University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

1-28-2012

The Medical Device Dongle: An Open-Source
Standards-Based Platform for Interoperable
Medical Device Connectivity

Philip Asare

University of Pennsylvania, asare@seas.upenn.edu

Danyang Cong

University of Pennsylvania, cdanyang@seas.upenn.edu

Santosh G. Vattam

University of Pennsylvania, vattam@seas.upenn.edu

BaekGyu Kim
University of Pennsylvania, baekgyu@seas.upenn.edu

Andrew King

University of Pennsylvania, kingand @seas.upenn.edu

See next page for additional authors

Philip Asare, Danyang Cong, Santosh G. Vattam, BaekGyu Kim, Andrew King, Oleg Sokolsky, Insup Lee, Shan Lin, and Margaret Mullen-Fortino.
2012. The medical device dongle: an open-source standards-based platform for interoperable medical device connectivity. In Proceedings of the 2nd
ACM SIGHIT International Health Informatics Symposium (IHI '12), Miami, FL. ACM, New York, NY, USA, 667-672. DOI: 10.1145/
2110363.2110438

Conference Site: http://sites.google.com/site/web2011ihi/

© ACM, 2012. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.

This paper is posted at ScholarlyCommons. http://repositoryupenn.edu/cis_papers/488

For more information, please contact repository@pobox.upenn.edu.

http://repository.upenn.edu
http://repository.upenn.edu/cis_papers
http://repository.upenn.edu/cis
http://doi.acm.org/10.1145/2110363.2110438
http://doi.acm.org/10.1145/2110363.2110438
http://sites.google.com/site/web2011ihi/
http://repository.upenn.edu/cis_papers/488
mailto:repository@pobox.upenn.edu

Author(s)
Philip Asare, Danyang Cong, Santosh G. Vattam, BaekGyu Kim, Andrew King, Oleg Sokolsky, Insup Lee,
Shan Lin, and Margaret Mullen-Fortino

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/488

http://repository.upenn.edu/cis_papers/488

The Medical Device Dongle: An Open-Source
Standards-Based Platform for Interoperable Medical
Device Connectivity

Philip Asare
Electrical and Systems
Engineering
University of Pennsylvania
Philadelphia, United States

asare@seas.upenn.edu

Oleg Sokolsky
Insup Lee
Computer and Info. Science
University of Pennsylvania
Philadelphia, United States

{sokolsky, lee}@seas.upenn.edu

ABSTRACT

Emerging medical applications require device coordination,
increasing the need to connect devices in an interoperable
manner. However, many of the existing health devices in use
were not originally developed for network connectivity and
those devices with networking capabilities either use pro-
prietary protocols or implementations of standard protocols
that are unavailable to the end user. The first set of devices
are unsuitable for device coordination applications and the
second set are unsuitable for research in medical device inter-
operability. We propose the Medical Device Dongle (MDD),
a low-cost, open-source platform that addresses both issues.

Categories and Subject Descriptors

J.3 [Computer Applications|: Life and Medical Sciences;
D.2.12 [Software Engineering]: Interoperability; H.4.3
[Information Systems Applications]: Communications
Application

General Terms

Design, Standardization

Keywords

interoperability, medical device connectivity, IEEE 11073-
PHD, plug and play

*This research was supported in part by NSF CNS-
0834524, NSF CNS-0930647, NSF CNS-1035715, and NIH
1U01EB012470-01.

Post-print version. This paper has been originally published at:
2012 ACM Health Informatics Symposium

Miami, Florida, USA

January 28-30, 2012

Danyang Cong
Santosh G Vattam
Computer and Info. Science
University of Pennsylvania
Philadelphia, United States

{cdanyang, vattam}@seas.upenn.edu

Shan Lin

Dept. of Computer Science
Temple University
Philadelphia, United States

shan.lin@temple.edu

BaekGyu Kim
Andrew King
Computer and Info. Science
University of Pennsylvania
Philadelphia, United States
{baekgyu, kingand}@seas.upenn.edu

Margaret Mullen-Fortino
University of Pennsylvania
Health System
Philadelphia, United States
margaret.fortino-

mullen@uphs.upenn.edu

1. INTRODUCTION

Emerging medical applications rely on device coordination
[7]. Such coordination requires that medical devices be able
to connect over a network, and the process is made much
simpler if the devices employ a common set of connectivity
and communication protocols. Unfortunately, many of the
existing medical devices in use were not originally designed
for network connectivity [8]. However, a good number of
these devices provide a communication port (usually RS-232
or USB) for data exchange with a single computer. Such de-
vices can be adapted for network connectivity by providing
a peripheral that connects to their output ports. The de-
vices would then be able to share their data or be controlled
over the network using a common set of protocols. This in-
tegration could then support distributed applications such
as automated data collection, remote monitoring and vital
sign analysis, and inter-device coordination.

