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Systematically Ensuring The Confidence of Real Time Home
Automation IoT Systems

Lei Bu, Wen Xiong, Chieh-Jan Mike Liang, Shi Han, Dongmei Zhang, Shan Lin, and
Xuandong Li

Recent advances and industry standards in Internet of Things (IoT) have accelerated the real-world adoption
of connected devices. To manage this hybrid system of digital real-time devices and analog environments,
the industry has pushed several popular home automation IoT (HA-IoT) frameworks, e.g., IFTTT (If-This-
Then-That), Apple HomeKit, and Google Brillo. Typically, users author device interactions by specifying the
triggering sensor event and the triggered device command. In this seemingly simple software system, two
dominant factors govern the system confidence properties with respect to the physical world. First, IoT users
are largely non-expert users, who lack the comprehensive consideration regarding potential impact and joint
effect with existing rules. Second, while the increasing complexity of IoT devices enables fine-grained control
(e.g., heater temperature) on the continuous real time environments, even two simply connected devices can
have a huge state space to explore.

In fact, bugs that wrongfully control devices and home appliances can have ramifications to system cor-
rectness and even user physical safety. It is crucial to help users to make sure the system they created meets
their expectation. In this paper, we introduce how techniques from hybrid automata can be practically ap-
plied to assist non-expert IoT users in the confidence checking of such hybrid HA-IoT systems. We propose
an automated framework for end-to-end programming assistance. We build and check the linear hybrid au-
tomata (LHA) model of the system automatically. We also present a quantifier elimination based method
to analyze the counterexample found and synthesize the fix suggestions. We implemented a platform, Men-
Shen, based on this framework and proposed techniques. We conducted sets of real HA-IoT case studies with
up to 46 devices and 65 rules. Empirical results show that MenShen can find violations and generate rule
fix suggestions in only 10 seconds.
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1. INTRODUCTION
With the rapid advancement of computing technology, the computing paradigm of
cyber-physical systems (CPS) [Lee 2006] has emerged in the last decade. Under this
paradigm, sensor data can be acquired and processed in real time, which then drive
intelligence [Lin et al. 2008]. Furthermore, riding on the momentum of Internet of
Things (IoT), the industry has pushed for standards that enable more connected de-
vices to interoperate. However, center to this connected vision is a IoT control frame-
work, which manages the hybrid system of digital real-time devices and analog envi-
ronments in a space. Many home owners have benefited from this IoT control frame-
work. For example, they can author automation tasks that send the SMS message to
the house owner when the kitchen has high smoke level.

The industry has pushed out several offerings of the home automation IoT (HA-IoT)
service, e.g., IFTTT.com (If-This-Then-That) [ift 2011], Apple HomeKit [ah 2016], and
Google Brillo [gb 2016]. Interestingly, the user base of home automation largely con-
sists of non-expert users who have insufficient background with programming hybrid
control systems. Therefore, these industry offerings simplify authoring an automation
task down to authoring a set of intuitive event-triggered rules – or IFTTT-style rules.
IFTTT rules are popular among HA-IoT services, and one HA-IoT service, IFTTT.com,
has tens of thousands of active users and over 340,000 shared rules. An IFTTT-style
rule is in the format of if A then do B, where A is a triggering sensor event and B is a
triggered device command. We illustrate the automation task with an example of two
rules, which regulates the CO concentration to be under 200 ppm in a space1.

IF Smart_Fan.CO_reading == 195 THEN execute Alarm.TURN_ON command
IF Alarm.TURN_ON.Signal ==TRUE THEN execute Smart_Fan.ACTIVATE command

This CO example has a clear relation with the users’ safety. There is also another
widely used rule which concerns the user experience of keeping the room temperature
in certain range and also concerns energy saving2.

IF Room. Temperature_reading ==20 THEN execute HVAC.TURN_OFF command
IF Room. Temperature_reading ==28 THEN execute HVAC.TURN_ON command
IF HVAC.TURN_ON.Signal == TRUE THEN execute Window.CLOSE command

However, while individual IFTTT-style rules are simple to author, reasoning about
their confidence (i.e, whether a system’s real time behavior conforms to a user’s expec-
tation) is a complicated task with implications to the system confidence. This is crucial
as wrongfully actuating IoT devices and appliances could have ramifications on user
physical well-beings (e.g., high CO concentration). Such reasoning needs accurately
modeling the behavior of a system of devices over the time domain. The challenges
arise from the fact that (1) environment and system variables are changing continu-
ously, (2) events can happen at any time, and (3) the number of interactions to inspect
increases with the number of automation rules. More importantly, while typical real
time control systems are maintained by domain experts, HA-IoT systems are operated
by non-expert home users. Therefore, building on formal model checking, we investi-
gate new approaches and tools to help non-expert IoT users in systematically realizing
high-confidence real time HA-IoT systems.

Our system design is guided by two main principles. First, there is an increasing
number of IoT appliances that deal with real time continuous environments with dy-
namic laws and time delays. In our CO example, if the smart fan is activated, it can

1We note that this CO concentration case is inspired by a rule uploaded by normal users on IFTTT.com,
https://ifttt.com/recipes/368595-turn-on-your-air-purifier-when-the-air-quality-decreases.
2This HVAC case is also inspired by a rule on IFTTT.com, https://ifttt.com/recipes/
182684-if-the-temperature-inside-drops-below-degrees-then-turn-off-a-c.
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decrease CO concentration according to dynamic law (ODE dCO/dt = −2). So, the
195 ppm threshold of the purifier seems is correct that CO level will not go over 200
ppm. However, due to the existence of time delay of rule reaction, the CO level could
exceed the threshold before the smart fan is activated. The HVAC example shares a
similar story as well. Related efforts either simplify the problem down to discrete val-
ues [Liang et al. 2015; Liang et al. 2016], or they do not support arbitrary continuous
behavior [Croft et al. 2015], which may cause false negatives in the verification. Sec-
ond, all steps of system modeling, specification verification and violation fixing should
be as transparent as possible to the user. Unlike typical CPS systems with domain
experts [Clarke et al. 2008], relying on non-expert users is impractical due to the lack
of background knowledge.

This paper realizes an end-to-end programming assistance to automate the model-
ing, checking, and fixing of HA-IoT systems. Specifically, this paper makes the follow-
ing contributions:
Hybrid Automata Model Checking of Real Time HA-IoT System. As IoT devices
are becoming customized commodity, it is important to help IoT users to ensure the
confidence of the automation system they built. Motivated by IoT-specific characteris-
tics, we take the first step to fill this gap with hybrid automata model checking. First,
by using hybrid automata, it is possible for us to model and check the complex arbitrary
continuous real time behavior of the analog system. This was previously unachievable
by related efforts [Croft et al. 2015]. Second, in contrast to efforts which require user
intervention in modeling and debugging [Liang et al. 2015], our work tries to automate
all stages for non-expert IoT users.
Counterexample-guided Fix Suggestions. With each specification violation, the
common practice is for the verification tool to output a counterexample, which is then
analyzed by domain experts to fix the software problem. However, such an assumption
does not hold in the case of non-expert IoT users. Instead, what should be provided
is root cause analysis that pinpoints the IFTTT rule to fix. To this end, we present a
method to parameterize the system, and synthesize the according parameters’ values
by quantifier elimination (QE) [Monniaux 2008] technique automatically.
System Implementation and Real Case Evaluation. We have been operating an
IoT programing platform, MenShen, which implements our techniques. We check and
fix a large real case including 46 devices and 65 rules in only 7.5 seconds. In MenShen,
we also support and appreciate the interaction with users. If the users can select the
specific rules they want to fix, or give the preferred range of rule parameters, MenShen
can finish the aforementioned task in only 4 seconds with high user acceptance.

