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Abstract—Recent advances in energy transfer technol-
ogy is boosting the development of renewable sensor
networks. To sustain such a network, a mobile robot
travels from node to node to recharge each sensor before
its battery runs out. Consider each node’s recharge as
a real-time task; the robot needs to serve these tasks
by their deadlines. This represents a class of challenging
mobility scheduling problems, where the nodes’ deadlines
and spatial distribution are often at odds with each other.
In this paper, we focus on the scenario where nodes have
heterogeneous energy consumption rates, and our goal is
to maximize the percentage of nodes alive. We formulate
this scheduling problem and prove its NP-completeness.
To solve this problem, we propose a spatial dependent
task scheduling algorithm, which quantifies the impact
of scheduling proximate tasks on the other tasks. With
extensive simulations, we reveal the trade-offs of existing
solutions under a wide range of network scenarios. Our
evaluation results show that our algorithms out-perform
classical TSP scheduler by up to 10% and 85% in terms
of coverage ratio and average tardiness, respectively.

Keywords-Mobile Charger Scheduling, Real-Time, Spa-
tial Dependent Task

I. INTRODUCTION

Mobile robots are widely used in wireless sensor
networks [1, 2], such as data mules [3] and event
response [4]. Typically, a robot processes tasks by
visiting nodes one by one in the network. In this
paper, we investigate one instance of such mobility
scheduling problems: the mobile charging application,
where a mobile robot recharges each sensor node to
replenish its battery storage. Sensor network applica-
tions usually require a certain percentage of alive nodes
and nodes may have different energy consumption
rates. To address these realistic issues, we consider
the mobile charger scheduling problem: given each
recharge as a real-time task, find the traveling path
that allows the mobile robot to process these tasks so
that the percentage of alive nodes is maximized. As
both deadlines and spatial distributions of nodes affect
the selection of traveling path, this problem is very
challenging.

We firstly formulate the mobile charger scheduling
problem, then prove its NP-completeness. The solution
to this problem depends on the relative ratio between
the traveling time of the charger and the battery lives
of the sensor nodes. If the traveling time to traverse
the network is much shorter than the battery lives of
the sensor nodes, then no nodes require more than
one recharge in each round. The scheduling problem is
reduced to the Traveling Salesman Problem with Time
Window[5–8], which was studied before. On the other
hand, if the traveling time is larger than some or all
of the sensor nodes’ battery lives, this problem gets
more complicated because each time a sensor node
is charged, its deadline is reset. In this case, we aim
at finding schedules responding to such dynamically
generated deadlines[3], and maintain high percentage
of alive nodes over time. To reveal the complexity
of the problem, we investigate the performances of
existing solutions, such as the Earliest Deadline First
(EDF) and Traveling Salesman (TSP) types of algo-
rithms. We show EDF scheduler rescues urgent nodes,
but does not take spatial distribution of nodes into ac-
count. Whereas, TSP scheduler minimizes the traveling
cost, but fails to respond to the most urgent node in
time. Therefore, it is essential to consider spatial and
temporal constraints together in this scenario.

To address this problem, we propose a spatial depen-
dent task model to quantify the impact of scheduling
proximate tasks on the other tasks. Intuitively, the
traveling time for recharging nearby urgent nodes is
less than faraway urgent nodes. Therefore, we can
optimize the recharging schedule based on the prox-
imity and density of nodes. With the spatial dependent
task model, we design the Spatial Dependent Task
scheduler. It first identifies clusters of nodes such
that recharging them maximizes the network energy
level, then computes the traveling path to reach these
clusters, such that more nodes can be recharged without
incurring much detour.

We implemented a comprehensive simulation frame-



work, and conducted extensive trace-driven experi-
ments to test different scheduling algorithms under var-
ious settings. The simulation uses energy consumption
data traces, which are collected from real sensor net-
work deployments [9]. Experimental results show that
our SDT scheduler outperforms the classical shortest
route scheduler (TSP) by up to 10% coverage ratio,
and reduces the average tardiness by up to 85%. The
contributions of this paper are listed as follows:
• We define the mobile charger scheduling problem

based on realistic sensor network constraints, and
prove its NP-completeness.

• We propose the Spatial Dependent Task schedul-
ing algorithm that finds a good trade-off be-
tween spatial distribution and real-time urgency
of recharge requests.

• With energy consumption traces from real sensor
network deployments, extensive simulations are
conducted to compare our algorithms with five
representative baseline solutions. Significant im-
provements in both coverage ratio and average
delay are achieved.

