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ABSTRACT
Daily toothbrushing is essential for maintaining oral health.
However, there is very limited technology to monitor the
effectiveness of toothbrushing at home. In this paper, a
system is built to monitor the brushing quality on all 16
tooth surfaces using a manual toothbrush and an off-the-
shelf wrist watch. The toothbrush is modified by attaching
small magnets to the handle, so that its orientation and mo-
tion can be captured by the magnetic sensor in the wrist
watch. The toothbrushing gestures are recognized based on
inertial sensing data from the wrist watch. As the acoustic
signal collected from the watch is correlated with the mo-
tion of toothbrushing stroke, acoustic sensing algorithm is
designed to assist in recognition. User-specific toothbrush-
ing order is also utilized to improve the surface recognition.
In extensive experiments with 12 users over 3 weeks, our
system successfully recognized toothbrushing gestures with
an average precision of 85.6%.

CCS Concepts
•Applied computing → Life and medical sciences;
•Human-centered computing → Ubiquitous and mobile
computing systems and tools;
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1. INTRODUCTION
Dental caries and gum diseases are among the most preva-

lent chronic diseases in both children and adults [13]. Most
of these dental diseases are the results of bacteria deposited
on the surface of the teeth. Without proper brushing, such
bacteria accumulate on the tooth surfaces in a complex called
plaque, destroying the outermost layer of the tooth (enamel)
and initiating gingival inflammation, resulting in dental de-
cay and gum diseases [6]. Proper toothbrushing is crucial to
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plaque reduction and dental pathology prevention. Ameri-
can Dental Association recommends brushing teeth for two
minutes and twice a day using the Bass technique [29, 16].
Unfortunately, there is limited technology for assessment
and reassurance of home toothbrushing compliance. There
are electric toothbrushes which are designed to make tooth-
brushing easier and simpler, but they still rely on users to
move the toothbrush on the correct tooth surfaces. Also,
they do not detect whether the user has brushed with the
proper technique, complete coverage and sufficient duration
for all tooth surfaces. Therefore, it is desirable to develop
technologies for toothbrushing monitoring.

Wearable devices have been employed in recognition of
various activities, such as hand-washing [14], smoking [27],
and exercising [11]. These research studies show valuable
results that demonstrate the potential of activity recogni-
tion using wearables in health applications. Different from
these applications, toothbrushing requires the usage of a
hand tool: the toothbrush. Both the motions of the tooth-
brush and the user gestures to operate the toothbrush need
to be recognized.

The toothbrushing activity consists of a series of gestures
for maneuvering a toothbrush to scrub teeth. There are
many dynamic interactions between the toothbrush and the
user’s hand during toothbrushing, such as grabbing, point-
ing, rotating, and flipping of the toothbrush. As the mo-
tions of toothbrush and user gestures are tightly coupled
with each other, it is very challenging to model and moni-
tor these activities. In this paper, we present a system for
toothbrushing monitoring. This system consists of a man-
ual toothbrush and a wrist watch. The manual toothbrush
is modified by attaching small magnets (7 cents) on the han-
dle. Then we develop a magnetic sensing algorithm on the
wrist watch to capture the orientation of the toothbrush and
its relative movement to the hand.

To recognize toothbrushing gestures, we construct tooth-
brushing gesture models using inertial sensing data. Our
model is based on underlying basic motions (wrist flexion/
extension, forearm rotation, elbow flexion/extension, and
shoulder flexion/extension), which allows us to characterize
each gesture quantitatively by its motion direction, speed,
amplitude, and frequency. Besides using inertial sensing
data, acoustic data collected from the microphone in the
wrist watch is used to recognize toothbrushing gestures as
well as toothbrushing stroke frequencies. We also develop
a hidden Markov model to learn the order of toothbrushing
surfaces, which varies from person to person. By integrat-
ing these gesture recognition techniques with the toothbrush



Figure 1: Modified Toothbrush Prototypes

orientation detection, our system is able to recognize the
tooth surface being brushed at each moment, and estimate
the toothbrushing effectiveness by counting the number of
strokes.

We deploy our system with a cloud-based framework, each
wrist watch in our system is connected with the backend
system on the cloud. 12 users used our system to conduct
daily toothbrushing for up to 3 weeks. Experiments have
been designed to evaluate the recognition accuracy of differ-
ent gestures for brushing 16 tooth surfaces, and frequency
of strokes. Experimental results demonstrate that our sys-
tem achieves high recognition accuracy in every toothbrush-
ing session. We also present a case study with 12 users to
demonstrate the plague reduction under proper toothbrush-
ing using our system.

We build a real-time toothbrushing monitoring system us-
ing wrist watch, which recognizes the brushing quality on all
16 tooth surfaces.
• To capture dynamic interactions between the tooth-

brush and the userâĂŹs hand, we attach small magnets
on off-the-shelf toothbrushes and design novel mag-
netic sensing algorithms to detect toothbrush orienta-
tion and motion.
• We identify coupled motions of a userâĂŹs wrist, hand,

and arm during toothbrushing with the Bass tech-
nique, and design models based on inertial sensing data
to characterize toothbrushing gestures.
• We employ a set of features including order of brushing

to improve the recognition performance. We also use
acoustic profile to estimate the brushing quality.
• We build a toothbrushing monitoring system proto-

type using wrist watch. In a 3 week experiments with
12 users, our system successfully recognized the brush-
ing gestures on 16 tooth surfaces with an average pre-
cision of 85.6%.

2. SYSTEM OVERVIEW

2.1 System Design and Consideration
Our system includes the following four components:
• Modified toothbrush. We modified off-the-shelf man-

ual toothbrushes by attaching an array of magnets on
the handle of the brush. A picture of such tooth-
brushes is shown on the Figure 1.
• Wrist watch. We use off-the-shelf wrist watches. Four

types of sensors in the wrist watch are used: accelerom-
eter, gyroscope, magnetic sensor, and acoustic sen-
sor. Most signal processing and machine learning algo-
rithms are executed on the smartwatch to ensure real-
time processing and to reduce wireless communication
traffic. The main idea of the recognition algorithm is
demonstrated in Figure 2.

Figure 2: Gesture Recognition

• Smartphone or tablet. A smartphone or tablet is used
as the user interface. It also relays data from the wrist
watch to the cloud. The real-time brushing surface
recognition result is displayed on the phone or tablet.
• Cloud. The cloud stores a database of labeled train-

ing data and features, and uses these data to compute
a personalized machine learning profile for each user.
The cloud also stores the public profile and toothbrush-
ing progress report of the user, so that the user’s den-
tist can monitor the dental hygiene results remotely.