Structure of the Paper. The IFTTT-style IoT programming platform studied in
this paper is presented in the next section. Section 2 also recaps the definition and ver-
ification technique of LHA, which works as the underlying decision procedure of this
paper. After that, we present the architecture of our modeling, verification and fixing
framework in Sect. 3. The detail of the automatic modeling technique and the verifi-
able schema behind this is introduced in Sect. 4. The verification and our new proposed
quantifier elimination based fix suggestion is presented in Sect. 5. The system imple-
mentation and evaluation is reported in Sect. 6. Section 7 and 8 briefly discusses the
limitation of this work and reviews the related work. Finally, the conclusion is stated
in Sect. 9.

2. BACKGROUND
2.1. IFTTT-style Programming Paradigm for HA-IoT
Supporting interactions among digital real-time devices and analog environments,
software system is at the center of home automation IoT (HA-IoT). This section dis-
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cusses the current state of HA-IoT software systems, in terms of the programming
paradigm and the unfilled gap.

Similar to wireless sensor networks, HA-IoT is a software system that reacts to
changes in analog environments. For example, if the room temperature is below a
threshold, the heater should be turned on. As such, the event-driven programming
paradigm is widely used by real-world HA-IoT software systems, e.g., IFTTT [ift 2011],
Apple HomeKit [ah 2016], and Google Brillo [gb 2016]. Being popularized by IFTTT,
this paradigm is referred to as IFTTT-style programming. In IFTTT-style program-
ming, an automation program consists of IFTTT rules, and these rules are executed in
parallel. Individual rules follow the format of if A then do B, where A is a triggering
sensor event and B is a triggered device command. In the example above, the former is
the room temperature, and the latter is turning on the heater. By crawling the IFTTT
website, we found that more than 34,000 HA-IoT rules have been created and shared
by normal users, including: alerting when the room CO level is too high, shutting the
heater when no one is home, etc. Depending on the number and types of connected
devices deployed, a normal scale real case HA-IoT deployment typically has 10 to 30
IFTTT rules.

We argue that current HA-IoT software systems have the following unfilled gaps.
Lack of Automatic HA-IoT Confidence Verification. Since HA-IoT is a software
system that controls IoT-enabled devices and appliances, any software bug (or unex-
pected behavior) can have ramification in the real world, even risk the user safety.
For example, in our previous CO example, if the smart fan starts too late, the room
CO level can go beyond 200 ppm and be harmful. Therefore, we argue an automatic
confidence verification of certain system is crucial.

For formal modeling and verification to be practical, the HA-IoT programming tool
suite must be able to automate as much as possible. While HA-IoT software systems for
typical houses might not be as complicated as expert-built real-time control systems
such as trains, the state space behind the IFTTT-style rules can quickly grow beyond
non-expert users’ comprehension. Furthermore, the time delay and different dynamic
laws in the system is already too difficult for the normal end-users to understand. As
we discuss in the next sections, techniques from hybrid automata can be the foundation
of confidence verification solution, for HA-IoT solutions from the industry.
Lack of Debugging Feedback for Non-expert IoT Users. When a specification
violation is identified, the common practice is for the verification tool to provide domain
experts with a counterexample, or a sequence of system state transitions leading to
the violation. Unfortunately, this feedback lacks sufficient information for non-expert
users to comprehend the violation and pin-point the rules to fix. First, since a violation
is caused by a sequence of rule execution, there is no clear indication which rule is at
fault. And, the overhead of understanding the effect of each rule on the output can be
high. Second, changing a rule in the execution sequence does not necessarily fix the
problem, as doing so may also change what rules are triggered later in the sequence.

To fill this gap of debugging assistance, we propose to use quantifier elimination
(QE) [Monniaux 2008] as the foundation to provide actionable feedback.

2.2. Modeling and Verification of Hybrid System
As we can see from the CO example, and the previous subsection, the behavior of HA-
IoT system is tangling with both discrete logic control and continuous time behavior.
Such a system is called a hybrid system. Linear hybrid automata (LHA) is a class of
widely used formal language for modeling hybrid systems [Henzinger 1996]. The model
checking [Clarke et al. 2001] problem for LHA is considerably difficult. The reachabil-
ity checking problem is undecidable [Henzinger et al. 1998]. Classical techniques try

ACM Transactions on Cyber-Physical Systems, Vol. 9, No. 4, Article 39, Publication date: March 2018.



Systematically Ensuring The Confidence of Home Automation IoT 39:5

to compute the whole reachable state space of the LHA by the expensive polyhedral
computation which is sensitive to the continuous variables and not guaranteed to ter-
minate.

Recently, bounded model checking (BMC) [Biere et al. 2003; Audemard et al. 2005]
has attracted lots of attention as an alternative to general model checking. The basic
idea is looking for a counterexample in the given bound threshold instead of the com-
plete state space. In this manner, the state space needed to search is controlled, and
thus, can be efficiently checked.

Now, let’s give a brief introduction to the definition of LHA [Henzinger 1996] and
a state-of-the-art BMC reachability checking technique for LHA, the path-oriented
bounded reachability analysis [Li et al. 2007; Bu and Li 2011].

Definition 2.1. An LHA H is a tuple H = (X,Σ, V, vI , E, α, β), where

-X is a finite set of real-valued variables; Σ is a finite set of event labels.
- V is a finite set of locations; vI is the initial location.
-E is a transition relation whose elements are of the form (v, σ, φ, ψ, v′), where v, v′

∈ V , σ ∈ Σ, φ is a set of transition guards of the form a ≤
∑l

i=0 cixi ≤ b, and ψ is a set
of reset actions of the form x := c where xi ∈ X , x ∈ X, a, b, c and ci are real numbers
(a, b may be∞).

- α is a labeling function which maps each location in V − {vI} to a location invariant
which is a set of variable constraints of the form a ≤

∑l
i=0 cixi ≤ b where xi ∈ X, a, b

and ci are real numbers (a, b may be∞).
- β is a labeling function which maps each location in V −{vI} to a set of flow conditions
which are of the form ẋ ∈ [a, b] where x ∈ X, and a, b are real numbers (a ≤ b). For
any location v, for any x ∈ X, there is one and only one flow condition ẋ ∈ [a, b] ∈ β(v).

For a group of LHA {H1, H2, . . . ,Hn}, their composition, denoted as N =
H1||H2|| . . . ||Hm, is defined as a linear hybrid automaton from synchronizing all com-
ponents with respect to the same event labels. Labels shared by several LHA models
are called Shared Labels. The semantic of the shared label-guided synchronization
is simple. Suppose several LHA models have a shared label, firing this shared label
triggers the same transition in all models at the same time.

Definition 2.2. For an LHA H = (X,Σ, V, vI , E, α, β), a reachability specification,
denoted as R(v, ϕ), consists of a location v in H and a set ϕ of variable constraints of
the form a ≤

∑l
i=0 cixi ≤ b where xi ∈ X for any i (0 ≤ i ≤ l), a, b and ci (0 ≤ i ≤ l) are

real numbers.

We use the sequences of locations to represent the evolution of an LHA from lo-
cation to location. For an LHA H = (X,Σ, V, vI , E, α, β), a path segment is a se-
quence of locations of the form 〈v0〉

(φ0,ψ0)−→
σ0

〈v1〉
(φ1,ψ1)−→
σ1

. . .
(φn−1,ψn−1)−→

σn−1

〈vn〉, which satisfies

(vi, σi, φi, ψi, vi+1) ∈ E for each i (0 ≤ i < n). A path in H is a path segment starting
from the initial location vI .