II. RELATED WORK

Mobile charger scheduling algorithms were pro-
posed to sustain the operation of sensor networks [10–
12]. There have been many variants of the mobile
charger scheduling problem, depending on the sets of
assumptions and optimization goals adopted. Zhang et
al. [10] propose algorithms to minimize the number
of mobile chargers necessary to keep all the sensor
nodes alive in a 1-d space. In [11], the authors assume
that the charging time for sensor nodes is much longer
than the mobile charger’s traveling time, and thus the
scheduling algorithms are less focused on the spatial
aspects of the problem. In [12], the authors assume
that the mobile charger can recharge all the sensor
nodes lying within a distance, and their optimization
goal is to minimize the time it takes for each round of
recharge. In their recent paper [13], He et al. consider
the heterogeneous power of the sensor nodes. They
divide the sensor nodes into different groups, and apply
TSP algorithms to recharge nodes within each group.
In [3, 14], Somasundara et al. formulate the mobile
element scheduling problem, which aims at minimizing
the overall tardiness. They formulate it into an integer
programming problem, and propose several heuristic
algorithms.

In most of the previous research, the goals are
to optimize recharge efficiency while regarding the
sensor node deadlines as hard deadlines. However, in
many realistic scenarios, especially when the charging
workload is heavy, not all the deadlines of sensor nodes

can be satisfied. In this scenario, the deadlines are
considered soft, and our algorithm design goal is to
maximize the percentage of active nodes. Besides, we
assume that the charging time is zero, meaning that
the mobile charger finishes charging a node as soon as
it arrives at its location. In this setting, we the focus
of scheduler design is to find trade-offs between the
spatial and temporal constraints. Our algorithms can
be easily extended to constant non-zero charging times,
by increasing the traveling time by a constant amount.

Traveling Salesman Problem is one of the most in-
tensively studied problems in Computational Geometry
[15]. The one variant that relates to our problem most
closely is the Traveling Salesman Problem with Time
Window (TSP-TW). In [16], the author summarizes
the insertion and mutation heuristics to find schedules.
In [7], Bar-Yehuda et al. firstly provide an O(log n)
approximation algorithm in 1-d case, then design an
algorithm that depends on how densely the vertices are
located. In [5] and [17], the authors study the Max-
Prize Path (Orienteering) problem, where the problem
goal is to find a path that visits the maximum number
of nodes before a common deadline. In [18], Bansal et
al. design an O(log n) algorithm for the deadline-TSP,
which is a more general problem than the orienteering
problem, since each node has its own deadline.

However, the mobile charger scheduling problem
is different from the TSP-TW. In the TSP-TW, all
the deadlines are known and fixed before scheduling.
Many existing approximation solutions rely heavily on
this assumption [7, 5, 17, 18]. On the other hand,
for the mobile charger scheduling problem, the future
deadlines are not known as a priori. Before scheduling,
the mobile charger only knows the current deadlines,
which are the time moments when the sensors drain
out their residual energy. However the next deadlines
are determined only after the sensor nodes receive
recharge. As a result, the solutions to TSP-TW cannot
achieve the same performance bound when applied in
our problem. In spite of that, the solutions to the TSP-
TW problem provide valuable inspirations for us. We
adopt the basic ideas of schedule insertion, density- and
path-based target search in our SDT scheduler design.

III. PROBLEM DESCRIPTION

A. Problem Formulation

Network Model: The wireless sensor network is
modeled by a list of nodes vi ∈ V, i = 1, 2, ..., N ,
where N = |V |. The network is deployed in a 2-
D plain. The distances between any two nodes are
given in the matrix D as a priori, and dij represents
the traveling cost between the nodes vi and vj . There
is a single mobile charger with unit traveling speed



traversing the network to conduct recharge. We use
a vector xk to represent the location of the mobile
charger at the end of time interval k. xki = 1 if the
mobile charger recharges node vi, and xkj = 0 for
j 6= i.

The length of time interval k is represented by
∆tk = xk−1T · D · xk, which is the mobile charger’s
traveling time. Depending on the different distances be-
tween two nodes, the interval length ∆tk also changes.
k = 1, 2, ...,W , where W represents the number of
steps we conduct scheduling.

We use eki to represent the residual energy storage of
node i at the end of time interval k, which is calculated
by eki = max(0, ek−1i −∆tkrki ) when it isn’t recharged.
During the time interval k, we assume a node’s energy
consumption rate rki to be a constant.