Such peripherals exist [9], and even though they use a
standard protocol like IEEE 11073-PHD [4], these periph-
erals are geared more towards personal health devices and
less toward enabling the coordination applications we are
interested in. Also, the implementation of the protocols are
unavailable to the end-user, making such peripherals unsuit-
able as test beds or platforms for research in interoperability
since the user has no way of modifying the protocols. The
aim of the Medical Device Dongle (MDD) is two-fold: first,
to enable existing devices connect and communicate using
a standard protocol to allow/support development of dis-
tributed medical applications; second, to provide a platform
and test bed for research in medical device interoperabil-
ity. Most of this paper focuses on the first aim; however a
discussion on the second aim is provided in section 7.

2. RELATED WORK

The Continua Health Alliance [1] is a consortium that pro-
vides design guidelines for developing medical equipment to
meet the IEEE 11703 standards for interoperability. They
provide a number of tools, guidelines, and references de-
signed for developing devices to meet these standards; how-

ever, these resources are available to members only. Also,
Continua’s efforts target the industry, particularly device
vendors, and more specifically telehealth applications. Our
work is targeted at the research community and is aimed
at providing lower cost options for investigating new coordi-
nated medical device applications (both in the hospital and
for telehealth) and exploring medical device interoperability
issues.

Intel® provides an evaluation kit [6] for developing em-
bedded devices that interact with medical devices. Its kit
provides the binary code for Continua’s software stack for
Microsoft Windows Embedded 7 for free, as well as a trial
version of the Windows Embedded operating system. This
solution can get expensive since an Intel® Atom develop-
ment kit costs $1,300 at minimum. The kit also targets
the development of device managers only and assumes that
the medical devices it will connect to are network-capable
and Continua-certified. Our work, on the other hand, tar-
gets already existing medical devices which were not original
developed for connectivity and hence do not follow any in-
teroperability protocol.

The OpenHealth project [5] is aimed at provide an open
implementation of the IEEE 11073 protocol for manager de-
vices that wish to interact with Bluetooth-enabled medical
devices (like those certified by Continua). It provides the
Bluetooth Health Device Profile (HDP) which is required
for interacting with Continua-certified devices, as well as an
API for building applications (mostly for the Android plat-
form) that interact with such devices. This work only targets
building manager applications mostly for personal health
applications in body area networks. Our work targets ap-
plications both in the hospital and for personal health, and
our device manager is designed to be platform-agnostic and
is aimed at supporting device coordination applications.

3. MDD OVERVIEW

Applications of interest require that devices connected to
the patient interact with a central point called the supervi-
sor. This supervisor usually acts as in intermediary between
the medical devices and the software applications that use
them in a coordinated manner. This multiple-devices-single-
manager architecture necessitates two versions of the MDD:
a manager MDD for the supervisor, and an agent MDD for
each medical device. The MDD can be implemented as a
physical peripheral connected to a device or as logical soft-
ware components running on a device (with access to the
device’s network interface). The MDD is based on the IEEE
11073 protocol and is designed to support other medical de-
vices and interoperability protocols, especially those geared
towards maintaining patient safety like those used in the
Medical Device Coordination Framework (MDCF) [7]. We
chose 11073 because it is an IEEE standard and supports the
multiple-devices-single-manager model. The network archi-
tecture is based on the older point of care (PoC) standard,
while the connectivity and communication protocol is based
on the personal health devices (PHD) protocol. We chose
PHD for the main protocol because it has better and more
recent documentation than the previous PoC standard. It is
important to note that we did not implement the full stan-
dard, but only those parts we deemed sufficient for medical
device connectivity and communication. In particular, we
focused on the design and development of

1. The manager and agent association finite-state ma-

chines for maintaining connectivity.

2. GET, SET, and EventReport services for message ex-
change and command execution.

3. The Medical Device System object from the domain
information model (DIM) for device description.

4. The Medical Device Encoding Rules (MDER) from the
communication model for encoding messages.

We did not implement any device specializations (though
we will be using the specified data formats for each device)
nor did we implement any of the other encoding rules since
the MDER is the only encoding rule required by the stan-
dard. We call our implementation 11073-MDD. We limited
our implementation to providing connectivity and commu-
nication because these are the most well-documented parts
of the protocol and we believe that this is the most basic
requirement for interoperability.

