
1

Patient Infusion Pattern based Access Control
Schemes for Wireless Insulin Pump System
Xiali Hei, Member, IEEE, Xiaojiang Du, Senior Member, IEEE, Shan Lin, Senior Member, IEEE,

Insup Lee, Fellow, IEEE, and Oleg Sokolsky, Member, IEEE

Abstract—Wireless insulin pumps have been widely deployed in hospitals and home healthcare systems. Most of them have limited
security mechanisms embedded to protect them from malicious attacks. In this paper, two attacks against insulin pump systems via
wireless links are investigated: a single acute overdose with a significant amount of medication and a chronic overdose with a small
amount of extra medication over a long time period. They can be launched unobtrusively and may jeopardize patients’ lives. It is very
urgent to protect patients from these attacks. We propose a novel personalized patient infusion pattern based access control scheme
(PIPAC) for wireless insulin pumps. This scheme employs supervised learning approaches to learn normal patient infusion patterns
in terms of the dosage amount, rate, and time of infusion, which are automatically recorded in insulin pump logs. The generated
regression models are used to dynamically configure a safe infusion range for abnormal infusion identification. This model includes two
sub models for bolus (one type of insulin) abnormal dosage detection and basal abnormal rate detection. The proposed algorithms are
evaluated with real insulin pump. The evaluation results demonstrate that our scheme is able to detect the two attacks with a very high
success rate.

Index Terms—wireless insulin pump, implantable medical devices, access control, infusion pattern, patient safety.
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1 INTRODUCTION

To help 25.8 million Americans [1] with diabetes, a
growing number of wireless and wired insulin pumps
have been used by diabetic patients to deliver insulin
into their circulatory systems. Wired insulin pumps are
used by nurses directly without wireless USB. In 2005,
there were about 245,000 wireless pump users, with this
market expected to grow 9% annually between 2009 and
2016 [2, 3]. It is very important that these wireless insulin
pumps are reliable, secure, and safe.

Unfortunately, most of the existing wireless insulin
pumps lack sufficient security mechanisms to protect
patients from malicious attacks and overdose incidents.
For example, a pump malfunction has caused a patient’s
death [4], where the pump went into the PRIME function
when the patient was asleep and delivered the entire car-
tridge of insulin. Insulin pumps have preset minimum
and maximum dosage levels as well as infusion rates,
which is required by the FDA [5]. However, researchers
have shown that these levels could be remotely disabled
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by attackers [6]. Without this basic protection mecha-
nism, the insulin pump is vulnerable to several attacks.
In this paper, we investigate two new fatal attacks that
are specifically targeted at wireless insulin pumps. The
first type of attack is a single acute overdose attack: the
attacker can issue a one-time overdose (underdose) con-
taining a significant amount of medication to a patient.
For diabetic patients, the effects of the insulin overdose
can include dizziness, drowsiness, and nausea, ultimate-
ly leading to seizures, coma, and in the worst case
death [7]. The second type of attack is chronic overdose
(underdose) with an insignificant amount of medication
being delivered over a long period, e. g. months. The
chronic overdose of insulin can directly cause low blood
glucose (BG), which leads to various complications and
is extremely difficult to detect. Given that this attack can
be performed even without modifying the insulin pump
settings, it is exceptionally challenging to defend against.

For patients’ safety, it is necessary to defend against
these two types of attacks on insulin pumps. Many
wireless insulin pumps, e. g. Medtronic MiniMed 512,
automatically record detailed information about each
infusion in its log file. Figure 1 shows an insulin dosage
example in a day. We consult 10 patients and several doc-
tors, analyze 10 patients’ data. The detailed information
includes the infusion rate, dosage, BG level, patient id,
and time of day for each infusion. Given this informa-
tion, we observe normal infusion patterns for home care
diabetic patients. Thus, we propose a novel access con-
trol mechanism using a supervised learning method. To
learn these normal patterns, the regressions are designed
to analyze infusion dosage history and predict future
infusion dosages. Once data collected and analyzed after
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3 months, our scheme can generate a safety range for a
specified time interval. The automatically recorded log
data are raw data, which are encrypted and stored on
the pump. The encryption key is applied to standard
authentication. An attacker needs to encrypt the data
and decode the raw data to get meaningful records,
which is costly. During the data collection period, we use
the naive solution in Section 7.1 to protect the patient.