Our system has two phases: the training phase and the
running phase. In the training phase, a user is instructed
to conduct toothbrushing using the Bass technique with our
system for one or multiple times. The system records train-
ing data as the baseline. In the running phase, the user
conducts daily toothbrushing with our system. Our system
recognizes the tooth surface being brushed and detects in-
correct toothbrushing techniques in real-time. When the
toothbrushing is finished, the system provides a brushing
quality report on the number of brushing strokes for each
surface of the teeth.

2.2 The Bass Toothbrushing Technique
There are 16 major surfaces of the teeth that we brush,

as shown in Figure 3. The labial and buccal surfaces are
sides of the teeth that are adjacent to the inside of the lips
or the cheek. In this paper, we refer them as outer surfaces.
The occlusal surfaces of the teeth are the surfaces that come
in contact with those in the opposite jaws during biting or
chewing. We refer them as chewing surfaces. The palatal
and lingual surfaces of the teeth are those next to one’s
tongue. We refer them as the inner surfaces of the teeth.

For manual brushing, systematic reviews have shown that
the Bass technique has consistently demonstrated good re-
sults. It allows the toothbrush bristles to reach the inter-
proximal areas and achieves more effective control in plaque
levels [29, 16]. Several basic gestures of the Bass technique
are shown at the left lower corner of Figure 2. The general
descriptions of the Bass technique are: a) to brush front
outer, back outer and back inner surfaces, place the tooth-
brush at a 45-degree angle to the gums. Brush these areas
with vertical movement of the toothbrush bristles. Each
brushing stroke begins from the gum line to the tip of the
teeth. b) To brush chewing surfaces, move the bristles of the
toothbrush along the chewing surface of the back teeth in a
back and forth motion. c) To brush front inner surfaces, tilt
the brush vertically and make up-and-down strokes.

On the other hand, incorrect brushing, such as the hori-
zontal brushing on the inner or outer surfaces, as shown at
the right lower corner of Figure 2, can cause two to three
times more wear to the enamel than the Bass technique
[7, 17, 26].



Figure 3: 16 Tooth Surfaces

Sufficient toothbrushing time is also crucial to good tooth-
brushing results. Many previous oral hygiene studies recom-
mend two minutes of toothbrushing time [15]. However, suf-
ficient overall duration does not guarantee sufficient coverage
for all surfaces of the teeth. In practice, people often dis-
tribute brushing time unevenly to different surfaces, which
may cause over-brushing or under-brushing on some surfaces
of the teeth. By monitoring the toothbrushing gestures, our
system is able to recognize the toothbrushing duration and
the number of brushing strokes for each surface, as well as
the overall toothbrushing time.

2.3 The Coordinate Systems
We analyze the human arm motions for each toothbrush-

ing gesture quantitatively using a simplified human arm
model, as shown in Figure 4. The arm is divided into the
upper arm, the forearm, and the hand. The elbow joint
connects the upper arm and the forearm; the wrist joint
connects the forearm and the hand. The toothbrush is held
by the user in his or her hand. Here we use gesture to refer
to the movements of the user’s arm.

To describe the toothbrush gesture accurately, it is neces-
sary to define the relevant coordinate systems, as shown in
Figure 4. The user’s coordinate system is denoted by Xu,
Yu, Zu. The Xu−Yu plane is horizontal to the floor, and the
Yu axis points to the facing direction of the user. The sensor
data obtained from the watch uses watch coordinates: Xw,
Yw, Zw. When the watch is worn on the right wrist, the Xw

axis is parallel to the forearm. The Yw axis is perpendicular
to the forearm and is parallel to the palm, and the Zw axis
is perpendicular to the forearm and points toward the back
of the forearm. The motion of the toothbrush is described
in the toothbrush coordinate system: Xt, Yt, Zt. Xt axis
points to the orientation of the toothbrush bristles, and Zt

axis points to the top of the toothbrush. These coordinate
systems are used in the following sections.

3. TOOTHBRUSH BRISTLE ORIENTATION
RECOGNITION

The detection of the motions of the toothbrush in a user’s
hand is essential for toothbrushing gesture recognition. Specif-
ically, toothbrush motions are critical for gesture recognition
in the following scenarios:
• Scenario 1: The toothbrush bristle orientation, i.e.,

Yw

Xw

Zw

Yu

Xu

Zu
Zt Yt

Xt

Figure 4: The Arm Model and Coordinate Systems

the orientation of Xt, as shown in Figure 4. Certain
gestures are very similar to each other, such as the ones
when brushing the chewing surfaces of the upper and
lower teeth. The only difference is the orientations of
the toothbrush bristles.
• Scenario 2: Toothbrush rotations around the Zt axis.

Certain users use his or her fingers to rotate the tooth-
brush to scrub teeth.

In our study, we found that these two types of toothbrush
motions made almost no effect on wrist-worn accelerometers
and gyroscopes. Therefore, it is necessary to apply alterna-
tive approaches to detect these motions.

Our solution is to customize off-the-shelf toothbrushes so
that they become sensible to the smartwatches. We propose
to install small magnets on the toothbrushes. When the
magnets move along with the toothbrush, the surrounding
magnetic field is disturbed, which can be reliably captured
by the magnetic sensor in the watch. This enables our sys-
tem to recognize the toothbrush motions.

Figure 1 shows a couple prototype toothbrushes. The
magnets are marked by white boxes in the figure. We can
see that small magnets are attached to the handle of the
gray toothbrush, whereas some magnets are put inside the
handle of the other purple toothbrush. We tested and found
that when the magnet’s north pole direction is perpendicular
with the Zt direction of the toothbrush, the sensing results
were more effective in distinguishing toothbrush bristle ori-
entations. Such small magnets cost only 7 cents each. Our
volunteers did not experience any inconvenience with the
modified toothbrushes. In the future, we can develop more
user-friendly designs, such as a magnetic snap or case that
can be easily installed on the handle of a toothbrush.

We denote the magnetic moment of the magnet on the
toothbrush as ~m, the location of the magnet relative to the
watch as ~r, and the magnetic permeability of air as µ0. Then
the magnetic flux density ~B = (Bx, By, Bz) at the wrist
watch is represented by the following equation:

~B =
µ0

4π

3~r(~r · ~m)− ~m |~r|2

|~r|5
. (1)

From the above equation, we can see that when the user
changes his or her hold of the toothbrush, which affects ~r,
or rotates the toothbrush with fingers, which affects ~m, the
magnetic field ~B will change as well. This enables us to infer
toothbrush motions from the magnetic field.

3.1 Toothbrush Bristle Orientation
In an experiment, a user held a toothbrush to let the

toothbrush bristle face the following 4 surfaces: the Left
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(a) Toothbrush Bristle Orientation
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Figure 5: Magnetic Sensing Results

Lower Outer (LLO) surface , the Left Lower Chewing (LLC)
surface, the Left Lower Inner (LLI) surface, and the Left
Upper Chewing (LUC) surface, while magnetic sensing data
was collected from the wrist watch.