We adopt the assumption that the charging time is
zero, so when the mobile charger arrives at a node vi,
it charges ck units of energy to the node immediately,
which is calculated by ck = Emax − eki . In sum, the
residual energy eki of a sensor node i at the end of time
interval k is described using the following equation:

eki = max(0, ek−1i − xk−1T ·D · xkrki ) + xki ck. (1)

Optimization Goal: A sensor network needs to
maintain certain percentage of active nodes in order
to achieve high level of monitoring. In this paper, our
primary goal of algorithm design is to maximize the
average coverage ratio of the sensor network over any
given any scheduling window [0, TW ]. In other words,
we continue scheduling until

∑W
k=1 ∆tk ≥ TW and∑W−1

k=1 ∆tk < TW . The coverage ratio is defined as
the percentage of nodes that have non-zero battery
storage. Specifically, we calculate the coverage ratio
at the end of each scheduling interval k, and calculate
the overall average using the following equation:

BC =
W∑
k=1

|ek|0/N. (2)

In some cases, when the charging workload is small,
the mobile charger is able to ensure 100% coverage
ratio. Under this condition, the optimization goal will
be to maximize the overall residual energy of the
network, which is shown in the following equation:

BE =

W∑
k=1

|ek|1/N. (3)

Since our primary optimization goal is coverage ratio
BC , we will assign a small weight to the overall resid-
ual energy BE . When the coverage ratio is maintained
to be 100%, the overall residual energy gains more
importance.

Mobile Charger Scheduling Problem: Given a sen-
sor network V with parameter Emax, N , rki , and D,
and a single mobile charger with unit traveling speed,
find a schedule of the mobile charger that maximizes
the average coverage ratio over any given time window
[0,

∑W
k=1 ∆tk]. The mobile charger scheduling prob-

lem is formulated as follows:
max
xk,ck

= BC + βBE

=
∑W

k=1(|e
k|0 + β|ek|1)/N

s.t. e0i = Emax, i = 1, 2, ...N
eki = max(0, ek−1

i − xk−1T ·D · xkrki ) + xki ck,
i = 1, 2, ...., N, k = 1, 2, ...,W,
0 ≤ eki ≤ Emax, i = 1, 2, ...., N, k = 1, 2, ...,W,
1T
Nxk = 1, k = 1, 2, ...,W
xki ∈ {0, 1}, i = 1, 2, ...., N, k = 1, 2, ...,W,
0 ≤ ck ≤ Emax, k = 1, 2, ...,W.

(4)This is a problem of maximizing a nonlinear convex
function over a convex set, with discrete constraint
xki ∈ {0, 1},∀k. So this problem cannot be solved
using standard optimization techniques. Furthermore,
due to the changes in environment in realistic applica-
tions, it will be difficult to have an accurate estimation
of the energy consumption rates rki . Therefore, the
mobile charger needs to be able to adjust its schedules
adaptively according to the network’s needs in the run
time. In this paper, we aim to design light-weighted
algorithms that respond to the environment dynamics
automatically and achieves good performance.

B. Problem Hardness

To prove the NP-completeness of the mobile charger
scheduling problem, we reduce the Traveling Salesman
Problem to it. The decision version of the mobile
charger scheduling problem and the Traveling Sales-
man Problem are stated as follows.

Decision Version of the mobile charger scheduling
problem: given a set of sensor nodes V deployed in a
2-D plain, each node vi ∈ V has battery capacity Emax
and constant energy consumption rate ri. At time zero,
all the sensor nodes have full battery storage, and the
mobile charger starts at node v0. The question asks
whether or not there exists a schedule such that the
mobile charger can charge and maintain all the nodes
alive during the time window [0, TW ].

Decision Version of the Traveling Salesman Prob-
lem: Given a list of vertices V ′, a starting point
v′0 ∈ V ′, and a distance limit L, the question asks
whether there exists a route no greater than L that visits
each vertex exactly once.

Theorem 1. The Decision Version of the mobile
charger scheduling problem is NP-complete.

Proof: Firstly, we show that this problem belongs
to NP. Given any schedule, we calculate the times



of recharge t1, t2, ...tW for each a node i. We define
a virtual recharge time t0 = (e0i − Emax)/ri. Then
we proceed to compare the adjacent recharge gaps
tk − tk−1, k = 1, 2, ...W with the node’s battery life
Emax/ri. If all the recharge gaps are smaller than the
battery life, it means the node vi will never run out
of energy. We repeat this process for all nodes in V
to determine whether the schedule can maintain 100%
coverage ratio. This certifier has a polynomial-time
computational complexity of O(|V |W ), so the mobile
charger scheduling problem belongs to NP.