4. MOTIVATION/USE CASES

We describe two scenarios that motivate our work: the
first is in the hospital ICU context and the second applies
more to the out-patient context.

ICU Monitoring. Electronic health records (EHR) have
enabled digital recording and storage of data into a pa-
tient record; however, ensuring accuracy of the data remains
a challenge. Medical devices are often purchased with a
vendor-specific server that collects data from the device to
make it available to the practitioner. If the EHR provider
is different from the device and server provider, chances are
that these two systems are using incompatible communica-
tion protocols and formats, especially if these are propri-
etary. The hospital IT department is then tasked with the
job of bridging these two systems. The other problem is
with the devices that have no network connectivity. Data
from such devices are usually entered manually. This cre-
ates room for error in data entry and makes the whole data
collection process inconsistent. With the MDD, all devices
in a patient’s room can be connected to a device manager
in the room. This device manager can then interact with
the patient EHR to ensure that all the data from devices
are collected in the EHR over the network. This creates less
administrative problems, reduces the room for errors, and
ensures that data is communicated in a standard format re-
gardless of the manufacturer of each device. It also enables
other applications besides the patient’s EHR to have access
to the medical devices and use them as needed.

Remote Patient Monitoring for Primary and Emer-
gency Care. Advances in treatment of chronic illnesses
allow patients to have active lives, including the ability to
travel. People often develop illness in locations far from
their primary physician, requiring them to seek care in an
emergency room. The sick patient may not be able to pro-
vide all of the necessary information or provide a compre-
hensive medical history. This lack of information effects the
practitioners ability to ensure safe care. Medical device con-
nectivity would provide a mechanism for the patient to be
monitored and have their data transmitted in real-time to
their primary care physician, enhancing the physicians abil-
ity to make appropriate treatment decisions. The MDD en-
ables such capabilities. If medical devices in hospitals, am-
bulances, and clinics were equipped with the MDD, then the
patient could connect to them with their smart phone or a
dedicated device (running a logical version of the MDD and
an application to coordinate the devices), which would in

turn transmit the data to their EHR and alert the primary
care physician that the patient has just visited a health fa-
cility or had been in an ambulance.

5. ARCHITECTURE

As mentioned previously, the MDD consists of an agent
and a manager portion, each with a collection of software
components, called MDDWare, that work together to en-
sure interactions between the agents, manager, and other
applications in a plug-and-play manner. As shown in Fig-
ure 1, the agent MDD communicates with the medical device
over standard data interfaces like USB and RS-232 using the
vendor’s proprietary format. The agent converts communi-
cation from the medical device into the 11073 to be sent
to the device manager over standard network interfaces like
Ethernet, Bluetooth, or WiFi. The agent converts any mes-
sages from the device manager back to the vendor’s format
to be sent back to the medical device. The manager also
provides an interface that allows medical applications and
other devices to indirectly interact with the medical devices
through the manager.

Health System

B R

Other Applications

: | IEEE 11073-PHD-
OR i i compliant format
: - e—

MDD Manager

IEEE 11073-PHD-compliant format |EEE 11073-PHD-compliant format

Medical Device |
Vendor Format n

(USB, RS-232) (USB RS-232)
i ® 3
eyt G Y -— !)

Agent i i U
Dongle | :

Medical Device

Vendor Format
Other

Medical
Devices !

Agent
Dongle

Figure 1: General Device Connectivity Architecture
5.1 Agent-side MDD

Figure 2 shows the agent-side software architecture. The
MDDWare is the same for each MDD. The other components
vary based on the medical device the MDD is connected to.

{ Medical Device]

Device
Specification

Specification

= 5

Generic Agent Behavior]

Modules

Data Logger
Time Sy

(Standard)

e e WV

1

1

1

[Transport Layer 1
|

Figure 2: Agent Software Architecture
Medical Device Driver. The medical device driver acts
as the intermediary between the MDDWare and the medi-

cal device. The characteristics of the device are specified in
the medical device specification. The driver reads this spec-
ification in order to know which requests can be handled
by the device. When data is requested, the driver parses
the messages from the medical device, translates the data
into the right format and passes this data on to the generic
agent behavior specification (GABS) module to be sent to
the manager in the right 11073 packet format. The driver
also receives messages on behalf of the medical device from
the GABS and translates these messages into the vendor’s
format to be sent to the medical device. If the driver receives
a request from the GABS that the device cannot handle, it
sends an error message to the GABS to be sent to the man-
ager. A driver can be specific to a particular device or could
be for a family of devices which are differentiated by their
device specifications.