The question of whether a given path ρ in an LHA model H satisfies specification
R(v, ϕ) has been well studied in [Li et al. 2007; Bu and Li 2011]. The basic idea is
to describe the state space of ρ by encoding all the semantical elements, including
transition guards, resets, location invariants, and flow conditions along this path into
a formula together, denoted as Ψ. Then, whether ρ satisfies R(v, ϕ) can be translated
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into the problem of the feasibility of Ψ, which can be solved by linear programming
efficiently3.

As we all know, the basic idea of bounded model checking (BMC) is to search for a
counterexample in executions whose length is bounded by some integer k. Given an
LHA, the number of candidate paths with length no longer than k is finite. Therefore,
if we enumerate and check all the paths in the bound one by one, the BMC problem
can be tackled. This is called as path-oriented bounded analysis [Bu and Li 2011; Xie
et al. 2014] of LHA.

Now, we’ve reviewed the status of the latest HA-IoT industry, the definition of LHA,
and also the path-oriented BMC analysis technique for LHA. From next section, we’ll
show how we can use such techniques in the HA-IoT industry.

3. FRAMEWORK OVERVIEW
As summarized in the above sections, the IFTTT-style HA-IoT system gives user high
autonomy to build their own customized smart home automation system, with poten-
tial confidence risks though. As HA-IoT systems have extremely close relations with
users’ daily-life, it is crucial to give a mechanism which can help the users to increase
the confidence of certain systems. In this paper, we propose an automated framework
for end-to-end programming assistance to tackle this problem by performing the model-
ing, checking and fixing of such systems automatically. The framework shown in Fig.1
consists of the following parts:

Fig. 1. The Architecture of The Framework

— Linear Hybrid Automata Automatic Modeling: The first phase of our framework is to
generate the LHA models according to the devices and IFTTT rules in the system. It
is unrealistic to ask a normal end-user to build the models of the system. Therefore,
we design a specific schema where device manufacturers can present the necessary
information of the device according to the format of such schema. Then, we can build
the LHA model of the system from the device documentations and the IFTTT rules
automatically.

— Reachability Analysis of LHA Model: The second phrase of our framework is to check
the user specified unwanted reachability specification by the path-oriented BMC

3Due to the space limitation, we give a short review of the encoding of Ψ in the appendix of this paper.
Readers are also refer to [Li et al. 2007; Bu and Li 2011] for the detail of such techniques.
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checking procedure mentioned in Sect. 2. Clearly, if the unwanted target is not reach-
able, the system is good. Otherwise, we’ll get an error trace, which describes the se-
quence of system events leading to a “bad” state.

— Counterexample-guided Fix Suggestion Synthesis: If the model fails the verification,
the third phase is to help the user in debugging the counterexample. Again, as typical
IoT users have insufficient knowledge in software testing and verification, providing
guidance (e.g., fix suggestions) can be very helpful. To do so, we propose a method
that first parametrizes the system, and subsequently solve the free parameters with
quantifier elimination techniques.

4. VERIFIABLE SCHEMA AND AUTOMATIC LHA MODELING
In this section, we introduce the first part of our framework: Automatic LHA model-
ing. Clearly, it is impractical and not reasonable to ask the normal users to build the
model for the devices and rules manually. Therefore, such task should be conducted
automatically and systematically, if possible.

As we can see from the CO example, the aspects affecting the behavior of the HA-
IoT system including the high level control logic, the time delay and dynamic laws
dwelled in the system, the synchronization among devices and rules and so on. There-
fore, Linear Hybrid Automata (LHA), which is the simplest model that can address all
these aspects, is the most suitable modeling language of such HA-IoT system. Now, the
question is how can we build the LHA model for such system automatically?

4.1. Verifiable Device Schema
Before building an LHA model, we need to get all the information needed about the
device. Actually, IoT-enabled devices typically have a presence-advertising feature. It
is common to see the manufacturer lists the working modes of the device, the public
observable variables, the executable APIs and even simple dynamic laws in different
places, e.g. advertisements, user manuals, device websites, piece by piece.

Clearly, manufacturers know all the information of the device. For the sake of au-
tomatic model generation, we argue each device should come with a profile documen-
tation organized in a specific format that can express all the necessary information
about the device. Actually, industry has started to propose such standard to present
the information of a device in a organized way, for example Device Registry for AWS
IoT (DR) [aws 2015]. Similar with the style of DR, which is readable and writable by
manufacturers, we give the format of the verifiable device schema as follows:

— Device Type and SN, which indicate the type and the SN number of the device.
— A set of System Variables, which indicates the environmental variables affected by

the device or the internal data kept by the device. In detail, if the value of a variable
is observable by the user, we mark such variable as public.

— A set of device Working Modes, which represents the high level discrete working
modes of the device. In detail, for each mode, there should include the dynamic in-
formation of how the system variables will be evolved in such mode. For example, in
our CO example, when the smart fan is activated, the CO concentration in the room
is going down by dCO/dt = −2.

— A set of Transitions, which indicates the internal mode changing logic of the device,
like under which triggering condition, the device will change from mode A to mode B.
There is also a special boolean flag Signal. If this flag is true, it means the execution
of such transition is an triggering condition event that the environment can observe.

— Finally, a set of APIs, which describes the kind of triggered commands that can be
called by users and other devices. It has the same structure as Transitions. The only
difference is that only API can appear in the right part of a IFTTT rule.

ACM Transactions on Cyber-Physical Systems, Vol. 9, No. 4, Article 39, Publication date: March 2018.



39:8 L. Bu et al

JSON [jso 2009] is a widely-used data format that can be parsed efficiently. We de-
sign a specific file format to express the above information in a JSON file. For example,
Listing.1 and Listing.2 in Figure 2 give the JSON files for the devices in the CO exam-
ple.

4.2. From Schema To LHA
Now, we present how to build the LHA model from the device schema automatically.

First, the LHA model for each device is modeled in the following way:

— The name, variables, locations and flow conditions of the LHA model can be gener-
ated based on the device schema directly.

— Each transition in the Transitions section becomes a transition in the LHA model.
— If the Signal flag of the transition is true, then mark the label of the correspond-

ing transition as Signal Transition.Name. In this manner, other LHA models can
communicate with this model by this shared label.

— The API section is treated differently. In detail:
— If the Signal flag of the transition is false, then we treat it as a normal transition

firstly. Then, as API could be called by other components/rules, whenever there is
a new caller, we will add a new transition with the label API.Name Caller.Name4.

— If the Signal flag is true, we add an intermediate location between the source
and target location of certain API call. More specifically, we force the dwelling
time of this intermediate location to be 0. Then, the previous API transitions will
point to this intermediate location, and a new transition will be added from this
intermediate location to the original target location with label Signal API.Name.
In this manner, no matter which caller executes this API, other components can
receive the same signal. For example, we can see such locations and transitions in
Fig.3.a and b.

For IFTTT rules, as each rule i has the same structure, the modeling can be done in
a structural way.

— The structure of the IFTTT rule automaton is simple. There are two locations and
transitions standing for waiting for the enabling of the triggering condition and ready
to execute the triggered command.

— As the triggered command part of a rule can only be an API of a device, the label of the
corresponding transition is API.Name Caller.Name. In this case, it can communicate
with the device automaton by this shared label.