Then we conduct the reduction from the TSP prob-
lem. Given any instance of Traveling Salesman Prob-
lem V ′, L and v′0, we construct an instance of mobile
charger scheduling problem V , ri in the following way:
Set V = V ′, and the distances between nodes in V
are set to be the same as those in V ′. The energy
consumption rates of all the nodes in V are set to be
Emax/L, and the time window is set to TW = L.

In what follows we show that the solutions to the two
problems are equivalent in two steps. Step 1: If there
exists a solution C ′ to the TSP problem instance V ′,
L, we apply the same route C ′ to the mobile charger
scheduling problem V . Following the schedule C ′, the
mobile charger visits each sensor node exactly once
during the scheduling time window, which takes time
L. Since all the sensor nodes have the same battery life
L, the schedule C ′ ensures that all the sensor nodes
are recharged before their batteries drain out. In other
words, C ′ is a feasible solution for the mobile charger
scheduling problem V .

Step 2: If C is a feasible solution for the mobile
charger scheduling problem V , we can see that each
sensor node must be recharged at least once. Otherwise
the coverage ratio will be smaller than 100%. Then we
make a minor change to route C to make it a feasible
solution to the TSP instance V ′. We firstly scan the
route C to see if any vertex is visited more than once.
For any vertex v′i that is visited before, we update the
route C by making a short cut that connects its previous
vertex vpi and next vertex vni directly. According to
the triangle inequality, this operation will not increase
the length of C. We repeat this process to update C
until no more duplicated vertices exist. This process
has polynomial time complexity of O(|V ′|). In this
way, we ensure that C visits all nodes in V ′ exactly
once, and the total time spent on C is no more than L.
Therefore C is a feasible solution to the TSP problem
instance V ′. This way we show that the mobile charger
scheduling problem is NP-complete.

IV. MOTIVATING EXAMPLE

In this section, by testing the classical EDF and TSP
schedulers using simple examples, we demonstrate that
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Figure 1: Motivating Examples
both spatial and temporal closeness must be considered
in the mobile charger scheduling problem. Figure 1a,
1b, and 1c show three scenarios: (a) a network of
nodes with the same energy consumption rate, (b) a
network with a cluster of nodes that have high energy
consumption rates, and (c) a network with two clusters
of nodes that have high energy consumption rates.
The result is shown in Figure 1e. The EDF and TSP
schedulers are defined as follows:

Earliest Deadline First (EDF) scheduler: In
the EDF[19] scheduler, the mobile charger always
recharges the node vi with the shortest deadline eki /r

k
i .

Shortest Path (TSP) scheduler: The TSP
Scheduler[20]firstly uses a heuristic to generates
an approximately shortest path that visits all nodes,
then the mobile charger follows this path to recharge
each node it encounters.

Spatial Considerations: To achieve good scheduling
performance, the scheduler needs to find short routes
that reduce the traveling time and improves recharge
efficiency. This is illustrated in Figure 1a, where all the
sensor nodes have the same energy consumption rate.
In this case, the TSP scheduler achieves 99% coverage
ratio. However, if the EDF scheduler is applied instead,
the average coverage ratio will be degraded to around
82%. This is because the mobile charger’s schedule is
driven purely by deadlines. It travels back and forth to
save the dying nodes without considering the nodes’
location information.

Temporal Considerations: The mobile charger
scheduling problem is also a real time scheduling
problem because each sensor node has its own deadline
that needs to be satisfied. Therefore, a good scheduler
needs to take into account the time constraints. As an
example, we apply the EDF scheduler to the scenario



in Figure 1b. In this case, the mobile charger spends
most of its time recharging nodes with high energy
consumption rates, and achieves good performance.
However, if we apply the TSP scheduler in this same
network, the coverage ratio is reduced to around 84%.
This is because it fails to take into account the different
urgency of nodes.