The magnetic sensing result is shown in Figure 5a. From
this figure, we can see that the magnetic field strength By

and Bz are dramatically different when the toothbrush bris-
tles have different orientations. This allows us to recognize
the approximate orientation of the toothbrush bristles dur-
ing the toothbrushing of each surface. When the toothbrush
bristles orientation stays fixed in one direction, the magnetic
strength readings are very stable. When the toothbrush bris-
tles orientation changes by 90 degree, the magnetic strength
readings change significantly to new levels. This observation
suggests us to design a threshold based detection algorithm
to capture the toothbrushing surface transitions.

3.2 Toothbrush Rotation
We conducted experiments to study the relations between

the magnetic sensor data and different toothbrushing mo-
tions of the user. In this experiment, a user first performed
three basic gestures while holding the toothbrush: the fore-
arm rotations, the wrist flexions/extensions and the elbow/
shoulder motions. After that he rotated the toothbrush with
his fingers.

The corresponding magnetic field readings are shown in
Figure 5b. From this figure, we can see that when the user
is rotating the toothbrush with fingers (from 17s to 21s),
the magnetic field readings along all the three axes oscil-
late, with a frequency directly related to the rotation speed.
When the user is conducting wrist or elbow/shoulder mo-
tions (from 7s to 17s), the motions’ influences on the mag-
netic field reading are small, and we don’t see any oscillation.
This is because neither the relative location of the tooth-
brush ~r, nor the relative direction of the magnetic moment
~m to the watch changes significantly.

3.3 Robustness to Geomagnetic Field
The geomagnetic field is the magnetic field that extends

from the Earth’s interior out into space. It can interfere
with our magnetic sensing system and significantly degrade
the sensing performance. In our observation, we find that
the geomagnetic field has a varying magnitude depending
on locations, and its value can go up to more than 100 µT .
To obtain robust sensing results under such interference, we
use multiple magnets with strong magnetization together.
To test the influence of geomagnetic field, we conducted an
experiment: a user brushed his Right Lower Chewing (RLC)

surface and Right Upper Chewing (RUC) surface with a
toothbrush with four small magnets attached, while facing
four cardinal directions: east, west, north, and south. We
plot the magnetic sensing data of Bx and Bz axes in the
Figure 5c. Clearly, we can see two clusters representing two
toothbrush bristles orientations, and these two clusters are
separated with a long distance. This indicates that with
strong magnets on the toothbrush, we can obtain robust
sensing results on the toothbrush bristle orientation, regard-
less of which cardinal direction the user is facing. We can
also see that within a cluster, plotted points with different
cardinal directions do not overlap with each other, which
shows there is still noticeable impact from the geomagnetic
field.

3.4 Feature Design
Based on these observations, we design signal processing

algorithms to extract features. Given the magnetic field
reading in a time window, we firstly calculate average and
variance values ofBx, Bx, andBz. We also calculate the zero
crossing rate, which is defined as the difference between two
consecutive times when the magnetic field strength value
crosses the average value. In our experiments, when the
user is brushing using finger rotations, the zero crossing rate
ranges from 0.2 seconds to 1 seconds, with variation less than
3.

4. TOOTHBRUSHING GESTURE RECOG-
NITION

In this section, we study the motions of the user’s arm
during the toothbrushing process, and develop algorithms to
recognize the gestures for brushing different tooth surfaces.
There are two major challenges in achieving this goal:
• Recognition of similar toothbrushing gestures. Effec-

tive features need to be designed to capture the subtle
differences in gestures of brushing different tooth sur-
faces.
• Robust recognition with gesture variations. When brush-

ing the same surface, the users can have different arm
postures, such as either holding the arm horizontally
or vertically. This is a commonly seen variation and
can significantly affect the sensing results.

We address the first challenge in Section 4.1 and 4.2 by
developing motion models for the arm, and design features
based on these models. We address the second challenge
in Section 4.3 by studying the user gesture variations and
designing a transformation algorithm to offset the effect.
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Figure 6: Acceleration Data of Elbow and Wrist Motions

4.1 Toothbrushing Gesture Model
Although toothbrushing involves complex motions of the

human arm, there are four basic types of motions: wrist flex-
ion/extension, forearm rotation (pronation/supination), el-
bow flexion/extension, and shoulder movement. Each brush-
ing gesture is a combination of these basic motions. Our
strategy is to establish models for these motions, and design
recognition algorithms based on these models.

We note that both elbow and shoulder movements affect
the entire forearm, the wrist watch cannot differentiate these
two types of basic motions. So we combine them as a single
motion type, the shoulder/elbow flexion/extension.

4.1.1 Forearm Rotation
The forearm rotation motion is closely correlated with the

gyroscope reading gx along Xw axis. This is because the
watch is usually tightly attached to the user’s wrist, and
rotates at the same rate as the forearm. Therefore, we cal-
culate the moving variance of gx, denoted by σg

x, as a feature
to indicate the existence of this motion. Our experimental
results show that this feature is effective. For example, for
many users, the gesture of brushing of left lower outer sur-
face of teeth involves much forearm rotation, and the value
of σg

x remains large during this brushing gesture.

4.1.2 Elbow/Shoulder Flexion/Extension
When a user brushes the two front inner surfaces and the

four chewing surfaces, the elbow/shoulder flexion/extension
is used primarily. In Figure 6a, we plot the accelerome-
ter data collected when the user is brushing the right lower
chewing surface. In this figure, the blue dashed line and the
red thick line represent the acceleration of the watch along
the Yw axis (Accy) and the Zw axis (Accz), respectively. We
can see that the values of Accy and Accz fluctuate periodi-
cally according to each brushing stroke. The same pattern
can be found when the user is brushing all the other sur-
faces involving the same basic motion type. This pattern is
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Figure 7: Power Spectrum of Elbow and Wrist Motion Ac-
celeration Data

generated by the regular back-forth horizontal motions. To
capture this type of motion, we analyze the power spectrum
of the signal. In Figure 7, we plot the log-scale power spectra
for the acceleration data of the shoulder/elbow motion (the
blue line) and the wrist motion (the red dashed line). From
this figure, we can see that for the elbow motions, there is
a large peak located at around 4.5 Hz, which corresponds
the brushing stroke frequency. Based on this observation,
we extract the peak value of the power spectrum max(Pacc)
and the percentage of energy concentrated around the peak
frequency (percY ) as features to recognize this type of mo-
tion.

4.1.3 Wrist Flexion/Extension
We discover that a characterizing pattern of such motions

is the negative correlation between the acceleration values
of Accy and Accz. This is illustrated in Figure 6c, where
Accy (the blue dashed line) and Accz (the red line) are neg-
atively correlated. This is significantly different from the
elbow brushing motions when Accy and Accz are positively
correlated (shown in Figure 6a). This observation motivates
us to measure the correlation of Accy and Accz as a feature
to recognize the wrist motions.