— The triggering condition part could be the happening of an event/signal, or a trigger-
ing condition expression φ of an observable variable
— If it is an signal, the label of the corresponding transition is Sig-

nal Transition.Name.
— If it is an expression, then we introduce a self loop transition in each location of

the device automaton with the expression φ as the guard. The labels of the added
device transition and in the rule model are both Sensor Rulei.

— It is normal to see time delay between the enabling of the triggering condition and
the execution of the corresponding API. Such delay can be marked as the invariants
and guards in the model. For example, in Fig.3.c, we have invariant t ≤ 5 on location
waiting and guard t ≥ 3 on the transition Close Rule1. This means the potential delay
is 3 ≤ t ≤ 5.

4We must distinguish different callers by transitions with different labels, because if different callers use
the same label for one API, then they will be force to fire the transition at the same time according to the
synchronization semantic of LHA
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Listing 1. Smart Fan
{

” Device ” :
{

”Type ” : ” Smart Fan” ,
”SN” : ”0001” ,
” InternalVari ” :
[
{

”Name” : ” CO level ” ,
”Type ” : ” double ” ,
” Default ” : ” 2 0 ” ,
” public ” : ” true ”

}
] ,
”WorkingMode ” :
[
{

”Name” : ” Closed ” ,
”Dynamic ” :
[
{

” VariableName ” : ” CO level ” ,
”ChangeRate ” : ” [−1 ,1 ] ”

}
] ,
” Invariant ” : ” true ” ,
” i n i t ” : ” true ” ,

} ,
{

”Name” : ” Working ” ,
”Dynamic ” :
[
{

” VariableName ” : ” CO level ” ,
”ChangeRate”:”−2”

}
] ,
” Invariant ” : ” true ” ,
” i n i t ” : ” f a l s e ” ,

}
] ,
” Transitions ” :
[

] ,
”API ” : [
{

”Name” : ”ACTIVATE” ,
” StartMode ” : ” Closed ” ,
”EndMode ” : ” Working ” ,
” Trigger ” : ” ” ,
” Assignments ” : [ ] ,
” Signal ” : ” true ”

} ,
{

”Name” : ”PAUSE” ,
” StartMode ” : ” Working ” ,
”EndMode ” : ” Closed ” ,
” Trigger ” : ” ” ,
” Assignments ” : [ ] ,
” Signal ” : ” true ”

}
]

}
}

Listing 2. Alarm
{

” Device ” :
{

”Type ” : ” Alarm ” ,
”SN” : ”0002” ,
” InternalVari ” :
[

] ,
”WorkingMode ” :
[
{

”Name” : ”ON” ,
”Dynamic ” :
[
] ,
” Invariant ” : ” true ” ,
” i n i t ” : ” f a l s e ” ,

} ,
{

”Name” : ”OFF” ,
”Dynamic ” :
[
] ,
” Invariant ” : ” true ” ,
” i n i t ” : ” true ” ,

}
] ,
” Transitions ” :
[

] ,
”API ” : [
{

”Name” : ”TURN ON” ,
” StartMode ” : ”OFF” ,
”EndMode ” : ”ON” ,
” Trigger ” : ” ” ,
” Assignments ” : [ ] ,
” Signal ” : ” true ”

} ,
{

”Name” : ”TURN OFF” ,
” StartMode ” : ”ON” ,
”EndMode ” : ”OFF” ,
” Trigger ” : ” ” ,
” Assignments ” : [ ] ,
” Signal ” : ” true ”

}
]

}
}

Fig. 2. Json Docs For The CO Example
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(a : Smart Fan 0001) (b : Alarm 0002)

(c : Rule 1) (d : Rule 2)

Fig. 3. LHA Models Generated For The CO Example.

Let’s recall the IFTTT rule for the CO example given in section 1:

IF Smart_Fan.CO_reading == 195 THEN execute Alarm.TURN_ON command
IF Alarm.TURN_ON.Signal ==TRUE THEN execute Smart_Fan.ACTIVATE command

After processing the JSON schema, Fig.2, and the rules of the CO example, the
corresponding LHA models generated according to the above rules are given in Fig.3.a-
d respectively.

4.3. Feasibility of Verifiable Schema
About whether the modeling process can apply to a wide range of IoT devices, as both
the industry and academia have been pushing hard in this direction. For example,
the AllSeen alliance (which is backed up 50+ member companies such as Microsoft,
Qualcomm, NetGear, HoneyWell, and LG) has a working group called Common De-
vice Models. Similarly, Googles Weave protocol also mandates compatible IoT devices
to provide device schemas. Furthermore, from the aspect of infrastructure, Amazons
AWS offers IoT device registry services.

Building on this momentum in the industry, our contribution is to highlight device
specifications that would be necessary for policy verification. In fact, most of these
specifications are not difficult for IoT device manufacturers to provide. Furthermore,
we discuss how these device specifications should be used, to achieve our goals.

5. SYSTEM CHECKING AND FIX SUGGESTION
The previous section presents a method to construct LHA models for a given set of
HA-IoT devices and IFTTT-style automation rules. Now, we discuss approaches to effi-
ciently check whether these models conform to specifications, and systematically syn-
thesize solutions to resolve identified violations.
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5.1. Specification Authoring and Specification-related Reachability Checking
Besides of the system model, the HA-IoT programming tool suite must allow IoT users
to author confidence/reachability specifications. We note that specification should be
easily readable/writeable by the non-expert users. To this end, we defines the specifi-
cation format as a conjunction of conditions that shall not happen. This specification
format is intuitive to non-expert IoT users, as it is similar to the IFTTT-style program-
ming. In our CO example, if users do not want the room CO concentration to be higher
than 200, they can write SmartFan.CO ≥ 200.

After we get specifications from users, we can check whether the system of LHA mod-
els can never reach given undesirable state. One option is to conduct the BMC check-
ing by directly using off-the-shelf checkers. However, this option can have a significant
overhead, because these checkers always explore the entire state space of devices and
rules, regardless of whether there are meaningful interactions among devices. At the
same time, we note that the performance of state reachability checking can degrade
quickly, as the number of components increases. Therefore, we propose to only consider
the subset of models that are related with specifications, to shrink the state space for
the underlying checker. This approach is formally presented next.

Definition 5.1. Given a composed LHA network N = H1||H2|| . . . ||Hm, and a reach-
ability specification R(v, ϕ), if v is a location of Hi, ϕ consists of variables from Hj ,
(1 ≤ i, j ≤ m), we say Hi and Hj are R related.

Definition 5.2. If two LHA models have a shared label, we say these two models are
related. Given three LHA models, A,B and C, if A is related with B, B is related with
C, then A is related with C. Given a composed LHA network N = H1||H2|| . . . ||Hm, we
call the sets of all the LHA models related with Hi the related closure of Hi (1 ≤ i ≤ m).

Definition 5.3. Given a composed LHA network N = H1||H2|| . . . ||Hm, and a reach-
ability specification R(v, ϕ), if v is a location of Hi, ϕ consists of variables from Hj ,
(1 ≤ i, j ≤ m), we say Hi and Hj are R related. Then, the set of LHA models consists
of the related closure of Hi and the related closure of Hj is the R related closure.

Technically, given a reachability specificationR(v, ϕ), we first compute theR related
closure subset of models. Then, we feed it to the underlying checker to do the checking.
In this manner, since the size of the system under checking is reduced, checking can
be done with a smaller overhead.