In scenario 1c, which has two clusters of nodes
with high energy consumption rates, neither scheduler
performs well. When the EDF scheduler is applied, the
mobile charger travels between the two clusters back
and forth, which results in long traveling times. After
some time, many low-power nodes in the network run
out of battery, and a dramatic drop in coverage ratio
occurs. On the other hand, when the TSP scheduler is
applied, the high power nodes do not receive enough
recharge, while the lower power nodes receive recharge
more than needed. As a result, the coverage ratio fluc-
tuates at a lower level. This example demonstrates that
both spatial and temporal aspects of the network need
to considered when designing a scheduler. Otherwise
the recharge performance will be greatly compromised.

V. ALGORITHM DESIGN

In this section we present the development of the
innovative Spatial Dependent Task (SDT) Scheduler.
We firstly quantify the mutual influence among spa-
tially distributed recharge tasks using Cosine Rule.
We discover that there exist two conditions, termed
Node Cluster and Nodes Near Path, which can be used
to improve scheduling performance. Based on these
observations, we design the high performance Spatial
Dependent Task (SDT) Scheduler.

A. Spatial Dependent Task Model

In the mobile charger scheduling problem, the pro-
cessing times (traveling time) of different recharge
tasks are mutually dependent, which distinguishes it
from many other real time scheduling problems. We
can quantify the mutual dependency of the spatially
distributed recharge tasks. As we can see in Figure 2a,
the traveling time for node vj changes from dsj to
dij if the mobile charger moves from node vs to vi
first. According to Cosine Rule, the value of dij is
determined by the following equation:

dij =
√
d2si + d2sj − 2dsidsjcosγ. (5)

Equation 5 can be applied to determine how the
traveling times of the recharge tasks evolve as the
mobile charger travels in the network. In what follows,
we introduce the node cluster and nodes near path
based on this equation.

(a) Cluster Dependency (b) Path Dependency

Figure 2: Task Spatial Dependency
1) Cluster Dependency: When the sensor nodes are

densely distributed in a small area, recharging one node
can reduce the traveling time of nearby nodes. For
instance, in Figure 2a, if the mobile charger recharges
vi, then the traveling times of all other nodes around
vi will be greatly reduced as well. We take the node vj
in this figure as an example. We can see ∠vivsvj ≈ 0
and dsj ≈ dsi. According to Equation 5, dij ≈ 0.
This means that the traveling time for node vj will be
decreased to near zero if the mobile charger recharges
node vi first.

Inspired by this observation, we propose that when
looking for targets, the mobile charger should take into
account the energy information of the nodes’ neigh-
bors. The closer two nodes are located to each other,
the larger mutual influence they have. Specifically, the
cluster priority of a node vi is defined as follows:

P cvi(k) =

∑
vj∈cluster(vi) w(j) ∗ (Emax − ekj )∑

vj∈cluster(vi) w(j)
/dαsi.

(6)In this equation, Emax − ekj is an estimation of the
amount of energy node vj can receive. This is then
weighted by the term w(j) = (dcluster−dij)/dcluster,
which is an estimation of the mutual influence on
traveling time for neighboring nodes. cluster(vi) is
defined as the set of nodes located in the neighborhood
of node vi. In this paper, the neighborhood is defined as
a circular disk with radius dcluster centered around vi.
Finally, the cluster priority is divided by dαsi, which is to
penalize clusters lying far away. We use an adjustable
parameter α to determine how heavy the penalty is.

2) Path Dependency: When nodes are lying close
to the mobile charger’s traveling path, as shown in
Figure 2b, these nodes can be inserted to the recharge
schedule without incurring much extra overhead. For
example, if the mobile charger travels from node vs
to vj directly, the traveling time is dsj . Instead, if the
mobile charger recharges both node vi and vj , then the
total traveling time is dsi+dij , which is approximately
the same as dsj . Specifically, according to Equation 5,
when γP = ∠vsvivj ≈ π, we have:

dsj =
√
d2si + d2ij − 2dsidijcosγP

≈
√
d2si + d2ij + 2dsidij

= dsi + dij .