We also find that in some cases, the user’s toothbrushing
gestures include both the wrist and the elbow motions. In
these cases, both types of motion influence the correlation
between Accy and Accz, and may entirely cover up the wrist
motion pattern. This affects the detection accuracy for the
system, so it is crucial to separate the influence of these two
types of motion.

We notice that for the wrist motions, two peaks are gener-
ated in the power spectrum, as shown in the red dashed line
in Figure 7. On the other hand, only one peak is generated
for the power spectrum of elbow motions (the blue line).
This indicates that these two types of motions may create
influence on wrist acceleration data at different frequencies.
Therefore, we conduct a band-pass filter centering at about
two times of regular brushing frequency on the acceleration
values, and the results are shown in Figure 6d. We can see
that this filter successfully suppresses the influence of the
elbow motion on the correlation between Accy and Accz,
and the feature for wrist motions is revealed. On the other
hand, in Figure 6b, the correlation between Accy and Accz is
positive due to the absence of wrist motions. Therefore, we
will apply a band-pass filter to the acceleration value before
calculating the correlations.

The feature to recognize wrist motions is defined as fol-
lows. After the acceleration values of Accy and Accz are
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collected, we apply a band-pass filter with center frequency
about two times of brushing frequency, and get the filtered
value Acc′y and Acc′z. Then the correlation Cy,z between
Acc′y and Accz is calculated. If Cy,z is smaller than a nega-
tive threshold, then wrist motion is detected.

4.2 Other Features

4.2.1 PCA-based motion direction
When brushing different surfaces, the toothbrush is mov-

ing along different directions. For example, when a user
brushes his or her chewing surfaces, the toothbrush typi-
cally moves along a direction perpendicular to the direction
of gravity. On the other hand, when the outer surfaces are
being brushed, the toothbrush generally moves along a di-
rection parallel to the direction of gravity. Therefore, the
moving direction of the toothbrush also provides important
information for the toothbrushing gesture recognition.

We design the Principle Component Analysis (PCA) based
motion direction feature to capture this information. PCA
[18][5] is a classical algorithm that finds out a set of linearly
uncorrelated variables called principal components. The
principle components are found in such a way that the first
principal component has the largest possible variance, and
each succeeding component, in turn, has the highest vari-
ance possible under the constraint that it is orthogonal to
all the previous ones. In our scenario, the first principal
component represents the dominant motion direction of the
watch.

Specifically, we calculate the PCA direction feature as fol-
lows. For each time window, this feature is extracted from
the accelerometer sensor data [Accx, Accy, Accz]. For each
pair of dimensions i and j, i, j ∈ {x, y, z}, i 6= j, we feed
the sensor data X = [Acci, Accj ] to the PCA algorithm and
compute the eigenvectors W of the covariance matrix XTX.
The 2×2 matrix W contains the information about the prin-
ciple component. We record the slope dij = W [2, 1]/W [1, 1]
to represent the motion direction in the ij plane.

We plot the PCA direction features for brushing Front Up-
per Outer (FUO), Front Lower Inner (FLI) and Left Lower
Chewing (LLC) surfaces in Figure 8. We can clearly see the
plotted points naturally form three clusters, which allows
us to differentiate these different gestures. This shows that
the PCA direction feature can distinguish not only horizon-
tal (LLC) motions from vertical motions (FUO), but also
horizontal motions with different directions (LLC and FLI).

4.2.2 Statistical Features

(a) (b)

Figure 9: Toothbrushing with Different Elbow Posi-
tions:(a)High Elbow Position, (b)Low Elbow Position

We also extract the statistical features from the sensor
data. Given the sensor data s = [s1, s2, ...sn] collected in a
time window, we compute their average value s, variance σs

and skewness γs. In other words, we calculate the first, sec-
ond and third order moments of the sensor data as the statis-
tical features. The average value reflects the overall state of
the gesture. For example, the average value of gravity data
is closely related to the user’s elbow position. The variance
value is related to the intensity of the motions. For example,
the variance of the acceleration shows how intensely the user
is brushing the teeth.

The skewness is used to distinguish the subtle differences
of the motions for brushing the upper or lower teeth. Skew-
ness has been used to measure how asymmetric a random
variable is about its mean. For example, when a user brushes
the front upper outer surface, he generally exerts larger force
when moving the toothbrush from the gum line downward
to the end of the upper teeth. After that, with a smaller
force, he raises the brush upward to prepare for next brush-
ing stroke. When brushing the front lower outer surface, the
process is the opposite: the toothbrush moves upward with
a larger force and downward with a smaller force. The dif-
ference in the acceleration of the downward-upward motions
can be captured by the skewness of the sensor data.

4.3 Dynamic Gestures Variations
We now consider the variation of the toothbrushing mo-

tions for the toothbrushing gestures for the same surface.
We focus on the change of elbow positions during the brush-
ing. This is illustrated in Figure 9. In this figure, the user
(a) is brushing with his elbow raised up, whereas, the user
(b) is brushing with his elbow put down. This type of el-
bow position variation is common in real life. When the
user changes his or her elbow positions, the sensing results
from the smartwatch change significantly, even though the
user is still brushing the same tooth surface with the same
technique. This type of variation can significantly affect the
toothbrushing surface recognition accuracy.

This type of variation is due to the change of watch co-
ordinates Xw − Yw − Zw. When the elbow position is high,
the Zw is facing vertically upward. However, when the el-
bow position is low, Zw rotates to the horizontal right-hand
side. On the other hand, since the user is brushing the same
surface, the motions of the toothbrush remain the same. As
a result, the sensor data collected are significantly different
due to the rotation of the coordinate system.

The basic idea is to conduct a coordinate rotation trans-
formation to offset this type of variation. We compute the
rotation matrix R to transform the sensor data from the
smartwatch’s coordinates Xw − Yw −Zw to the user coordi-
nates Xu − Yu − Zu.

To compute the rotation matrix R, we have the following
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Figure 10: Brushing Stroke Estimation

two observations. Firstly, gravity sensed by the watch is
parallel to the Zu. This is because, by definition, Zu is
perpendicular to the floor, and parallel to gravity. Secondly,
when the user is brushing, the Yw direction of the watch is
approximately parallel to the Yu direction of the user, since
when the user is brushing teeth, his/her hand is held up in
the front. Based on these two observations, we can compute
the rotation matrix R by solving the following equation set:

[0, 0, g] = R ∗ ~gravity

[0, 1, 0] = I ∗R ∗ ~Yw
(2)

Here ~gravity represents the gravity sensed by the watch,
which can be obtained by the Android API. g represents
the magnitude of gravity. We take the value of 9.8m/s2. By
multiplying the raw sensor data with the rotation matrix R,
we can get the sensor data represented in the user’s coordi-
nate. After this transformation, the sensor data are ready
to be used for the feature extraction algorithms.