5.2. Counterexample-guided Fix Suggestion
The output of BMC checking indicates either the set of models passes or fails the
verification. If models fail the checking, it means there exists a sequence of transitions
that can reach an undesirable state. In another word, bad things could happen. For IoT
users, this potentially undesirable scenario should be resolved before the automation
rule set is deployed.

Again, it is impractical to count on a normal end-user to fix the system based on
his/her understanding of the counterexample trace. Even for a domain expert, debug-
ging and fixing are not trivial. Meanwhile, as our framework is user-facing, there will
not be an expert who can help the user to analyze and fix violations. Therefore, such
tasks should be automated.

To resolve a specification violation, the first thing is to identify the problematic au-
tomation rule(s). Different from debugging for general CPS software, IoT users can
realistically change only the automation rules, rather than changing installed IoT de-
vices or specifications. Specifically, we can only adjust the triggering condition value of
IFTTT rules.
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Algorithm 1 Counterexample-guided Fix Suggestion
1: procedure CE–ANALYSIS (Counterexample Path ρ, Specification R(v, ϕ), Rule

Set RS)
2: Encoding the reachability of ρ according to R(v, ϕ) as Formula Ψ
3: Denote the constraints related with all the rules in RS as Θ and the other rules

in Ψ as Φ
4: Therefore, Ψ = (

∧n
i=1 φi) ∧ (

∧m
i=1 θi), where φi ∈ Φ, and θi ∈ Θ

5: for each θi, (Devicei.variablej == concrete valuek), ∈ Θ do
6: Parametrize concrete valuek to a free parameter parak
7: Generate new constraint θ′ = (Devicei.variablej == parak)
8: end for
9: Generate formula Θ′ =

∧m
i=1 θ

′
i, and Ψ′ = (

∧n
i=1 φi) ∧Θ′

10: Take the negation of all the subformulas ψi in Ψ′, get new formula Ψ′′ =
∨
¬ψi

11: Denote all the variables in Ψ as V ari
12: Use QE to check: Whether ∃parak, such that ∀xi ∈ V ari, Ψ′′ is feasible.
13: QE returns the value range for each parak, which is the suggestion of the fix
14: end procedure

To systematically perform this task, we propose to parametrize IFTTT rules, and
then solve for solutions to the parametrized system. Each of these solutions would
represent one valid configuration, which can be presented to the IoT user.

In our CO example, suppose the reachability specification asks whether the CO
concentration in the room can ever exceed 200. The checker finds a counterexam-
ple: as the smart fan detects the CO level reaches 195, rule 1 is executed. How-
ever, as there is delay between the satisfaction of the triggering condition and
the execution of the triggered command, the CO concentration can reach 200 be-
fore the amart fan is activated. The original rule says IF Smart Fan.CO == 195
THEN Execute Alarm.TURN ON. We parametrize the rule to IF Smart Fan.CO == A THEN
Execute Alarm.TURN ON. Then, we need to solve for values of A that can invalidate the
specification.

Instead of computing the potential range of A directly, we propose a counterexample-
guided approach. Our basic idea is to find values of A to dismiss the found counterex-
ample path ρ. The algorithm is shown in Algorithm.1. As introduced in Sect.2, given a
path in the model, whether the path satisfies the specification is encoded to the feasi-
bility of a formula Ψ. Then, we parametrize the threshold of the triggering conditions
in the rules to free parameters parak, and we modify Ψ to Ψ′ accordingly (line 5-9).

We can reformulate the problem as the following: can we find a valuation for these
parameters to make Ψ′ infeasible? If the answer is yes, then the located counterexam-
ple is dismissed. We take the negation of all the subformulas in Ψ′, make a disjunction
of them, and get new formula Ψ′′. Now, the question become whether we can find parak
to make Ψ′′ feasible (line 10).

As all constraints in Ψ are linear, we can use quantifier elimination (QE) [Monniaux
2008] to transform this problem to an equivalent quantifier free numerical formula
about parak. This formula gives the value range for each parak that can make Ψ′ in-
feasible, in another word, dismiss the found counterexample (line 11-13). Clearly, we
can simply select a value in the range as a fix suggestion and ask the checker to check
the system again. As the number of potential paths in the given bound is finite, this
procedure is guaranteed to terminate.

Continuing the CO example, we first parametrize the condition Smart Fan.CO ==
195 to Smart Fan.CO == A. Then, we conduct the negation and QE procedures, as pre-
sented above. The resulted formula for A from QE solver is 0 ≤ A ≤ 190, and the
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Satisfiability Modulo Theories (SMT) solver selects a value from this range (e.g., 165).
We use it as a potential fix, and check the set of models again. The system should
pass the verification this time, and it subsequently presents the new value as a fix
suggestion to the user.

5.3. Handling of Conditions of Inequalities
In the last subsection, the conditions of the triggers are all presented as equalities.
The problem with inequality constraints is a little bit complex but still can be handled
in a similar way.

According to the “lazy” semantic of LHA, when a transition guard is an inequality,
the transition can be fired in any time spot which satisfies the inequality guard. In
another word, the time spot that the transition is fired is not required to be the exact
time spot that the guard is satisfied. Take the CO level for example, the transition
guard Smart Fan.CO ≥ 195 can be fired when CO level ≥ 1000, this still satisfies the
semantic of the model.

As result, even we modify the condition to Smart Fan.CO ≥ 165 as we did in the
equality case, the model checker can still find a behavior which fires the trigger too
late, when CO level is too high, say 1000. In another word, if the triggering condition
is a half interval, the limitation of LHA semantic makes it difficult to control the timing
that the transition will be fired.

Therefore, when our method needs to fix conditions with inequality of half-interval,
it changes it to a parametric interval first. Still use the CO example, if the original
condition is Smart Fan.CO ≥ 165, the parametrized condition is b≥ Smart Fan.CO ≥
a, where a and b are free parameters. Then, the line 12 of Algorithm.1 is changed to
“Use QE to check: Whether ∃a, ∃b, such that ∀xi ∈ V ari, Ψ′′ is feasible”. Then the
following procedure is the same with equality.

In the CO example, the QE result we get is 300 ≥ a ≥ 0, 190 ≥ b ≥ 0, and b ≥ a. The
SMT solver selects value for a and b from the corresponding range respectively (e.g.,
a=75, b=180). So, we modify the condition to 180 ≥ Smart Fan.CO ≥ 75. We use it as
a potential fix, and the system passes the verification then.

6. SYSTEM IMPLEMENTATION AND EVALUATION
This section is organized by the following major results. First, the technique proposed
and discussed in this paper is implemented in a tool MenShen. Second, our optimiza-
tion techniques allow MenShen to gracefully scale with the LHA size. Empirical re-
sults suggest that, for a deployment up to 46 devices and 65 rules, MenShen can fin-
ish within 10 seconds (i.e., the typical human attention span [Nielsen Norman Group
1993]). Third, user study confirms that most of the users cannot find the bug and
fix the system. Meanwhile, the user study also suggests that more than 66.7% of fix
suggestions are accepted, without further user intervention. The implementation of
MenShen and all experimental data are available online [men 2016].

6.1. System Implementation Overview
Our current system implementation, MenShen5, supports functionalities discussed
in previous sections: (1) automated LHA model generation from device schemas, (2)
template-based GUI for authoring IFTTT-style rules and specifications, (3) automated
system reachability checking. and (4) violation fix suggestions.

MenShen is implemented in C#. Some system components are based on third-party
libraries: BACH [bac 2006; Bu et al. 2008] for the LHA checker, Redlog [red 2006] for

5MenShen stands for the door god in Chinese.
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Fig. 4. Main GUI of MenShen

the QE solver, Z3 [de Moura and Bjørner 2008] for the SMT solver, and Json.Net [jso
2009] for parsing the device schemas.