Generic Agent Behavior Specification. This module
is responsible for implementing the 11073 protocol. Once
it detects that it is connected to the medical device and
the network, it initiates the association procedure with the
manager. It is also responsible for going through the con-
figuration procedure with the manager if the device is not
recognized by the manager. During operation, it handles the
GET and SET service requests from the manager, and gen-
erates EventReport messages on behalf of the device driver.
It is responsible for encoding messages from the device driver
into the right 11073 packet format and decoding messages
from the manager before passing on the requests to the med-
ical device driver.

Connectivity and Communication. This module is re-
sponsible for tracking the connectivity states of the device
and alerting the GABS of state changes so the appropriate
actions can be taken. It is also responsible for generating
packets (when prompted by the GABS) in the MDER for-
mat as specified by the 11073-PHD standard before sending
messages via the transport layer.

5.2 Manager-side MDD

Figure 3 shows the manager-side software architecture.

Central Monitor

Other, A"f“"a"""s [Medical ‘Applications’]
Admin

(Medical Device Manager

(Medical Applications)

MDDWare Interface

Devices Manager

’ A ’ L W A}
Sub-Manager Sub-Manager 1 Sub-Manager

1 1 1 1
1 I

: Connectivity : : Connectivity : 1 Connectivity |
1 & 1 + 1 * 1
1| Communication)i 1| Communication)i 1| Communication)i
I 1] [} I
1] [| I

(Transport Layer) (Transport Layer): i(Transport Layer):
. - -

""""" J

Figure 3: Manager Software Architecture

MDD Device Manager. The MDD Device Manager per-
forms the following managerial and control tasks:

e Maintain a list of devices that are currently connected
to the patient.

e Create sub-managers for each of the MDD Agents con-
nected to the above mentioned devices.

e Maintain the sub-managers through the duration of
connectivity.

e Provide an interface between connected devices and
medical applications that want to interact with them.

e Destroy or remove the sub-managers once a device is
disconnected.

MDDWare Interface. The MDDWare Interface sits on
top of the MDD Device Manager and can be considered
part of the manager. It is designed to provide a transpar-
ent interface for any application that requests the services of
the manager. Applications that need to access data from a
specific device connected to a patient can request this infor-
mation from the MDD Device Manager using the MDDWare
Interface. The MDDWare Interface and the MDDWare ex-
ist on the same MDD manager device. The services of the
MDDWare interface can be requested either locally, by an
application located on the MDD manager device itself, or
remotely, from an application located on a different device.
Sub-manager. Each submanger is responsible for ezactly
one agent. It maintains the connection and directly ex-
changes packets with the agent on behalf of medical appli-
cations or other modules. The number of sub-managers is
determined by the manager. A sub-manger is destroyed once
the agent connected to it permanently disconnects. The use
of sub-managers allows the various connected agents to be in
different states and to ensure that the states of the manager
and agent for each device are synchronized. This allows for
easier analysis of the state machines of the managers and
agents.

6. CURRENT STATUS

Most of our efforts have been aimed at coming up with the
system architecture. This was necessary to make sure that
our architecture was flexible, scalable, and evolvable. It is
important to note that even though the 11073 protocol spec-
ifies the expected behaviors of agents and managers, it is not
clear from the specification what the best way to implement
these components in software is. For example, interactions
are typically shown for one agent and one manager, whereas
in real implementations a manager may interact with more
than one agent. Hence, is therefore not clear from the spec-
ification how to synchronize the state of the manager with
the potentially varied states of the different agents it may
be connected to. This prompted us to come up with the
sub-manager-based architecture, where the device manager
is responsible for maintaining global information about con-
nected and known devices, and the sub-managers are re-
sponsible for interactions with the agents which conforms to
the behavior specified in the protocol. We therefore consider
our software architecture a main contribution of this work.

