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Abstract —

Closed form solutions for optimal finish time and

job allocation are largely obtained only for network

topologies with a single load originating (root) pro-

cessor. However, it often happens that load can be

generated from multiple sources as in large-scale data

intensive problems with geographically distributed re-

sources. This paper introduces load scheduling strat-

egy for tree networks with two load originating pro-

cessors. A unique scheduling strategy that allows one

to obtain closed form solutions for the optimal fin-

ish time and load allocation for each processor in the

network is proposed.

I. Introduction

Today the scientific computation problems requiring in-
tense problem-solving capabilities for problems arising from
complex research and industrial application has driven in all
global institution and industry segments the need for dynamic
collaboration of many ubiquitous computing resources to be
able to work together The problem of minimizing the process-
ing time of extensive processing loads originated from various
sources presents a great challenge that, if successfully met,
could foster a range of new creative applications. Inspired
by this challenge, we sought to apply divisible load theory to
the problem of grid computing involving multiple sources con-
nected to multiple sinks. So far research in this area includes
[1] where tasks arrive according to a basic stochastic process
to multiple nodes and [2] presents a first step technique for
scheduling divisible loads from multiple sources to multiple
sinks, with and without buffer capacity constraints.

Divisible load theory [3,4,5] is characterized by the fine
granularity and large size of loads. There are also no prece-
dence relations among the data elements. Such a load may be
arbitrarily partitioned and distributed among processors and
links in a system. The approach is particularly suited to the
processing of very large data files in signal processing, image
processing, experimental data processing, grid computing and
computer utility applications.

There has been an increasing amount of study in divisible
load theory since the original work of Cheng and Robertazzi
[6] in 1988. The majority of these studies develop an efficient
load distribution strategy and protocol in order to achieve op-
timal processing time in networks with a single root processor.
The optimal solution is obtained by forcing the processors over
a network to all stop processing simultaneously. Intuitively,
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this is because the solution could be improved by transfer-
ring load if some processors were idle while other are still
busy [7]. Such studies for network topologies including linear
daisy chains, tree and bus networks using a set of recursive
equations were presented in [6,8,9] respectively. There have
been further studies in terms of of load distribution policies
for hypercubes [10] and mesh networks [11]. The concept of
equivalent networks [12] was presented for complex networks
such as multilevel tree networks. Work has also considered
scheduling policy with multi-installment [13], multi-round al-
gorithms [14], independent task scheduling [15], fixed commu-
nication charges [16], detailed parameterization and solution
reporting time optimization [17] and combinatorial optimiza-
tion [18]. Recently, though divisible load theory is fundamen-
tally a deterministic theory, a study has been done to show
some equivalence to Markov chain models [19].

Most of the earlier studies in the literature so far have as-
sumed that the processing load originates form a single root
processor. In a practical scenario, this need not be always
true. In this paper, we relax this assumption and consider
the case in which the processing load originates from two root
processors. Our recent study [20] in this area considered two
root processor model where optimal processing time solutions
were obtained using a linear programming approach. This
paper, unlike the previous research papers, presents closed
form solutions using divisible load theory to tree networks
with two load originating (root) processors. Applications in-
clude computational grids, a network of large number of loads
and load sources with large number of transmission, process-
ing and storage resources as shown in in Fig. 1. Computational
grids aim at exploiting synergies that result from cooperation
by sharing and aggregating distributed computational capa-
bilities and delivering them as service.

Another example of grid problems is the case of high energy
and nuclear physics experiments. Here large amounts of data
originate from distributed researchers who must work closely
together. The analysis of data in this type of experiments
requires an increased computational power and network based
computing platforms such as Globus [21] and Condor [22]. In
such recently emerging platforms, scheduling and performance
evaluation analysis for efficient use of distributed resources
are important but challenging tasks. Effective scheduling of
jobs in such a system is complicated by a number of factors
including data locality, network topology and latency.