Here we give the GUIs of the system to demo the functionalities of MenShen. The
main GUI is shown in Fig.4, we can see that user can specify rules and the specifi-
cations by drop-down list-style templates. MenShen reads the information of devices
from their docs directly. Then, users can select the name of the device, the variables
that are observable, the APIs allowed to call to composite a rule/specification directly.

We can also find three options for the user to select before they click the check button
in the bottom of Fig.4. The options including:

— General: No optimization technique is applied.
— Minimize: Perform the checking on the property related closure as described in Sect.

5.1.
— Merge: Link and analyze the rules with the same triggering condition as together.

This prevents MenShen from assigning different thresholds while generating fix sug-
gestions.

If MenShen find a violation of the specification, the fixing procedure could be acti-
vated. We grant users the option to mark rules that should never be changed. They
can also provide the preferred range for individual variables. Then MenShen will look
for solution in the user specified range. When multiple fix suggestions are possible,
MenShen prioritizes the suggestions based on how similar they are to the original
rules. Minimizing this difference can improve the user acceptance of fix suggestions.
The related GUI is shown in Fig. 5.

After the fix suggestion is synthesized, MenShen will conduct a new round of con-
firmation checking. If the new system passed the confirmation checking, MenShen
pushes the fix suggestion to the user, as we can see in Fig.6. The changed rules are
marked by red color. Last but not least, if users are not satisfied with the fix sugges-
tion, they are free to modify the rule and start the procedure again.

6.2. Real-world Evaluation Data Sets
Our nine data sets contain automation rule sets deployed in the real world. They are
from three sources: (1) four small-scale systems (labeled as SC-1, SC-2, SC-3, SC-4) are
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Fig. 5. GUI For Fix Configuration

Fig. 6. GUI For Fix Suggestion

based on rules shared by normal IFTTT.com users [ift 2011]; (2) four large real-world
HA-IoT systems are from office deployments (labeled as MS-1, MS-2, MS-3, MS-4); (3)
one is used by a related effort [isy 2007][Croft et al. 2015] (labeled as ISY).

SC-1, SC-2, SC-3, and SC-4 have 2-3 devices and rules. Each of MS-1, MS-2, MS-3
and MS-4 has tens of rules and devices similar to typical home automation systems.
The ISY data set has 46 devices and 65 rules. In total, there are 26 different types of
devices including gas meters, HVAC, lights, air purifiers, GPS, water heater, etc.
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Table I. System properties that data set owners expect their automation rule sets to
satisfy.

System Policy
SC-1 The hot water is ready when the user is back to home.

SC-2 The temperature of water in the bathtub should not drop down
to 40 degree when the user is back to home.

SC-3 The level of CO in the room should never be dangerous.
SC-4 The home security should be closed when the garage door is opened.
MS-1 The level of smoke in the room should never be too high.
MS-2 The level of gas should never be dangerous.
MS-3 The temperature in the room should stay below 27.
MS-4 The level of PM2.5 in the room should not be harmful.
ISY The light in the bedroom should be closed in 8:00pm.

Table II. Results of Checking and Fixing Real-case HA IoT Systems by MenShen. (#Devices and #Rules denote the number of
devices and rules in the data set, respectively. #LHA denotes the number of generated LHA models. Check denotes the time
spent in checking the problem. Fix denotes the time spent in fixing. The default bound we set for all the problem is 10 for all
the automata. )

Original System System Minimization Related Rules Merging
System #Devices #Rules #LHA Model(s) Check (s) Fix (s) #LHA Model(s) Check (s) Fix (s) #LHA Model(s) Check (s) Fix (s)

SC-1 3 3 6 0.011 0.26 0.98 6 0.011 0.26 0.98 6 0.012 0.26 0.98
SC-2 3 3 6 0.011 0.26 1.25 6 0.010 0.26 1.25 6 0.011 0.26 1.25
SC-3 2 2 4 0.011 0.12 0.66 4 0.011 0.12 0.66 4 0.013 0.12 0.66
SC-4 3 2 5 0.010 0.22 0.92 5 0.013 0.22 0.92 5 0.013 0.22 0.92

MS-1 12 15 27 0.013 1.89 51.17 20 0.012 0.88 3.62 20 0.012 0.92 3.32
MS-2 12 15 27 0.012 1.79 365.58 20 0.013 1.23 8.62 20 0.015 1.02 7.88
MS-3 18 20 38 0.012 3.77 11.19 3 0.017 0.23 0.97 3 0.013 0.23 0.95
MS-4 18 19 37 0.013 3.56 10.5 3 0.012 0.23 0.98 3 0.013 0.23 0.95
ISY 46 65 111 0.014 9.25 1209.4 25 0.024 0.97 7.51 25 0.016 0.52 3.98

Table I lists the most important system property that data set owners expect their
automation rule sets to comply.

6.3. System Scalability
MenShen aims to minimize the user burden in realizing high-confidence real time HA-
IoT systems. Given that formal checking techniques are mature enough to accurately
identify policy violations, this section discusses the system scalability in IoT scenar-
ios. Specifically, we show that optimization techniques allow MenShen to exhibit a
processing latency less than the typical 10-sec user attention span [Nielsen Norman
Group 1993].

Experiments were conducted by checking whether individual data sets satisfy their
expected system property listed in Table I. We used a ThinkCenter workstation, with
Intel Core 2 Quad CPU Q9500 @ 2.83GHz × 4, 4GB RAM and Ubuntu 14.04 64-bit.
The implementation of MenShen.

Table II shows the empirical results under three different MenShen settings: “Orig-
inal System” refers to running MenShen without additional constraints; “System Min-
imization” refers to running the specification verification with only related models;
“Related Rules Merging” refers to manually marking rule variables that should be the
same (c.f. §6.1). As we discuss next, the system size (i.e., the number of LHA states)
largely determines the system latency, and we also evaluated the effectiveness of two
optimization techniques.

If the size of the system increases significantly, QE can be the performance bottle-
neck. Specifically, for the 4 small cases (SC-1, SC-2, SC-3, and SC-4), MenShen can
complete both the checking and fix suggestions in less than 1 second. However, for the
ISY data set, which is 20 times larger than the SC series cases, the latency increases
quickly to 1,209 seconds.
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Fig. 7. Optimization Evalution: Related Rules Merging VS No Optimization

Table III. User Study on MS-4 Scenario from CS-Majored Students and Researchers.(Average Time denotes the
average time spent by the participants in analyzing the specific problem. MenShen Time denotes the time spent
by MenShen in the same problem.)

Problem Total
Partici.

Average
Total

Time(s)

Average
Check(s)

Average
Fix(s)

Able to
Find

Conflicts

Able to
Fix

MenShen
Check(s)

MenShen
Fix(s)

User
Acceptance

Q1 45 453 444 82 7/45 2/45 3.56 10.5 39/45
Q2 45 98 90 63 7/45 2/45 3.82 17.77 37/45
Q3 45 75 63 57 11/45 2/45 3.14 9.72 45/45

As discussed next, optimization techniques can reduce the system latency for large
cases. Table II shows two such optimizations: System Minimization and Related Rules
Merging.