(7)



This means node vi can be recharged incidentally
with small overhead when the mobile charger is trav-
eling to node vj . In order to quantify the benefits,
we need to consider both the distances between nodes
and their battery storage. We quantify the benefit of
recharging a node vj near the path as Emax − ekj −
xk−1TDxk|rk|1. In this equation, Emax − ekj is the
amount of energy that node vj can receive. D is the
node distance matrix, and xk−1TDxk is the traveling
time for node vj . |rk|1 represents energy consumption
rate of the entire network. The physical interpretation
of this function is the net increase of the energy of
the network when the mobile charger charges node vj .
Based on this function, we can define the path priority
and the mobile charger’s traveling graph. Assume
the mobile charger recharges nodes along the path
l = [v∗1 , v

∗
2 , ..., v

∗
n], and the distance between node v∗i

and v∗j be dv∗i ,v∗j then the priority of this path l is
defined as follows:

P p
l (k) =

∑
vj∈l

(Emax − ekj − dv∗
j−1,v

∗
j
|rk|1). (8)

Given a target node vt, our next step is to find a
path for the mobile charger to travel. Our goal of path-
finding is to maximize the benefit defined in Equation
8, while not incurring much detour from reaching vt.
To achieve this goal, we define the traveling graph
that the mobile charger can travel so that length of
detours can be reduced. Specifically, assume the mobile
charger is located at node vs and has a schedule to
recharge node vt. A directed edge edge(vi, vj) exists
from node vi to vj if and only if ∠tij < γp and djt <
dit. Intuitively, this means the mobile charger can only
travel to nodes lying in the sector area centered around
the segment vivt, and has closer distance to the target
node vt. Using this definition, the traveling graph is a
Directed Acyclic Graph (DAG). Finally, we assign the
path priority defined in Equation 8 to each of these
edges, and apply the critical path algorithm on this
graph to find the path that has maximum overall path
priority. Note that although polynomial-time longest
path algorithm does not exist in general graphs, a linear
time complexity longest path algorithm, which is based
on Dijkstra’s algorithm, is available for DAG [21].

B. Spatial Dependent Task Scheduler

Based on the cluster priority and path priority, we
design the Spatial Dependent Task scheduler. It consists
of two basic steps: 1) create a schedule using the clus-
ter priority, and 2) optimize the schedule by selecting
travelling path with highest path priority. Specifically,
the SDT scheduler is defined in Algorithm 1.

The SDT scheduler firstly searches for the node vt
with highest cluster priority defined in Equation 6.

Algorithm 1 Spatial Dependent Task Scheduler

Input: Initial location of MC s
Output: schedule: v1, v2...vt

1: for all vi ∈ V do
2: calculate P cvi(k)
3: end for
4: vt ← arcmax

vi∈V
P cvi(k)

5: Update edges of travelling graph
6: Use Longest Path algorithm to find highest priority

path l from vs to vt in V
7: return [l, vt]

After vt is found, the edges of the travelling graph
is updated, and priorities of the edges are computed
according to the definition of travelling graph and
path priority in Section V-A2. Finally, Critical Path
Algorithm (longest path algorithm) is applied to search
for the path that has the maximum path priority from
the mobile charger’s location vs to the target node
vt. The mobile charger will follow this schedule to
recharge sensor nodes. When it arrives at the node vt,
it will invoke the SDT scheduler again for the next
schedule.

VI. EVALUATION

A. Experiment Set-Up

In order to test the mobile charger schedulers, we im-
plement a simulation framework, with the parameters
collected from realistic systems. At the start of each
scheduling interval, we randomly pick an consumption
rate value from the history record of real sensors from
[9]. We assume the energy consumption rates remain
static during each scheduling interval. The average
energy consumption rate is around 0.12W . For high
workload sensors, we scale the energy consumption
rate to 6 times of normal ones. We assume the battery
capacity is 10KJ , and the mobile charger is moving
at a constant speed of 0.35m/s.

To achieve comprehensive evaluation, we test the
scheduling algorithms under various different scenar-
ios. Each network has 225 sensor nodes, and is de-
ployed in grid topology. The areas of deployment
regions range from 0.25km2 to 4km2. To simulate
the performances under high workloads, we divide the
network into 9 equal-size clusters, and assign from
0 to 4 clusters of nodes to have high workloads. In
each experiment, we conduct W = 10000 times of
scheduling. The coverage ratio and other evaluation
metrics are recorded at the end of each scheduling
interval, which are used for the calculation of the
statistic values like average and standard deviation of
each experiment. Each experiment is repeated three
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times to derive the average of these statistical metrics
in order to reduce the effects of random cases. The
parameters of the SDT algorithm are listed as follows:
dcluster = 13.125m, α = 0.5, and γp = π/4.

B. Baseline Algorithms

Nearest Insertion The Nearest Insertion Algorithm
is applied to improve the EDF scheduler, which is
termed EDF-I. Specifically, assume the mobile charger
is located at node vs and the target node found by EDF
is vi. Then EDF-I searches the node vj that minimizes
the detour Wj = dsj+dji. If Wj is smaller than the life
time of vi, then the node vj will be recharged before
vi. Otherwise the mobile charger will not insert any
node.