5. COUNTING TOOTHBRUSHING
STROKES USING ACOUSTIC SENSING

Each time a toothbrushing gesture is identified, our sys-
tem estimates the number of brushing strokes conducted
during that time interval. In this study, we use the acoustic
sensors to achieve this goal. The acoustic sensors have been
used in toothbrushing surface recognition [20]. One advan-
tage of the acoustic sensors is that they are affected by noises
different from those affecting the motion sensors. Therefore,
by including the acoustic sensing in the toothbrushing mon-
itoring, we can potentially improve the system robustness to
noises.

Sounds are generated during each toothbrushing stroke.
To count the toothbrushing strokes, our system use a Root
Mean Square (RMS) based approach to track the intensity
of the sound wave, and mark each significant peak as an
indicator of a toothbrushing stroke. Given any sound wave
series qt collected for the current time interval [tstart, tend],
we compute the moving RMS value during this time window,
denoted by qrms

t . After the RMS value of the sound wave
is computed, we then find all the local maximas of qrms

t

that have values larger than the average RMS value of the
entire window. Then we combine peaks that are within 0.1
seconds of each other. We count all the remaining sound
wave peaks as an estimation of toothbrushing strokes. This

Algorithm 1 Toothbrushing Monitoring Algorithm

1: Collect sensor data from accelerometer, gyroscope, grav-
ity sensor, magnetic sensor and acoustic sensor

2: Preprocess sensor data
3: Conduct coordinate rotate transform for acceleration

data based on the gesture variation model
4: Extract features based on the toothbrush orientation

model and the toothbrushing gesture models.
5: Detect incorrect toothbrushing techniques
6: Recognize toothbrushing surface
7: Estimate the number of toothbrushing strokes
8: Display and backup data

algorithm is illustrated in Figure 10. We can see that in this
figure, the sound wave is collected in 2 seconds. There are
5 peaks of RMS value detected, which correspond to the 5
toothbrushing strokes during this time interval.

6. TOOTHBRUSHING MONITORING AL-
GORITHM

Our gesture recognition strategy is summarized in Al-
gorithm 1. During the toothbrushing process, the smart
watch continuously collects sensor data from the accelerom-
eter, gyroscope, gravity sensor, magnetic sensor and acous-
tic sensor. These data are buffered in windows of a fixed
time length. Then the acceleration data are processed using
gesture variation offset algorithm described in Section 4.3.
Based on the toothbrush orientation model and the arm mo-
tion models, the system extracts the toothbrush orientation
features, the forearm rotation features, the elbow/shoulder
flexion/extension features, wrist flexion/extension features,
PCA-based motion direction features and the statistical fea-
tures.

After all the features are extracted, the system proceeds
to detect incorrect toothbrushing techniques. The incor-
rect toothbrushing technique detection algorithm serves two
goals. Firstly, it filters out unseen gestures, so that the sur-
face classification algorithm can have better performance.
Secondly, it warns users about incorrect toothbrushing tech-
niques from time to time.

The detection of incorrect toothbrushing technique is chal-
lenging because there are many different incorrect ways of
brushing. Therefore, it is impractical to collect training data
for all these techniques. Our strategy is to regard this prob-
lem as an anomaly detection problem. Based on our models
of toothbrush orientations and toothbrushing gestures, our
system will identify whether or not the sensor data is normal
(Bass toothbrushing technique), or is too different from the
training data (non-Bass toothbrushing technique).

We select the one-class Support Vector Machine (SVM)
classifier to detect incorrect toothbrushing techniques. The
nice property of SVM is that by using the kernel trick, the
algorithm can compute a highly non-linear separating plane
for classification. The one-class SVM separates all the data
points from the origin in the feature space and maximizes
the distance from this hyperplane to the origin [32]. This
results in a binary function that returns +1 if the data is
in the region of the training data points, and -1 elsewhere.
Each time an incorrect toothbrushing technique is detected,
a message will be displayed to notify the user.

If the input data is recognized to be the correct (Bass)
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Figure 11: Transition Probability for Toothbrushing Surface

toothbrushing technique, the system will determine the tooth-
brushing surface at the next stage. In general, any multi-
class classifier can be used. We evaluated several classifiers
and selected the Naive Bayes classifier. Specifically, given
the training label (the ground truth toothbrushing surface)
zi and the training feature set fi, the conditional probabil-
ity p(fi|zi), the class prior probability p(zi) and the feature
probability distribution p(fi) are computed. In the testing
phase, given an input feature set finquiry, the predicted class
probability is computed using the Bayes Rule:

p(z|finquiry) =
p(finquiry|zi) ∗ p(zi)

p(finquiry)
. (3)

The label z′ that maximizes p(z′|finquiry) is returned by
the algorithm as the predicted toothbrushing gesture.

Finally, the toothbrushing stroke estimation algorithm is
used. The estimated number of toothbrushing strokes and
the predicted labels are recorded and will be presented to
the user after the toothbrushing is finished.

6.1 Improving Recognition Accuracy with
Toothbrushing Order

People usually have set toothbrushing habits. One such
habit is the order of brushing the 16 tooth surfaces. With
the data we collected, we observed that users had certain
patterns in the order of toothbrushing. Similar observations
are also reported in literature [25]. In this subsection, we
develop a hidden Markov model to learn the probability dis-
tribution of the user-specific brushing order, which allows
us to estimate the current brushing surface based on previ-
ously brushed surfaces. We can also use it to correct false
recognition results from motion models. Combined with our
gesture recognition algorithms, this improves the accuracy
of our brushing gestures recognition solution.

6.1.1 Observations
Some users have stable toothbrushing orders. As an exam-

ple, we analyzed twenty-two toothbrushing sessions for one
of the users, and computed the transition probability matrix

of the brushing order in Figure 11. We found that there was
a strong pattern in the toothbrushing order. From this ma-
trix, we can see that the transition probabilities from Front
Upper Outer (FUO) to Front Lower Outer (FLO), from FLO
to Left Lower Outer (LLO), from Front Upper Inner (FUI)
to Front Lower Inner (FLI), and from FLI to Right Lower
Outer (RLO), are 100%. This means that these orders were
followed in all the twenty-two toothbrushing sessions. Be-
sides, for all the surfaces, the transition probabilities for the
most likely next surface are all greater than 70%. In sum,
the toothbrushing order is highly predictable and was fol-
lowed by most of the twenty-two toothbrushing sessions.