The organization of this paper is as follows. In section
II, the system model used in this paper is discussed. The
analysis of closed form solutions for an optimal finish time in
single level tree networks with two load originating processors
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Figure 1: Simple computational grid made of two clus-
ters.

is presented in sections III and IV . Section V presents the
respective performance analysis results in terms of finish time
and load assignment. Finally the conclusion appears in section
V I.

II. Two Root Processors System Model

In this section, the various network parameters used in this
paper are presented along with some notation and definitions.
The network topology discussed in this study is a tree network
consisting of two root processors (P1 and P2) and N − 2 child
processors (P3, ... , PN ) with 2(N−2) links as shown in Fig. 2.
It will be assumed that the total processing load considered
here is of the arbitrarily divisible kind that can be partitioned
into fractions of loads to be assigned to each processor over
a network. The two root processors keep their own fraction
of loads (α1 and α2) and communicate/distribute the other
fractions of loads (α3, α4, ... αN ) assigned to the rest of
processors in the network. Each processor begins to process its
share of the load once the load share from either root processor
has been completely received.

The load distribution strategy from either root processors
to the child processors may be sequential or concurrent. In
the sequential load distribution strategy, each root processor
is able to communicate with only one child at a time. However,
in the case of concurrent communication strategy, each root
processor can communicate simultaneously/concurrently with
all the child processors. The latter communication strategy
can be implemented by using a processor which has a CPU
that loads an output buffer for each output link. In this case
it can be assumed that the CPU distributes the load to all of
its output buffers at a rapid enough rate so that the buffer
outputs are concurrent.

A Notations and Definitions:

Li : Total processing load originated from root processor i,
(i = 1, 2).

αi : The total fraction of load that is assigned by the root
processors to child i.

α1i : The fraction of load that is assigned to processor i by
the the first root processor.

α2i : The fraction of load that is assigned to processor i by
the second root processor.
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Figure 2: Single level tree network with two root proces-
sors.

αi = α1i + α2i, i = 3, 4, ..., N.

ωi : A constant that is inversely proportional to the
processing speed of processor i in the network.

z1i : A constant that is inversely proportional to the speed
of the link between the first root processor and the ith

child processor in the network.

z2i : A constant that is inversely proportional to the speed
of the link between the second root processor and the
ith child processor in the network.

Tcp : Processing intensity constant. This is the time it
takes the ith processor to process the entire load when
ωi = 1. The entire load can be processed on the ith

processor in time ωiTcp.

Tcm : Communication intensity constant. This is the time
it takes to transmit all the processing load over a link
when zi = 1. The entire load can be transmitted over
the ith link in time ziTcm.

Ti : The total time that elapses between the beginning of
the scheduling process at t = 0 and the time when
processor i completes its processing, i = 1, ..., N . This
includes communication time, processing time and idle
time.

Tf : This is the time when the last processor finishes pro-
cessing.

Tf = max(T1,T2, . . . , TN ).

One convention that is followed in this paper is that the total
load originating at the two root processors is assumed to be
normalized to be a unit load. That is,

L1 + L2 = 1.

III. Single Level Tree Network with Two Root
Processors and Concurrent Communication

The load scheduling strategy presented here targets find-
ing solutions for optimal finish time (make-span) and job allo-
cation in single level tree networks with two root processors.



Most previous load scheduling strategies in divisible load mod-
els can be solved algebraically in order to find the optimal
finish time and load allocation to processors and links. In this
case optimality is defined in the context of the specific inter-
connection topology and load distribution schedule used. An
optimal solution is usually obtained by forcing all processors
to finish computing at the same time. Intuitively, if there exist
idle processors in the network, load can be transferred from
busy processors to those idle processors [7].

The network topology considered here is a tree network
with two root processors and N − 2 child processors. In this
case, it is assumed that the total processing load originates
from the two root processors (P1 and P2). The scheduling
strategy involves the partitioning and distribution of the pro-
cessing loads originated from P1 and P2 to all the processors.
The load distribution process proceeds as follows: the total
processing loads originated from P1 and P2 are assumed to
be L1 and L2 respectively. Each root processor keeps some
fraction of the respective processing load for itself to compute
and distributes the remaining load simultaneously to the child
processors. The timing diagram shown in Fig. 3, shows the
load distribution process discussed above. The figure shows
that at time t = 0, the processors are all idle. The child pro-
cessors start computation only after completely receiving their
assigned fraction of load from either of the two root processors.