First, when the system size is large, especially if not all the devices are connected
with each other, the System Minimization technique exhibits a significant improve-
ment space. Specifically, the number of automata in MS-3 is reduced from 38 to 3, and
the number of automata in ISY case is reduced from 111 to 25. Since the entire state
space is reduced significantly, the performance of MenShen improves substantially in
all 5 large data sets. And, the time for ISY is reduced from more than 1,209 seconds
down to only 7.5 seconds. However, we note that, since SC-1, SC-2, SC-3, and SC-4 are
small data sets, the systems are very compact. Therefore, the gain from optimization
techniques is negligible.

Second, we look at the gain from the Related Rules Merging technique. When the
number of rules is large, it is not rare to have different rules sharing the same trigger
conditions. In this case, while the number of automata under check stays the same, the
structure for the related models can be simplified, to reduce the number of parameters
to solve. As this optimization contains system minimization, we report the decrease
ratio of “Related Rules Merging” versus no optimization on the 5 large problems about
LHA size, time for checking and time for fix respectively in Figure.7. We can see the
optimization methods work very well that up to 99.7% of time can be saved on large
systems like ISY.

6.4. User Study
To understand the usefulness of MenShen’s feedback to IoT users, we conducted a set
of user studies with our real-world automation rule sets. Specifically, we took the MS-
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Table IV. User Study on MS-4 Scenario from Non-CS-Majored Participants.

Problem Total
Partici.

Average
Total

Time(s)

Average
Check(s)

Average
Fix(s)

Able to
Find

Conflicts

Able to
Fix

MenShen
Check(s)

MenShen
Fix(s)

User
Acceptance

Q1 45 326 443 61 14/45 5/45 3.56 10.5 30/45
Q2 45 85 70 26 6/45 2/45 3.82 17.77 33/45
Q3 45 48 47 32 13/45 10/45 3.14 9.72 31/45

Fig. 8. Data of CS Major Participants VS Non-CS Major Participants.

4 data set, which represents a room with 20 IoT-enabled devices and 18 automation
rules. And, we added two more system properties to check, to the one in Table II.

We have two group of volunteers. Each group has 45 participants. The study partici-
pants in the first group include researchers and interns from Microsoft Research Asia,
and PH.D. and Master Students in software engineering discipline at Nanjing Univer-
sity. The participants in the second group include Non-CS major college students, high
school students, and also some housewives.

We asked the participants to decide whether the connected IoT system can violate
any of the 3 given specifications, and then we asked participants to attempt to fix
these violations manually. Table III summarizes the user study results of the CS-Major
users, while the results of Non-CS-Major users are presented in Table IV.

For comparison, these tables also include the performance of MenShen (without any
optimization enabled). There are several observations to support the effectiveness of
MenShen. For example, Table III and IV suggests that the majority of participants
cannot find any violation after spending 1 to 8 minutes, and only four participants, two
from CS-Major Group, 2 from the Non-CS-Major group, were able to identify and fix all
the problems successfully. We can see that, for the majority of the participants, even
for users with background in computer science, successfully realizing high-confidence
HA-IoT systems is still a difficult task.

We’ve also organize and present the user study data of CS-major user and Non-CS-
Major user in Fig.8. Interestingly, the percentage of user which can find and fix the sys-
tem from Non-CS-Major is higher than CS-Major participants in many cases as shown
in Fig.8.a and b. This supports our observation that, while the popular IFTTT-style
programming paradigm simplifies authoring, it does not simplify the task of checking
and fixing specification violations. For normal users of HA-IoT, even CS background
education can not alleviate this problem as well.

Delving into Table III and IV, we discuss the user acceptance rate to MenShen feed-
back. Specifically, this metric is quantified by presenting MenShen’s fix suggestions to
the participants. Table III and IV show that, after we explained to the user the reason
the system failed and fix the related rule, the user acceptance of the fix suggestions
made by MenShen is satisfiable in the range from 66.7%(30/45) to 100% (45/45). One
of the main reasons that some participants are not satisfied with the fix suggestion
is that they have difficulty in understanding how the original parameter may cause
error and why the changed version is correct. Therefore, we can see from Fig.8.c that
the user acceptance rate from CS-Major group is higher than the Non-CS-Major group
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in general. This brings an interesting topic about how to present the failure to users
vividly in the future.

Besides of the above findings, one lesson learned is that, while several scenarios in a
space can be programmed by a set of automation rules, IoT users tend to focus on man-
ually verifying one scenario at a time. While this approach reduces the manual burden,
it ignores interactions among scenarios. For example, turning on the HVAC can cause
the air ventilation system to stop intaking outside air in the summer, which can have
a undesirable consequence depending on indoor CO concentration. This observation
brings up the value of having programming assistance from MenShen.

7. DISCUSSION
In this work, we demonstrate the feasibility of using linear hybrid automata (LHA)
for HA-IoT systems. Not only does LHA simplify the presentation of device communi-
cation and the dynamic behavior of analog environments, it also efficiently checks the
complex behavior. We now describe system limitations that are out of scope for this
paper.

First, we currently assume device models are static and do not change over a short
period of time. If the modeled environment is highly dynamic, parametric models [Bu
et al. 2011] may yield better results. Furthermore, we note that it can be costly to model
continuous analog environments that are under the influence of multiple IoT devices.
For example, room temperature can be affected by outdoor temperature and indoor
appliances. And, future work will focus on reducing this cost on the underlying system
infrastructure. Second, the semantic of transition in LHA is not “Urgent” [Schupp et al.
2015]. Therefore, we may encounter situations where the trigger condition is enabled
but the model does not fire such transition. Third, we currently do not consider human-
in-the-loop, or user models that can change analog environments at any time. We leave
this as the future work.

8. RELATED WORK
IoT Software System Checking and Monitoring. The high-confidence analysis of
IoT systems has recently gained attentions in the community. SIFT [Liang et al. 2015]
took the first step of demonstrating the potential of correctness checking of IoT sys-
tems, and it used the symbolic execution method to generate test cases to test the ab-
stracted code of the IoT system. In contrast to MenShen, SIFT assumes IoT users have
the necessary knowledge and background in running such procedure. Furthermore,
SIFT does not consider the temporal behavior of devices, nor violation debugging.

Like MenShen, DeLorean [Croft et al. 2015] argues the importance of modeling the
temporal behavior in checking HA-IoT systems. They proposed to build Timed Au-
tomata model for Home Automation control programs. However, they assumed a man-
ual modeling procedure, which is not practical for non-expert IoT users. Furthermore,
Timed Automata can only model time clock with uniform speed, rather than any con-
tinuous variable with arbitrary clocks. Therefore, MenShen can theoretically handle
a wider spectrum of HA-IoT scenarios than DeLorean. Last but not least, they stop
DeLorean after the checking is finished, but our work continues to synthesize fix sug-
gestions.

DepSys [Munir and Stankovic 2014] presented a method to specify and check the
dependency of devices in a home automation IoT system. However, they only focus on
the potential conflicts among the devices, say, A and B control the same device. It does
not address system-wide, especially time-related policy violations like MenShen.

Besides of the above efforts in correctness checking, there are also investigations in
the area of invariant correctness monitoring [Gunǎ et al. 2014; Herbert et al. 2007].
Generally, these works perform online monitoring of invariants about certain parame-
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ters values to see whether certain values will break the invariant during system oper-
ation. Then, if an invariant violation is detected, predefined safety-related rules could
be called in a similar way as IFTTT.