6.1.2 Integration with the Surface Recognition Algo-
rithm

We design a simple algorithm that can be easily inte-
grated with our system. The algorithm maintains a sur-
face transition probability matrix Mt. The algorithm is in-
voked only when the Bayes based surface classifier makes a
prediction z(t)′ that is different from the previous predic-
tion z(t − 1). If the classification confidence p(z(t)′|f) is
greater than an ambiguity threshold Tc, it means the pred-
ication is accurate, and the new prediction value z(t)′ will
be used to update the matrix Mt. On the other hand, if
the classification confidence p(z(t)′|f) is smaller than Tc,
the algorithm will find out the most likely next surface z′′

given the previous surface z(t − 1) from the transition ma-
trix Mt. Then the algorithm computes the weighted prob-
ability c1 = (1 − α)p(z(t)′|f) + αMt(z(t − 1), z(t)′) and
c2 = (1 − α)p(z′′|f) + αMt(z(t − 1), z′′). The algorithm
will return z(t)′ if c1 ≥ c2, and return z′′ otherwise.

7. EVALUATION

7.1 Experiment Setup

7.1.1 System Implementation
We have implemented and tested the system on the Gear

Live smartwatch [4], Nexus 7 (2013) tablets [3] and the Ama-
zon Web Service (AWS) [1] platform. The Gear Live smart-
watch has an accelerometer, a gyroscope, a gravity sensor,
a magnetic sensor, and a microphone. It has 512 Mb RAM
and a Quad-core 1.3GHz CPU. It uses a Bluetooth radio to
communicate with the tablet. We use the AWS S3 service
to store the sensor data, and use the AWS EC2 computation
platform to process the data.

For the software part, we have implemented the feature
extraction and classification modules on the Android Oper-
ating System installed on the Gear Live smartwatch.

7.1.2 Datasets
We deployed this system to 12 volunteers to conduct daily

toothbrushing. At the beginning of the experiment, we
demonstrated the Bass technique to the volunteers in per-
son and let them watch an instruction video. Each volun-
teer brushed his or her teeth for at least two minutes twice
a day. The system asked users to label each of their brush-
ing surfaces with a user interface on the tablet during each
toothbrushing session. This baseline collection phase lasted
for up to 14 days. After this phase, the users conducted
toothbrushing normally wearing our wrist watch without
having to input gesture labels. The ground truth labels were
recorded by a second observer or by video recording. The



second phase of data collection lasted for up to 7 days. By
one set of training data, we mean the amount of sensor data
collected in one toothbrushing session.

To evaluate the incorrect toothbrushing detection algo-
rithm, we recorded sensor data from four of these volun-
teers. The volunteers brushed their teeth using the hori-
zontal technique, one of the most commonly seen incorrect
toothbrushing technique [28]. They brushed each of their in-
ner and outer surfaces (12 surfaces) using horizontal strokes.
Each volunteer brushed for five times. The incorrect tooth-
brushing detection algorithm was trained solely by correct
toothbrushing data and was tested using both the correct
and incorrect toothbrushing data.

7.1.3 Evaluation Methodology
Toothbrushing sensor data collected from each user are

divided into one-second segments. We use k-fold cross val-
idation for performance evaluation. Each round of cross-
validation involves partitioning a sample of data into com-
plementary subsets, performing the analysis on one subset
(called the training set), and validating the analysis on the
other subset (called the validation set or testing set). To
obtain statistical confidence, ten rounds of cross-validation
were performed using different partitions, and the validation
results are averaged over the rounds.

To measure the toothbrushing surface recognition accu-
racy, we use the precision, recall, and F1 score. Precision is
defined as the percentage of time the algorithm makes cor-
rect predictions. The recall rate is defined as the percentage
of time when the user is brushing any surface, and the sys-
tem recognizes it correctly. F1 score is commonly used to
integrate both results. Specifically, precision, recall and F1

score are computed using the following equation:

precision = TP/(TP + FP )
recall = TP/(TP + FN)
F1 = 2 ∗ precision ∗ recall/(precesion+ recall)

(4)

In these equations, TP represents true positive, FP rep-
resents false positive and FN represents false negative.

To evaluate the incorrect toothbrushing gesture recogni-
tion accuracy, we use the Recall rate and the True Nega-
tive Rate (TNR). TNR measures the proportion of incorrect
toothbrushing gestures that are detected by the algorithm.
It is defined as TN/(TN + FP ).

7.2 Toothbrushing Surface Recognition

7.2.1 The Effectiveness of Different Features
We present the results on effectiveness of different fea-

tures. Specifically, we evaluated the statistical features (sta)
defined in Section 4.2.2, the gesture model features (model)
defined in Section 4.1, the PCA direction features (pca) de-
fined in Section 4.2.1, and the toothbrush bristle orientation
features (mag) defined in Section 3.4. Finally, we also tested
the effectiveness of the toothbrushing order based algorithm
described in Section 6.1. In each round of cross validation,
three sets of sensor data were used to train the machine
learning algorithm, and the remaining sensor data were used
for evaluation. The evaluation accuracy results are shown
in Figure 12.

From this figure, we can see that when only the statistical
features are used, the recognition precision is only 65.6%,
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Figure 12: Surface Recognition Accuracy vs. Different Fea-
ture Sets

meaning that the subtle differences of the motions are not
captured by these features alone. When the gesture model
features are included, the system can better distinguish the
back-forth horizontal motions and the vertical rolling mo-
tions. As a result, the recognition precision is improved to
72.9%. The PCA features are designed to determine the
directions of the toothbrush motions, and can provide an
additional 3% of improvements to the recognition precision.

When the magnetic sensing based toothbrush orientation
features are used, the precision is boosted to 85.6%. The
improvement is due to the features’ effectiveness in distin-
guishing orientations of the toothbrushes, which are hard to
recognize using motion sensors alone. For example, without
these features, the toothbrushing gestures of upper or lower
chewing surfaces, which have almost identical motions, are
hard to distinguish.

In the implementation of the toothbrushing order based
algorithm, we set the ambiguity threshold Tc to a high value
so that only approximately 5% of the testing data will be
recognized as ambiguous. The results are shown in Figure 12
in the column with label“all,order”. From this figure, we can
see that there is a 2.1% increase in the surface recognition
precision. It shows that toothbrushing order information is
useful in the surface recognition algorithm. Nevertheless,
from this experiment we observed that there were still two
ways to improve the algorithm. Firstly, some false predic-
tions occur continuously. In such cases, the algorithm would
falsely regard them as brushing the same surface so that no
correction will occur. Secondly, we find that the posterior
probability of the Naive Bayes classifier is not always an
effective indicator of prediction confidence. In some cases,
the prediction confidence (i.e. the posterior probability) re-
turned by the Bayes classifier is close to 1, even when the
prediction results are incorrect [8]. To fully utilize the tooth-
brushing order information, it’s important to have a more
accurate prediction confidence estimation.