Now the equations that govern the relations among various
variables and parameters in the network can be written as
follows:

T1 = α1ω1Tcp (1)

T2 = α2ω2Tcp (2)

T3 = (α13 + α23)ω3Tcp + α13z13Tcm (3)

TN = (α1N + α2N )ωNTcp + α1Nz1NTcm. (4)

As it was mentioned earlier, since total measurement load
originating at the two root processors is assumed to be nor-
malized to a unit load, the fractions of the total processing
load should sum to one as:

L1 + L2 = 1 (5)

α1 + α2 + α3 + ... + αN−1 + αN = 1 (6)

Since

L1 = α1 +

N∑
j=3

α1,j (7)

L2 = α2 +

N∑
j=3

α2,j (8)

The normalization equation given above can also be written
in terms of the fraction of loads as:

α1 + α2 +

N∑
j=3

α1,j +

N∑
j=3

α2,j = 1 (9)

As it can be seen from the timing diagram shown in Fig. 3,
all processors stop processing at the same time, thus we have:
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Figure 3: Timing diagram for a single level tree network
with two root processors and concurrent communication.

T1 = T2 = T3 = . . . = TN

Based on the above set of equations, one can write the
following set of N − 1 equations:

α1ω1Tcp = α2ω2Tcp (10)

α2ω2Tcp = α3ω3Tcp + α13z13Tcm (11)

α3ω3Tcp + α13z13Tcm = α4ω4Tcp (12)

+ α14z14Tcm

αN−1ωN−1Tcp + α1N−1z1N−1Tcm = αNωNTcp (13)

+ α1Nz1NTcm

As it can be seen from the above set of equations, there is a
smaller number of equations than the number of unknowns.
Another N−2 equations can be written by setting up relation-
ship between the fractions of loads within each child processor
as:

α23z23Tcm ≤ α13(z13Tcm + ω3Tcp) (14)

α24z24Tcm ≤ α14(z14Tcm + ω4Tcp) (15)

α2Nz2NTcm ≤ α1N (z1NTcm + ωNTcp) (16)

In this case, there will be 2N − 1 equations (including the
normalization equations) and 2N − 2 unknowns. The study
in [20] has shown that such problem types can be solved by
the use of linear programming.



IV. Closed Form Solutions

In order to obtain a closed form solution the following
assumptions can be made regarding the load distribution
strategy:

- The two root processors start to communicate with all of
the child processors at the same time.

- For the same child P1 terminates communication before
P2. It can be seen from this assumption that if the commu-
nication time of P1 approaches to zero, then the network will
be equivalent to a network with a single root processor.

- Each child processor starts processing after completely re-
ceiving its fraction of load received from either root processors.

- All processors are equipped with front-end processors,
so that they will be able to communicate and process their
respective load shares at the same time.

- The total communication and processing time of the frac-
tion of load distributed by the first root processor (P1) to each
of the child processors is equal to the communication time
needed to distribute the respective fractions of load by P2 to
each child processor. This can be achieved by controlling the
transmission duration of P2. Thus,

α2iz2iTcm = α1i(z1iTcm + ωiTcp).

where i > 2.

The process of load distribution for this situation is shown
in Fig. 4.
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Figure 4: Timing diagram for a single level tree network
with two root processors and concurrent communication
: Scheduling for closed form solution.

Using the above set of equations and since for i > 2,
αi = α1i + α2i, one can solve for α1i and α2i in terms of αi

as:

α1i = kiαi (17)

α2i = (1− ki)αi (18)

where ki = z2iTcm/ri, and ri = z1iTcm + z2iTcm + ωiTcp.

All the above set of equations can be used to find the αi’s
(i = 2, 3, ..., N) in terms of α1 as:

α2 = (ω1Tcp/ω2Tcp)α1 (19)

α3 = s3α1 (20)

αi = siα1 (21)

where si = (ω1Tcpri)/(ωiTcpri + z1iTcmz2iTcm).