We have moved past the main design stage and are at var-
ious stages of implementation of the different components.
We are continually refining design details. The MDD cur-
rently consists of a TI Beagleboard (a low cost embedded
platform) running Linux (Ubuntu 10.04 LTS). It has a num-
ber of USB ports (which can be converted to RS-232 and
bluetooth using adapters) and an ethernet port. The MD-
DWare is implemented in Python. The parts of the MD-
DWare that have currently been implemented are:

o A full version of 11073-PHD association finite state
machine (FSM) for both the manager and agent

e Basic device drivers for a pulse oximeter (Nellcor N-
595) and blood pressure monitor (AND UA767-PC).

e Ethernet and Bluetooth transport layers (including a
Bluetooth transport layer for Android)

e A basic version of the MDDWare interface (in Python
and Android)

e A basic device description specification file

The MDD can be implemented on any other embedded
platform that will support Linux and Python. Basic con-
nectivity and communication tests have been run for our
pulse oximeter agent. We have tested the behavior of the
association state machines and the ability for the agent to
respond to GET and SET requests. An Android applica-
tion was implemented to view data from pulse oximeter and
blood pressure monitor as part of these tests. This applica-
tion is built on the top of manager MDDware and uses the
connectivity configuration shown in Figure 1. The setup for
this application is shown in Figure 4.

Ise Oximeter

(Beagleboard)
el Mg

==
Android
Phone

Patient

Figure 4: MDD Basic Implementation

Our Bluetooth tests were conducted in an uncontrolled
environment with no latency or dropped packet issues. This
is probably due to the fact that the pulse oximeter is a low
data rate device (providing data at 0.5 Hz)—the blood pres-
sure monitor is a data-on-demand device. We expect reli-
ability issues to appear with higher data rate devices like
ECGs. We also conducted Ethernet/WiF1i tests on a public
network with no latency of dropped packet issues.

7. WORK IN PROGRESS

We are working towards having a complete and validated

implementation of the MDD. We are also working on ap-
plications that use the MDD in various device coordination
scenarios. Our aim is to have a platform that is compatible
with the 11073-PHD standard and a manager interface that
allows for the easy development of applications that rely on
device coordination.
Validation of 11073 compliance. We are not aware
of any widely accepted methods or tools to validate IEEE
11073 compliance besides the Continua certifications process
which is open to members only. We are looking in two di-
rections to validate our compliance. One way is to validate
using tools like Frontline’s IEEE 11073 Sniffer + Analyzer
[2] and NIST’s ICS Generator and PDU Validation tools
[3]. The Frontline 11073 Analyzer sniffs and analyzes the
packets used for communication and validates if the packet
conforms to the 11073-PHD standard in terms of the packet
size and the packet structure. The NIST’s ICS Generator
generates the XML schema file that can be validated against
the device specification schema as used by the MDD. The
other way is to have the MDD interact with certified 11073-
compliant devices.

Support for more devices. The goal of our platform is to
provide as many medical devices as possible with interoper-
able connectivity. We are in the process of developing device
drivers for a ventilator and ECG monitor. This process will
help us provide guidelines on developing device drivers for
the MDD so others can develop their own drivers for de-
vices they have available to them. Since the MDDWare is
the same across all MDDs, the MDD should be capable of
interfacing with different medical devices so long as a proper
device driver is provided.

Interfacing with other protocols. As mentioned previ-
ously, we have the MDDWare Interface layer on top of the
device manager layer that provides a pluggable interface for
any service or protocol that wishes to utilize the MDD ser-
vice. We are, currently, working on provide support specifi-
cally for the MDCF [7]. An MDCF device can be interfaced
with the MDD agent by developing a module that uses the
MDDWare service on the MDD Agent as shown in Figure
2. The MDCF Manager can interface with the MDD Man-
ager by utilizing the services of the MDDWare Interface as
shown in Figure 3. Similarly, other applications can be run
to using the MDD as a service, on top of it.

Support for medical applications. The MDDWare in-
terface allows applications to interact with the MDD device
manager in a transparent manner without having to know
the internals of the functioning of the MDD itself. Thus ap-
plications can be written on top of MDDWare to utilize the
MDDWare functionality. Specifically, we are working three
applications.

The first is a time synchronization module for the MDD.
Time synchronization is an essential requirement for medi-
cal device interoperability and for applications that require
device coordination. Unsynchronized data can provide mis-
leading information about the patient’s state. Since each
MDD is part of local network and may not have direct access
to the internet to synchronize, we are developing a synchro-
nization module based on standard synchronization methods
like NTP to synchronize agent MDDs with their manager.

The second is an ICU data entry application that is aimed
at providing intelligent error-free data entry for ICU nurses.
It interacts with the device manager in an ICU room to
auto-populate the nurse data entry form as much as possible
and pushes this back to the central record. This reduces the
errors associated with manual data entry and allow different
checks to be included at different points. For example, the
application can tell if there are medical devices in the patient
room that should not be there or if any medical device is not
there or unresponsive over the network.