We note that in different rounds of cross validation, about
3% of standard deviation in the recognition accuracy (pre-
cision, recall and F1) existed, as we can see in the figure. To
improve the confidence of the recognition accuracy results,
we have conducted ten rounds of experiments and calculated
the average.

7.2.2 Surface Recognition Confusion Matrix
To better understand the strengths and weaknesses of the
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Figure 13: Toothbrushing Surface Recognition Confusion
Matrix

surface recognition algorithm, we study the confusion ma-
trix M shown in Figure 13. In this matrix, each entry in
cell M(i, j) represents the probability for the algorithm to
predict a gesture as label j, when its true label is i. Due to
the roundup error, each row of the matrix may not sum up
to 100%.

The confusion matrix shows that our designs are effec-
tive in many ways. Firstly, we can see that our system
effectively distinguishes the upper and lower chewing sur-
faces. For example, there are almost no confusions between
RLC and RUC, or between LLC and LUC. This is because
of the introduction of the magnetic sensing design, which
reliably distinguish upper or lower chewing surfaces. Be-
sides, the Left Lower Outer (LLO) surface is reliably rec-
ognized (96%), showing the effectiveness of the forearm ro-
tation model. Furthermore, we can see that the six elbow
motion gestures (FUI, FLI, LLC, LUC, RLC, RUC) are al-
most never confused with other gestures. This also shows
the effectiveness of the elbow motion model.

We can also see that there are difficulties in toothbrushing
surface recognition. There are a few toothbrushing gestures
that are very similar to each other. We can see that there
are 18% of Front Lower Outer (FLO) data falsely classified
as Front Upper Outer (FUO). Gestures of toothbrushing
these two surfaces are very similar, and the major differ-
ence is the rolling direction of the toothbrush, and the skew-
ness features(Section 4.2.2) are designed to distinguish them.
Nevertheless, there are still cases not recognized. Another
major source of error comes from the toothbrushing direc-
tion recognition. To name a few, 17% of Left Lower Chewing
(LLC) data are falsely classified as Front Lower Inner (FLI),
and 8.1% of Right Upper Chewing (RUC) data are classi-
fied as Front Upper Inner (FUI). The motions of these three
gestures are similar. They are all horizontal back-forth mo-
tions primarily driven by elbow/shoulder flexion/extension.
The key to distinguishing them is to recognize their motion
directions, and the PCA-based direction features are used.
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Figure 14: Surface Recognition Accuracy vs. Training Data
Set Size

However, there are still cases when this feature cannot dis-
tinguish effectively.

Even though there are recognition errors during some one-
second segments, since the brushing of each surface lasts for
several seconds, it is still possible for the system to recognize
the surface accurately. We will work on this direction in the
future work.

7.2.3 The Influence of Training Data Set Size
In this experiment, we studied the toothbrushing surface

recognition accuracy when different amount of training data
were used. For each user, we use from one to six sets of
toothbrushing data to train the machine learning model. Af-
ter the model had been trained, we evaluated its recognition
accuracy using all the remaining sensor data. The results
are shown in Figure 14.

From this figure, we can see that when one set of tooth-
brushing data is used, the surface recognition precision is
69.2%. As more training data sets are used, the surface
recognition accuracy improves. When the number of train-
ing data sets is three, the recognition precision, recall and
F1 score are 85.6%, 83.6%, and 84.5%, respectively. When
more than three sets of sensor data are used, the recognition
accuracy remains stable, meaning that the marginal gain in
the system performance is small. This experiment shows
that to have high-quality toothbrushing monitoring, a user
just needs to brush his or her teeth carefully for three times
to allow the system to learn. After that, the system will be
able to provide high-quality monitoring.

7.3 Incorrect Toothbrushing Technique Detec-
tion

The evaluation results are shown in Figure 15. We can
see that when only one set of toothbrushing data is used in
training, the recall rate is 74%, and the TNR is 50%. As
the number of training data sets increases to 4, the recall
rate stabilizes at 90%, while the TNR gradually increases to
66%. When at least four sets of training data are provided,
the system can maintain a high recall rate of 90%. Since the
recall rate is high, the users will be able to brush continu-
ously without being disturbed by false alarms frequently, as
long as they are brushing using the Bass technique.

We can also see that the true negative rate ranges from
50% to 66%, meaning that the algorithm can miss incor-
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Figure 15: Incorrect Toothbrushing Technique Detection

Avg. (mAh) Std. Dev. (mAh)

Training 3.3 0.63
Monitoring 3.9 0.60
Google Fit 2.8 0.53

Table 1: Energy Consumption for Each Toothbrushing Ses-
sion

rect brushing techniques. Although the system may miss
incorrect gestures from time to time, its detection accuracy
is high enough to detect long-term incorrect toothbrushing
habits. This is because each time the user brushes in the in-
correct technique for one second, the system on average has
a probability of 66% of detecting it. If the incorrect tooth-
brushing technique is frequently repeated, the probability of
the system identifying at least one instance of such incorrect
brushing goes up.

7.4 Impact on Battery Life
One resource constraint of our system is in the smart-

watch because it has smaller battery capacity (310mAh).
In this section, we conducted experiments to test the im-
pact of our system on the watch battery life. Using three
sets of the toothbrushing monitoring system, we repeated
the toothbrushing monitoring process for five times each,
and measured the energy consumptions using the battery
historian tool [2]. The results are shown in Table 1. Dur-
ing the training phase, the system did not execute recogni-
tion algorithms. Instead, the system recorded sensor data
and uploaded the data to the cloud after each toothbrushing
session. In the monitoring phase, besides recording and up-
loading sensor data, the system also conducted recognition
algorithms in real-time every second, and sent the recog-
nition results to the tablet for display. We can see that
under the highest workload, the smartwatch consumed 3.9
mAh per toothbrushing session. Since each user brushed for
about 2 minutes for twice a day, normal daily toothbrushing
with our system consumes less than 5% of the smartwatch
battery capacity.

We also tested the energy consumption rate of another
commonly used activity recognition app for smartwatch, the
Google Fit. This app continuously recorded the value of
the step sensor and display the results. We run this app
on three smartwatches for five times, and each time lasted
for two minutes. We found that the smartwatches on av-
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Figure 16: Stroke Counting Accuracy

erage consumed 2.8 mAh, with standard deviation of 0.53
mAh. A possible reason for the lower energy consumption
was that fewer computation tasks were executed than our
system. Besides, we also tested the idle energy consumption
of the smartwatch. When a smartwatch was left unattended
to display time only, the battery life was about 110 hours.
These results showed that in terms of energy consumption,
our system had a similar performance to those in the mar-
ket, and would not seriously affect the smartwatch battery
life.