Maximum Response ratio First (MRF) In the MRF
scheduler [19], we define a node vi’s priority using the
response ratio Wi = wtki /dsi, where the waiting time
wtki is defined as the length of time since the previous
recharge.

C. Coverage Ratio

1) The Influence of Workload: We firstly evaluate
the algorithm performance when the networks are de-
ployed in an area of 1km2, with from 0 to 4 clusters of
heavy-workload nodes. The results are shown in Figure
3. When the number of clusters increases, we can
easily find that TSP scheduler’s performance degrades
seriously, from 100% of coverage ratio to 76%. The
reason is that TSP scheduler recharges all sensor nodes
at the same frequency, regardless of the fact that they
have different energy consumption rates. When all the
nodes have the same energy consumption rate i.e.,
the case with zero cluster of heavy-workload nodes,
TSP achieves good performance because it reduces the
overall traveling time. However, when the nodes have
increasingly polarized energy consumption rates, i.e.,
the case with four clusters, more and more nodes fail
to receive sufficient energy and thus run out of energy,
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Figure 4: The Influence of Network Scale

while others are recharged more than needed. As a
result, TSP’s performance drops dramatically. On the
other hand, we can see that when the number of clusters
ranges from 2 to 4, SDT scheduler outperform TSP by
10%. This shows that when the workloads in certain
areas of the network increase, SDT scheduler is able to
adjust schedules accordingly, and spends most of the
time on the nodes that have heavy workloads. As a
result, the coverage ratio is improved.

We can also see that the standard deviations of
coverage ratio of MRF, EDF and EDF-I are large.
For example, when the network has 1 cluster of high
power clusters, MRF, EDF and EDF-I have standard
deviations of 4%, 9% and 8%, respectively. This shows
that during the recharge process, the coverage ratio
is fluctuating. On the other hand, the SDT scheduler
achieves only 2% standard deviation, which indicates
much better stability in coverage ratio. This reveals the
drawbacks of applying greedy-search-based schedulers
to the mobile charger scheduling problem: The mobile
charger is driven by the local optimum of its goal, while
ignoring the other areas of the network. For example,
when EDF is applied, it will spend most of its time
recharging nodes with high power consumptions, until
a large number of lower-power nodes begin to die,
which results in a large drop in coverage ratio.

2) The Influence of Network Scale: As the network
scale increases, the time it takes for the mobile charger
to travel between sensor nodes also increases. In this
experiment, we compare the algorithm performance
under different network scales from 0.25km2 to 4km2.
We can see that SDT achieves over 97% coverage ratio
when the network scale ranges from 0.25km2 to 2km2,
which outperforms all other algorithms. It shows that
SDT maintains good performance gracefully under
cases that require more traveling time.

When the sensors are deployed in an area of 4km2,
then the TSP scheduler achieves the best performance
among all, which is 91%. This is because when the
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Figure 6: Average Tardiness

TSP scheduler is traveling along efficient routes, which
reduces the influence of the increase of traveling dis-
tance. This benefit is more evident when the network
scale grows large.

We can also see that the Insertion heuristic provides
a valuable improvement on scheduling performance.
EDF-I has a better performance than EDF when the
network scale is from 0.25km2 to 2km2. When the
network scale is 4km2, they have similar performance,
at 87% of coverage ratio. The reason is that the
insertion heuristic is able to improve the recharge
efficiency by recharging a node lying close to the
mobile charger’s existing schedule. However, the costs
of detours incurred by insertion are not negligible
in large scale networks. Therefore, we can observe
performance degradation in such cases.

3) Relation Between Spatial and Temporal Close-
ness: To further explore the differences among these
scheduling algorithms, we deploy sensor nodes ran-
domly within an area of 1km2, with 2 clusters of
heavy-workload clusters. We plot the relations between
deadlines and processing times for SDT, EDF, TSP and
MRF in Figure 5. In these figures, each point represents
the traveling time and deadline of a node when it is
being recharged. We use negative deadlines to indicate
that the sensor nodes are already our of battery when it
is recharged, and the absolute values of such negative
deadlines represent the length of tardiness.