Now using the normalization equation, one can solve for α1

as:

α1 = 1/(1 + (ω1Tcp/ω2Tcp) +

N∑
i=3

si) (22)

The scheduler (P1) will use the value of α1 to obtain the
amount of data that has to be processed by the rest of the
N − 1 processors in the network.

The minimum processing time of the network will then be
given as:

Tf = ω1Tcp/(1 + (ω1Tcp/ω2Tcp) +

N∑
i=3

si) (23)

For a homogeneous network with ω = 1 and Tcp = Tcm =1,
the minimum processing time Tf approaches to 1/(Ns) as the
number of processors N is made to be increasingly large. To
see this result analytically, one can start from the expression:
α1 = 1/(1+(ω1/ω2)+

∑N

i=3
si). Now as N is made to be large,

α1 approaches 1/(2 + Ns) and since N >> 2, the expression
for the minimum finish time will then be reduced to 1/(Ns).

V. Performance Analysis Results

This section presents the plots of load assignments to each
processor vs. number of processors in a single level tree net-
work with two root processors. In this case a homogeneous
network is considered to study the effect of communication
and computation speed variations and the number of proces-
sors on the load assignment.

The plot shown in Fig. 5, presents the load assignment to
each of the processors in the network for the case when z1

varies from 0.5 to 2.5 and z2 is set to be fixed to 1.0.
The tree network that is used to obtain the plot in Fig. 5

has a homogeneous link and processor speed. In this case ω
= 2 and the values of Tcm and Tcp are also set to be equal to
one. The result shows that as the speed of the communication
link becomes slower and slower the amount of load assigned to
the child processors becomes less and less. In effect this will
increase the total processing time of the system since the ma-
jority of the processing load is assigned to the root processor
for computation.
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Figure 5: Load assignment when z1 is varied and z2 is
fixed.

On the other hand Fig. 6 shows the same plot but for the
case when z1 is fixed and z2 is varied from 0.5 to 2.5. For these
parameters, the variation of the communication link between
the second root processor and the child processors has no effect
on the load assignment to each processor. This is because, as
mentioned earlier, one of the constraints that is considered in
this study is the case where the communication time of the
second root processor and each of the child processors should
be less or equal to the communication time between the first
processor and each child processor plus the computation time
of this fraction of load received from the first processor. That
is, the job assigned from the second processor can only be
processed after the first job assigned from the first processor
is completely processed. If the second link is fast and the
load is received earlier than the finish time of the first job,
the new job has to wait until the previous job is done. This
also enforces the fact that there will be no interruption during
computation of the loads received from the two processors.
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Figure 6: Load assignment when z1 is fixed and z2 is
varied.

In Fig. 7, the finish time is plotted against the number of
processors in the network for different inverse bus speeds, z1

which is the communication link between the first root proces-
sor and the child processors. The communication link between
the second root processor and the child processors is set to be
fixed to z2 = 1. The plot shows that as the number of pro-
cessors is increased the minimum finish time approaches to
1/(Ns) which corresponds to the closed form solution analy-
sis discussed earlier. It can also be seen from the same plot
that the finish time can be minimized by increasing the speed
of the communication link.
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Figure 7: Finish time versus number of processors, for
two root sources single level homogeneous tree network
and variable inverse bus speed, z1, (first root processor
links).

VI. Conclusion

In this paper, solutions for optimum allocation of loads
to processors over a single level tree networks with two root
processors are obtained. A new load scheduling strategy that
results in a closed form solutions for an optimal allocation
of loads to networks with two root processors is proposed.
Using the closed form solutions obtained in this study one
can easily study the performance analysis of tree networks
in terms of the minimum finish time. Results showed that
for the representative load scheduling strategy discussed in
this paper, the minimum finish time approaches to 1/Ns as
the number of processors in the network is made to be large
enough.

Future work on this part may include other network topolo-
gies and load scheduling strategies used in divisible load the-
ory. It will be also interesting to see the complexity involved
in dealing with networks with more than two root processors.
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