication intensity constant. This is the time
that it takes to transmit the entire processing load
over a link when zi = 1. The entire load can be
transmitted over the ith link in time ziTcm.

Ti : The total time that elapses between the beginning of
the scheduling process at t = 0 and the time when
processor i completes its computation, i = 0, 1, ..., n.
This includes, in addition to computation time,
communicating time and idle time.

Tf : processing finish time of total processing load, assum-
ing load is delivered to originator processor by t = 0.
Naturally,

Tf = max
i

Ti.

In all of the sections the same definitions are used for αi,
ωi, zi, Tcp, Tcm, Ti and Tf unless otherwise stated. Another
convention that is followed in is that the load originating at
the root processor is assumed to be normalized to be a unit
load.

III. Linear Daisy Chain Networks

Consider a linear daisy chain network consisting of N + 1
processors connected via N communication links as shown in
Figure 1. The root processor P0, where the load originates
keeps its own share of load α0 and communicates the remain-
ing load (1-α0) to its immediate successor P1. Similarly, the
processor P1 keeps the load α1 and communicates the remain-
ing load (1-α0-α1) to its successor P2. This process continues
until the last processor obtains its share of load αN . Each of
the N + 1 processors in the network are equipped with front

ends. That is, each processor can compute its own fraction of
load and communicates the rest of the load to its successor si-
multaneously. Consider the case where each processor begins
to compute its fraction of load at the moment that it finishes
receiving its own data. An important observation in consid-
ering linear networks is that, each processor in the network
(except for the last processor) receives the fraction of load
that is not only its own share of the load but also the fraction
of loads that belongs to all of the rest of the processors that
are beyond it.
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Figure 1: Linear daisy chain network with front end pro-
cessors.

This process of communication and load distribution is
shown through a Gantt-chart-like timing diagram in Figure
2. This protocol is referred to a “cut through switching” as
the load fragment of a node’s right neighbor is retransmitted
by the node to its right neighbor once it is received. That
is, the node does not wait for the entire load to be received
before commencing retransmission.
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Figure 2: Timing diagram: linear daisy chain network.

As shown from the timing diagram, communication time
appears above the axis and computation time appears below



the axis. It is also shown that the processors have the same
finishing time Tf . This corresponds to the fact that, for a min-
imum time solution all processors must stop computing at the
same time. Indeed, otherwise some work could be transferred
from a busy processor to an idle one in order to improve the
solution time. Based on this result one can write the following
set of equations:

α0ω0Tcp = α1z1Tcm + α1ω1Tcp (1)

α1ω1Tcp = α2(z1 + z2)Tcm + α2ω2Tcp (2)

α2ω2Tcp = α3(z2 + z3)Tcm + α3ω3Tcp (3)

αN−1ωN−1Tcp = αN (zN−1 + zN )Tcm + αNωNTcp (4)

Since the load originating at the root processor is assumed
to be normalized to a unit load, the fractions of the total
processing load should sum to one.

α0 + α1 + α2 + ... + αN−1 + αN = 1 (5)

In this paper, the objective in presenting the above set of
equations is to find a continuous time Markov chain model
with αi’s being analogous to the steady state probabilities
and the communication and computation time parameters be-
ing accounted for as transition rates that satisfy a set of local
balance equations which corresponds to the above set of equa-
tions. In this case the Markov chain model which satisfies the
requirements given above is shown in Figure 3.
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Figure 3: Markov chain model for linear network with
cut through switching and front end processors and het-
erogeneous links.

As shown in the Markov chain, using the local boundaries,
one can write the following set of local balance equations as in
the following manner. Using a balance equation at boundary
A one can write:

α0ω0Tcp = α1z1Tcm + α1ω1Tcp (6)

At boundary B also one can write:

α1ω1Tcp = α2(z1 + z2)Tcm + α2ω2Tcp (7)

Similarly, for boundary L one can have the following equa-
tion:

αN−1ωN−1Tcp = αN (zN−1 + zN )Tcm + αNωNTcp (8)

This set of equations directly correspond to the set of equa-
tions that are derived from the Gantt-chart-like timing dia-
gram. This new modeling tool combines both the equations
and diagram into a Markov chain which is simple and compact.

Note that the pattern of transition rate labeling is unusual for
a Markov chain model in telecommunications and networking
applications.

IV. Single level tree networks

A Single level tree without front end pro-
cessors

A single level tree network of N + 1 processors and N links is
shown in Figure 4. The root processor P0, where the load orig-
inates keeps its fraction of the total load for itself to compute
and distributes sequentially the remaining load to its child
processors at the lower level. Each processor in the network
is assumed to have no front end processor. That is, the root
processor will first finish communicating all of the load to be
transmitted to the lower level before it starts computing its
own fraction of load. The terminal processors start comput-
ing only after completely receiving their respective fraction of
loads (known as staggered start). Note that if all zi’s have
the same numerical value, one has a bus network model. The
timing diagram showing the process of load distribution for
a single level tree network with out front end processors is
shown Figure 4.
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Figure 4: Single level tree network - (a) network topology
(b)Timing diagram without front end at nodes.