The third is an application much like the one described
in Section 4. It allows the patient’s smartphone or personal
device to interact with almost any medical device and have
their data sent to their primary care physician. This helps
the physician keep better track of the patient’s health and
makes it easier to involve the physician in care that the
patient receives remotely.

These three applications will aid us in refining our MD-
DWare interface to enable even more applications to be de-
veloped that make use of the MDD.

Medical device interoperability research. One main
aim of the MDD is for it to be a test bed for further explo-
ration of medical device connectivity and interoperability.
In particular, we hope that it could be a testbed for evalu-
ating 11073 standard itself. The 11073 standard is a work in

progress and is evolving. The MDDWare will provide a test
bed for further exploration and testing of the standard. In
addition, it will also act as a test bed for other protocols and
standards that can be interfaced with 11073. This is possi-
ble because the MDD is open source with the source licensed
under LGPL and the source is available to use [10], modify
and also redistribute, thus facilitating any improvements or
additions. Users can therefore either redesign software com-
ponents and their interfaces or build modules to interact
with the existing components as part of interoperability in-
vestigations. One direction we are currently looking at is
ensuring patient safety while allowing interoperability. An-
other direction we hope to venture into is the security issues
associated with enabling interoperability.

8. CONCLUSION

We described the Medical Device Dongle, its hardware
and software architectures, the current status of the project,
and its future directions. The MDD is designed to provide
two benefits: it is a peripheral and collection of software
that enables interoperable connectivity for researchers in-
terested in medical device coordination applications; and it
is a platform on which interoperability can be investigated
for researchers interested in developing interoperability pro-
tocols and investigating interoperability issues for medical
devices. The choice of hardware and the open-source nature
of the project provides researchers with an accessible and
low-cost platform to use in such endeavors. The aim is to
use the feedback provided by users of the platform to im-
prove our own work on medical device connectivity as well
as to improve the MDD for those interested in using it for
their research activities.

9. REFERENCES

[1] Continua Health Alliance. http://www.continuaalliance.org.

[2] Frontline IEEE 11073-20601 protocol analyzer.
http://www.fte.com/support/IEEE11073-download. aspz.

[3] NIST medical device communication testing project: test tools.
http://xreg2.nist. gov/medicaldevices/testtools. html.

[4] ISO/IEC/IEEE health informatics—personal health device

communication—part 20601: Application profile—optimized

exchange protocol. ISO/IEEE 11073-20601:2010(E), pages 1

—208, 1 2010.

GSyC/Libresoft. OpenHealth project.

http://openhealth.morfeo-project.org/.

Intcl®. Evaluation kit with IEEE 11073 Continua-certified
software stack for medical applications.
http://www.intel.com/p/en_US/embedded/applications
/medical/evaluation-kit/overview.

[7] A. King, S. Procter, D. Andresen, J. Hatcliff, S. Warren,

W. Spees, R. Jetley, P. Jones, and S. Weininger. An open test
bed for medical device integration and coordination. In
Software Engineering - Companion Volume, 2009.
ICSE-Companion 2009. 31st International Conference on,
pages 141 —151, May 2009.

K. Lesh, S. Weininger, J. M. Goldman, B. Wilson, and

G. Himes. Medical device interoperability-assessing the
environment. In Proceedings of the 2007 Joint Workshop on
High Confidence Medical Devices, Software, and Systems and
Medical Device Plug-and-Play Interoperability,
HCMDSS-MDPNP ’07, pages 3—12, Washington, DC, USA,
2007. IEEE Computer Society.

[9] C.-Y. Park, J.-H. Lim, and S. Park. ISO/IEEE 11073 PHD
standardization of legacy healthcare devices for home
healthcare services. In Consumer Electronics (ICCE), 2011
IEEE International Conference on, pages 547 —548, Jan. 2011.

[10] PRECISE Center. Medical device dongle (MDD)project.
http://rtg.cis.upenn.edu/mddongle/.

5

[6

8

	University of Pennsylvania
	ScholarlyCommons
	1-28-2012

	The Medical Device Dongle: An Open-Source Standards-Based Platform for Interoperable Medical Device Connectivity
	Philip Asare
	Danyang Cong
	Santosh G. Vattam
	BaekGyu Kim
	Andrew King
	See next page for additional authors
	Author(s)