From Figure 5a, we can see that SDT achieves a

trade off between processing time and deadline. Due
to the application of cluster priority, the mobile charger
sometimes takes long trips to rescue urgent nodes,
while for most of the time it recharges nearby nodes
so that the travelling cost can be minimized. Besides,
we can also see that the traveling time of SDT is short,
which is similar to that of TSP. The reason is that SDT
applies path priority to optimize its schedules. Using
path priority, SDT automatically searches for nodes
that can be recharged without incurring much extra
traveling overhead. As a result, the traveling efficiency
is improved.

From Figure 5b, we can see that the EDF scheduler
frequently takes long trips to rescue urgent nodes,
because it focuses much on deadlines of nodes while
ignoring the node distances. EDF-I improves the per-
formance slightly by inserting nodes near the path.
However, since it inserts at most one node in each trip,
the performance improvement is not significant. On the
other hand, SDT inserts large amounts of nodes into
its schedulers so that it significantly reduces inefficient
trips.

From Figure 5c, we can see that the nodes scheduled
by TSP are clustered into two groups: one group of
nodes have large negative deadlines, and the other
large positive ones. Although TSP ensures short pro-
cessing times for all the nodes, a large number of
nodes are recharged after they have been starved for
about 5 hours. The reason is that TSP scheduler fails
to respond to these nodes’ heavy workloads quickly
enough. Instead, it spreads its charging power equally
among all the nodes, regardless of their different energy
consumption rates.

D. Average Tardiness

In order to evaluate the real-time performance of
the schedulers, we apply the average tardiness as a
metric. We use tmi to denote the moment when node i’s
residual energy level drops to zero. Then the tardiness
Ti(t) of a node i is equal to t−tmi if eki = 0, and equal
to 0 otherwise. We compute the average tardiness over
all the sensor nodes and over time. In Figure 6, we
show the results of average tardiness for the schedulers



when network scale ranges from 0.25km2 to 2km2,
with two clusters of heavy workload clusters.

In this figure we can see that the SDT scheduler
achieves the lowest tardiness among all the schedulers.
When the network scale is 0.5km2, 1km2 and 2km2,
the SDT scheduler reduces at least 85% of the tardiness
of the TSP scheduler. This demonstrates that compared
with TSP, SDT responds to the urgent nodes much
more quickly.

We can also see TSP scheduler’s average tardiness
is also significantly larger than MRF, EDF and SDT,
especially when the network scale is 1 or 2 km2. This
is because when using TSP under these cases, the nodes
with heavy workloads are receiving far less energy than
needed. As a result, they die out quickly and receive
insufficient recharges, which creates large tardiness.

Interestingly, the MRF scheduler results in large
average tardiness in our experiments, although in real-
time processor scheduling problem, the MRF scheduler
is supposed to eliminate process starvation [19]. When
the network is deployed in 0.25km2, it has 2 minutes
of average tardiness, which is higher than all other
schedulers except TSP. The reason is that MRF focuses
too much time recharging nearby nodes. From Figure
5d, we can see MRF scheduler spends most of its
time recharging nearby nodes, until some faraway
urgent nodes force it to take long trips to rescue long
starved nodes. Therefore, we can see that although
MRF reduces tardiness in a single machine, it is not
necessarily able to reduce tardiness under the case that
tasks are distributed in space.

In summary, our simulations show that the proposed
algorithm SDT performs well in terms of both coverage
ratio and average tardiness under a variety of settings.
When the recharge workloads are light, TSP achieves
good performance. However its performance degrades
quickly when the the number of high-power nodes in-
creases. The EDF scheduler suffers from large standard
deviation in coverage ratio and tardiness. From the
experiment results of EDF-I, we can see that the Inser-
tion heuristic is able to slightly improve the scheduling
performance in small scale networks. MRF scheduler
has satisfactory performance in coverage ratio, but it is
unable to reduce average tardiness.

VII. CONCLUSION

In this paper, we formulate the mobile charger
scheduling problem as an optimization problem. Our
primary goal is to maximize the percentage of nodes
that are alive for monitoring purposes. We proved
that it is NP-complete by reducing it to the Traveling
Salesman Problem. In algorithm design, we focus on
the case when the traveling time is larger than some of

the battery lives of sensor nodes. we propose a spatial
dependent task scheduling algorithm, which quantifies
the impact of scheduling proximate tasks on the other
tasks. With extensive simulations that cover different
network scales and workloads, we demonstrate that
our algorithms have good performance. Our solution
outperforms the classical such as the TSP scheduler
by up to 10% and 85% in terms coverage ratio and
tardiness, respectively.
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