Now one can write the following set of equations for solving



for the optimal solution time as:

α0ω0Tcp = αNωNTcp (9)

α1ω1Tcp = α2z2Tcm + α2ω2Tcp (10)

αiωiTcp = αi+1zi+1Tcm + αi+1ωi+1Tcp (11)

αN−2ωN−2Tcp = αN−1zN−1Tcm + αN−1ωN−1Tcp (12)

αN−1ωN−1Tcp = αNzNTcm + αNωNTcp (13)

Since the load originating at the root processor is assumed
to be normalized to a unit load, the fractions of the total
processing load should sum to one.

α0 + α1 + α2 + ... + αN−1 + αN = 1 (14)

The corresponding Markov chain model which has the same
set of local balance equations as the above set of equations is
shown in Figure 5. Note that state 0 is a neighbor of state
N , which is unusual for a typical telecommunications Markov
chain model.
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Figure 5: Markov chain model for single level tree net-
work without front end processors.

B Single level tree networks with front
end processors

A single level tree network of N + 1 processors and N links
is shown in Figure 6. The root processor P0, where the load
originates keeps its fraction of the total load for itself to com-
pute and distributes the remaining load to its child processors
at the next lower level sequentially. The root processor in the
network is equipped with a front end. That is, the root can
compute its own fraction of load and communicates the rest
of the load to each of its children simultaneously. In this case
each processor begins to compute its fraction of load at the
moment that it finishes receiving its data. The timing dia-
gram of the process of load distribution for a single level tree
network with front end processors is shown Figure 6.

The set of equations for solving for the minimum finish time
can be written as:

α0ω0Tcp = α1z1Tcm + α1ω1Tcp (15)

α1ω1Tcp = α2z2Tcm + α2ω2Tcp (16)

αiωiTcp = αi+1zi+1Tcm + αi+1ωi+1Tcp (17)

αN−2ωN−2Tcp = αN−1zN−1Tcm + αN−1ωN−1Tcp (18)

αN−1ωN−1Tcp = αNzNTcm + αNωNTcp (19)
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Figure 6: Single level tree network - (a) network topology
(b)Timing diagram for front end case.

The fractions of the total processing load should sum to
one.

α0 + α1 + α2 + ... + αN−1 + αN = 1 (20)

The corresponding Markov chain model which has the same
set of local balance equations as the above set of equations is
shown in Figure 7.
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Figure 7: Markov chain model for single level tree net-
work with front end processor at root.

V. Two level tree networks

Now consider a two level binary tree network of communicat-
ing processors as depicted in Figure 8. As can be seen from the
figure, there are three types of nodes: root, intermediate and
terminal nodes. The root is the node where the processing
load originates. Then there are intermediate nodes which can
be viewed as parents of the lower level nodes with which they
have direct communication. The terminal nodes are nodes
that have no child processors and hence can only be children
nodes. In this section, we consider the case where the com-
munication between the root processor and the intermediate
nodes is concurrent and the communication between the in-
termediate nodes and the terminal nodes is sequential. As in



section III, “cut through switching” is used at the intermedi-
ate nodes. These assumptions are made to show the ubiquity
of the divisible load schedule and Markov chain equivalence.
This process of load distribution and communication is shown
in Figure 9.
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Figure 8: Two level tree network with front end proces-
sors.

The set of equations based on the minimum finish time
can be written as:

For branch 1 (linking P0 to P1), one can write:

α0ω0Tcp = α1z1Tcm + α1ω1Tcp (21)

α1ω1Tcp = α2(z1 + z2)Tcm + α2ω2Tcp (22)

α2z2Tcm + α2ω2Tcp = α3(z1 + z3)Tcm + α3ω3Tcp (23)

Similarly, for branch 4 (linking P0 to P4):

α0ω0Tcp = α4z4Tcm + α4ω4Tcp (24)

α4ω4Tcp = α5(z4 + z5)Tcm + α5ω5Tcp (25)

α5ω5Tcp = α6z6Tcm + α6ω6Tcp (26)

Note that the two branches 1 and 4 have, as is possible, two
structurally different local balance equations based on the se-
quence of their fraction of loads. In the first case the fraction
of loads are arranged in such a way that load fractions to chil-
dren are in increasing order of load fragment size. Whereas in
the second branch the load fractions to children are arranged
in decreasing order of load fragment size.

The fractions of the total processing load should sum to
one.

α0 + α1 + α2 + ... + αN−1 + αN = 1 (27)

The corresponding Markov chain model which has the same
set of local balance equations as the above set of equations is
shown in Figure 10. Note that state 0 is at the center of the
Markov chain and states α1, α2, and α3 which correspond
to branch 1 are the left side neighbors of state 0. On the
other hand states α4, α5, and α6 which correspond to branch
4 are shown to be the right side neighbors of state 0. This
is, again, unusual for the typical telecommunications Markov
chain model.

VI. Conclusion

In this paper an alternative model for performance evalua-
tion of divisible load schedules using Markov chain models is
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Figure 9: Timing diagram of a two level tree network
with front end processors.
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presented. The model is based on the principle of local bal-
ance equations. We have provided Markov chain models for
linear daisy chains, single level trees (with and without front
end processors) and two level tree networks. It was found that
these models are relatively simple and compact. Further areas
of research would include multi level tree networks. Moreover
it would be interesting to explore how to extend this result
to networks that are more complex including hypercubes and
two dimensional meshes.
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