These works mainly focusing on the efficiency of runtime detecting certain invariant
violation, say, catch the threshold in a timely manner. Be different, our work tries to
make sure such violation will not happen. We perform an offline formal verification
style checking to guarantee the correctness and we also help to fix the rules when the
original system cannot meet the specification.
Parameter Fix Suggestion. The fix suggestion synthesis performed by MenShen is
related to the classical parameter synthesis problem. This problem has been studied in
many studies already. Studies [Henzinger and Wong-Toi 1995], [Frehse et al. 2008] are
the most close works with MenShen as they are all able to deal with real time hybrid
automata.

The problem of parameter synthesis for LHA was proposed in [Henzinger and Wong-
Toi 1995]. However they need to compute the whole reachable set at first, which is very
expensive. Thus, the system they can handle is rather limited.

Similar with this work, study [Frehse et al. 2008] also works on parameter synthe-
sis for LHA. They propose a CEGAR framework to find the values for the parameters
which can avoid the “bad” states in the complete state space. As MenShen is perform-
ing BMC rather than general MC, we are facing a much smaller state space. Therefore,
we can use QE directly on the counterexample path to find potential parameter assign-
ments.

Recently, study [Cimatti et al. 2013] proposed a method to perform optimal parame-
ter synthesis for infinite state space system. They extended IC3 [Bradley 2011] frame-
work to compute the precise region incrementally. This is an interesting work, we will
try to adapt it into MenShen in the future work.

9. CONCLUSION
This paper presents MenShen, a novel framework of automated end-to-end pro-
gramming assistance, to help non-expert IoT users in systematically realizing high-
confidence real time HA-IoT systems. In contrast to related efforts that handle only
high-level logic, MenShen can models and reasons about both real time behavior and
analog environments. Furthermore, not only does MenShen check whether an automa-
tion rule set violates specifications, it also effectively suggests possible solutions to
users.

As future work, we will investigate methods to model continuous aspects that are in-
fluenced by multiple devices and environmental factors. Personalized parameter gen-
eration is also an interesting topic which can help to increase user satisfaction. Fur-
thermore, leveraging probabilistic model checking to generate user-friendly quantita-
tive probabilistic reports of such HA-IoT systems is also worth of investigation.

APPENDIX
In this section, we give a review of the path-oriented reachability checking encoding
presented in [Li et al. 2007; Bu and Li 2011]. This technique is the underlying decision
procedure of MenShen for reachability checking.

For a path in an LHA H of the form 〈v0〉
(φ0,ψ0)−→
σ0

〈v1〉
(φ1,ψ1)−→
σ1

. . .
(φn−1,ψn−1)−→

σn−1

〈vn〉, by

assigning each location vi with a time delay stamp δi we get a timed sequence of the

form
〈
v0
δ0

〉
(φ0,ψ0)−→
σ0

〈
v1
δ1

〉
(φ1,ψ1)−→
σ1

. . .
(φn−1,ψn−1)−→

σn−1

〈
vn
δn

〉
where δi (0 < i ≤ n) is a non-

negative real number and δ0 = 0 as v0 = vI is the initial location. This time sequence
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represents a behavior of H such that the system starts from the initial location v0,
stays there for δ0 time units, which is 0, then jumps to v1 and stays at v1 for δ1 time
units, and so on.

The behavior of an LHA can be described informally as follows. The automaton
jumps from the initial location v0 to v1 to initialize all the variables. Then, as time pro-
gresses, the values of all variables change continuously according to the flow condition
associated with the current location. At any time, the system can change its current
location from v to v′ provided that there is a transition (v, σ, φ, ψ, v′) from v to v′ whose
all transition guards in φ are satisfied by the current value of the variables. With a
location change by a transition (v, σ, φ, ψ, v′), some variables are reset to the new value
accordingly to the reset actions in ψ. Transitions are assumed to be instantaneous.

Let H = (X,Σ, V, vI , E, α, β) be an LHA. Given a timed sequence ω of the form〈
v0
δ0

〉
(φ0,ψ0)−→
σ0

〈
v1
δ1

〉
(φ1,ψ1)−→
σ1

. . .
(φn−1,ψn−1)−→

σn−1

〈
vn
δn

〉
, let ζi(x) represents the value of x (x ∈

X) when the automaton has stayed at vi for delay δi and λi(x) represents the value
of x at the time the automaton reaches vi along with ω (0 ≤ i ≤ n). It follows that

λi+1(x) =

{
d if x := d ∈ ψi

ζi(x) otherwise (0 ≤ i < n).

Definition 9.1. For an LHA H = (X,Σ, V, vI , E, α, β), a timed sequence of the form〈
v0
δ0

〉
(φ0,ψ0)−→
σ0

〈
v1
δ1

〉
(φ1,ψ1)−→
σ1

. . .
(φn−1,ψn−1)−→

σn−1

〈
vn
δn

〉
represents a behavior of H if and only if

the following condition is satisfied:

— 〈v0〉
(φ0,ψ0)−→
σ0

〈v1〉
(φ1,ψ1)−→
σ1

. . .
(φn−1,ψn−1)−→

σn−1

〈vn〉 is a path;

— each variable x ∈ X evolves according to its flow condition in each location vi (0 <
i ≤ n), i.e. uiδi ≤ ζi(x)− λi(x) ≤ u′iδi where ẋ ∈ [ui, u

′
i] ∈ β(vi);

— all the transition guards in φi (1 ≤ i ≤ n − 1) are satisfied, i.e. for each transition
guard a ≤

∑l
k=0 ckxk ≤ b in φi, a ≤

∑l
k=0 ckζi(xk) ≤ b;

— the location invariant of each location vi (1 ≤ i ≤ n) is satisfied, i.e. at the time
the automaton reaches and leaves vi, each constraint a ≤

∑l
k=0 ckxk ≤ b in α(vi)

(1 ≤ i ≤ n) is satisfied, i.e. a ≤
∑l

k=0 ckλi(xk) ≤ b and a ≤
∑l

k=0 ckζi(xk) ≤ b

Definition 9.2. For an LHA H = (X,Σ, V, vI , E, α, β), if a timed sequence of the form〈
v0
δ0

〉
(φ0,ψ0)−→
σ0

〈
v1
δ1

〉
(φ1,ψ1)−→
σ1

. . .
(φn−1,ψn−1)−→

σn−1

〈
vn
δn

〉
is a behavior of H, we say path ρ =

〈v0〉
(φ0,ψ0)−→
σ0

〈v1〉
(φ1,ψ1)−→
σ1

. . .
(φn−1,ψn−1)−→

σn−1

〈vn〉 is feasible, and location vn is reachable along ρ.

Definition 9.3. Let H = (X,Σ, V, vI , E, α, β) be an LHA, and R(v, ϕ) be a reachabil-

ity specification. A behavior of H of the form
〈
v0
δ0

〉
(φ0,ψ0)−→
σ0

〈
v1
δ1

〉
(φ1,ψ1)−→
σ1

. . .
(φn−1,ψn−1)−→

σn−1〈
vn
δn

〉
satisfies R(v, ϕ) if and only if vn = v and each constraint in ϕ is satisfied

when the automaton has stayed in vn for delay δn, i.e. for each variable constraint
a ≤

∑l
k=0 ckxk ≤ b in ϕ, a ≤

∑l
k=0 ckζn(xk) ≤ b where ζn(xk) (0 ≤ k ≤ l) represents the

value of xk when the automaton has stayed at vn for the delay δn. H satisfies R(v, ϕ) if
and only if there is a behavior of H which satisfies R(v, ϕ).

According to Definition 9.2 and 9.3, the reachability of a given path in an LHA model
can be encoded to the feasibility of a conjunction of a set of linear constraints, which
can be solved by Linear Programming, SMT techniques efficiently.
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