7.5 Case Study
To evaluate the effectiveness of our smart toothbrushing

system in improving dental hygiene, we have recruited 12
volunteers and conducted a user study. We invited a dentist
from a local hospital to check plaque level of every tooth
surface for each volunteer. Each subject chewed a plaque
disclosing pill, which highlighted plaques on teeth. The den-
tist recorded the plaque levels using the Turesky Modified
Quigley-Hein Plaque Indexes (TQHPI) [12] before and after
the subjects brushed their teeth. Each subject was given
the instructions on the Bass technique and was using our
system during toothbrushing.

This study consisted of two parts. In the first experiment,
9 volunteers brushed each of their tooth surfaces with thirty
brushing strokes. We evaluated the effectiveness of our sys-
tem in estimating toothbrushing effort. In the second exper-
iment, 3 volunteers brushed teeth with different numbers of
strokes for each surface. We assessed the relation between
toothbrushing effort and the plaque removal quality.

We note that the result of this set of experiments can
be affected by a few factors, such as insufficient chewing of
plaque disclosing tablets, personal toothbrushing habit, and
amount of toothpaste. Fortunately, the obtained result was
consistent and therefore served the purpose of demonstrat-
ing the potential value of our smart toothbrushing system.

7.5.1 Counting Toothbrushing Stokes
In the first experiment, we tested the effectiveness of the

toothbrushing stroke counting algorithm described in Sec-
tion 5. The detection error was defined as |predicted number
−ground truth|/|ground truth|.

The results are shown in Figure 16. For the 9 subjects,
our algorithm on average achieves an error rate of 10.3%.
This demonstrates its effectiveness in evaluating the tooth-
brushing effort of the users.

For the subject 4, we can see that the error rate is as high
as 30%. This is because the subject 4 was brushing teeth
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Figure 17: Tooth Plague Reduction vs. Measured Tooth
Brushing Effort

with his mouth closed. As a result, the sound collected by
the device was small and had low signal to noise ratio. To
solve this problem, we plan to design a hybrid toothbrushing
stroke counting algorithm that combines both acoustic sens-
ing and motion sensing, which has better noise robustness.

7.5.2 Plaque Reduction
From the previous experiment, we showed that our system

was able to count the toothbrushing strokes with small error
(10.3%). In the second experiment, we tested how the num-
ber of toothbrushing strokes were related to the tooth plaque
removal rate. 3 subjects were asked to perform toothbrush-
ing with different numbers of brushing strokes (10, 20, and
30) on each surface, while they used our system to estimate
their brushing effort. Our system estimated the effort of
toothbrushing by counting the number of brushing strokes.
30 strokes on each surface was considered 100% brushing ef-
fort in this analysis, the tests of 10 and 20 brushes on each
surface were normalized accordingly.

The experimental result of this test is shown in Figure 17.
We can see that the plague reduction increases as the ef-
fort of toothbrushing increases. Insufficient toothbrushing
subject B (60% effort) and subject C (35% effort) only re-
move 62.7% and 16.8% plague, comparing to that of sub-
ject A (100%). These results show that first insufficient
toothbrushing can be reliably detected by our system. And
second, insufficient toothbrushing directly affect the effec-
tiveness of the plaque removal. Even short term insufficient
toothbrushing activities do harm to our teeth as plaque ac-
cumulates quickly and introduces gum diseases.

8. STATE OF THE ART
Various techniques have been employed to perform gesture

recognition, such as radio waves [30], video [24], and wear-
able sensors [9, 19, 31]. Among different wearable sensing
devices, wrist watch has received a lot of attention. In pa-
per [14, 22], the authors studied the hand hygiene quality as-
sessment using wrist-worn devices. They achieved good per-
formance in recognizing correct hand-washing gestures. The
authors of [27] designed probabilistic models to successfully
recognize smoking gestures with high accuracy. In [23], the
authors applied Dynamic Time Warping (DTW) to match
the inquiry data to the model data in the training sets. They
achieved good performance (over 98% of accuracy) in clas-
sifying eight gestures. These works provided valuable in-
sights and demonstrated the feasibility of complex gesture
recognition using wrist-worn devices. However, their pri-
mary goal was to conduct gesture recognition. In our work,
besides recognition of gestures, we also assessed the quality

of toothbrushing. Moreover, we developed a novel magnetic
sensing algorithm to capture the motion of a hand tool, the
toothbrush.

In order to monitor toothbrushing, several systems have
been designed. In [10], authors designed a vision-based
motion tracker for toothbrushing. In [20], the authors de-
veloped a hidden Markov model to recognize acoustic pat-
terns during toothbrushing. Different from these works, we
mainly focused on motion recognition for both toothbrush
and brushing gestures. Also, our approach recognized all
16 tooth surfaces with high accuracy, whereas their solution
only recognized four different tooth quads.

There have been many research works on electric tooth-
brushes. In [33], the authors presented evidence that Os-
cillating Rotating Pulsating toothbrushes achieved effective
hygiene result. The authors of [34] explored the use of pres-
sure sensors on the electric toothbrushes. The authors of [21]
used acceleration and magnetic sensors in the electric tooth-
brush to detect the motion and orientation of the tooth-
brush. Our magnetic sensing design was related to but dif-
ferent from the designs proposed in these works. To sense
the motions of the toothbrush, previous approaches gener-
ally installed various sensors on the toothbrush, while our
approach was to install a magnet on the toothbrush to make
it sensible by the magnetic sensor on the smartwatch. Our
approach significantly reduced the cost and the system com-
plexity, and improved the system robustness to the change of
geomagnetic field. Besides the novelty in design, our system
also tracked the toothbrushing quality and detected incor-
rect toothbrushing gestures, which were not addressed in
previous studies.

9. CONCLUSION AND FUTURE WORK
As the most important oral hygiene activities at home,

daily toothbrushing can effectively prevent tooth decay and
gum diseases. To accurately monitor toothbrushing compli-
ance and effectiveness, we developed a novel sensing system
using an off-the-shelf toothbrush and a wrist watch. Exper-
imental results with 12 users for up to 3 weeks showed that
our solution reliably recognized the gestures for all 16 brush-
ing surfaces using the Bass technique with a high accuracy.

In the future, we plan to investigate the recognition of
different incorrect toothbrushing, which is important to help
users form good toothbrushing habits. We will apply the
deep learning based algorithms to capture the subtle changes
in the data from the magnetic sensor and gravity sensor due
to the incorrect toothbrushing gestures. We are working
with the dental professionals to conduct a rigorous clinical
study on the effectiveness of our system with real patients.
We will conduct a control group study, where one group of
users will brush teeth with the help of our system, while
the others will brush normally. By comparing the plaque
removal quality in both groups, we can show whether or not
the system can improve dental hygiene.
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