Our access control algorithm design has three unique
features: 1) this algorithm utilizes the temporal corre-
lation of infusions for any particular patient. Patient
specific infusion patterns are captured over time, and
the long term changes of infusion patterns can also be
detected; 2) a safety range is dynamically updated at
different times of the day based on the online model,
(the safety range counts for the in-situ variations of the
insulin injection); and 3) this algorithm doesn’t require
any extra information, all the data required is already
present in the insulin pump logs. Furthermore, the linear
regression design requires little memory and computing
capacity, which can be done in real-time even on resource
limited computing platforms. Our algorithm can also
identify infusion mistakes made by doctors or patients,
such as an erroneous dosage input. In emergency situa-
tions, insulin pump users should be allowed to infuse
a larger than usual dosage. Several bio-metric based
solutions have been proposed to address this problem in
emergency, which is not the focus of this paper. Several
bio-metric based solutions using EKG or ECG are not
suitable for insulin pumps.

There are a number of prior works on implantable
medical devices. These works provide valuable research
results for our study. For example, with a pump serial
number (SN) and USB device easily purchased from
eBay, Radcliffe was able to track data transmitted from
the computer and control the insulin pump’s operations
[9]. Radcliffe was also able to cause BG management
devices to display inaccurate readings by intercepting
wireless signals sent between the sensor device and the
management device. Kevin Fu et al. detailed how to
reprogram an implantable cardiac defibrillator remotely,
causing the victim to receive a malicious shock [10].
Measurements in another paper [29] show that in free
air, intentional EMI under 10 W can inhibit pacing and
induce defibrillation shocks at distances up to 1 - 2 m
on implantable cardiac electronic devices. Additionally,
harvesting patient data in the region is easily executed
via an eavesdropping attack. Previous literature [8] has
analyzed these possible attacks and has proposed using
a traditional cryptographic approach (rolling code) and
body-coupled communication to protect the wireless link
and insulin pump system. However, these proposed
solutions do not address the overdose attacks that are
studied in this paper. Also, the authors of this paper
did not decode the Carelink USB driver. In this paper,
we present a novel supervised learning based approach
for insulin pump access control. It includes two bolus
abnormal dosage detection models, one updated basal

(another type of insulin) abnormal rate detection model
and one algorithm to combine them. Note that, to save
the resources, we assume all the near optimal parameters
are obtained through offline learning. Offine learning is
downloading the data, preprocessing the data, getting
the optimal parameters through running the generic
algorithms on the laptop or PC instead of pumps, and
building the normal dosage model. Then we use these
parameters in online regression and detection. We also
update the parameters according to the update policies
in Section 5.2.3 and 5.3.2. To do this, we redo the pattern
learning and get the optimal parameters and update the
detection models running on the pumps.

Our solution is evaluated with real insulin pump logs
obtained from Medtronic pumps including MiniMed
511, 512, 522 and Paradigm Revel 723 in home care
systems for diabetic patients. Several log files are tested.
Each log file contains the infusion records of a particular
patient for up to 6 months. We use a cross-validation
approach to tune our model. The first 80% of logs are
selected as a training data set, and the remaining 20%
are used for testing. Malicious attacks are simulated
in combination with the normal infusions. Evaluation
results show that our algorithm can effectively identify
the single overdose attack with a success probability up
to 98% and detect the chronic overdose attack with an
about 100% success rate. Our contributions are summa-
rized as follows:

• A novel personalized patient infusion pattern based
access control scheme for wireless insulin pump is
proposed. To the best of our knowledge, we are
the first group to utilize patient specific infusion
patterns to identify malicious overdose attacks on
insulin pumps. Our work is able to prevent the
malfunction of nurses and patients as well. Also,
our scheme has close-loop properties.

• Our solution dynamically calculates a safety dosage
range at different times based on the online learn-
ing model. A simplified bolus abnormal dosage
detection is presented, with high efficiency and low
energy consumption.

• Experimental results with real insulin pump data
sets demonstrate that our solution can defend a-
gainst the overdose attacks effectively with a success
rate above 98%.

The remainder of this paper is organized as follows:
In Section 2 we describe the background and attack
models. We analyze patient infusion patterns in Section
3. In Section 4 we present the detailed patient infusion
pattern based access control scheme. We describe our
real experimental results in Section 5. We extend our
scheme in Section 6. We show related discussions in
Section 7. In Section 8, we review the related work, and
we conclude the paper and discuss the future work in
Section 9.
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Fig. 1. Daily insulin dosage example of a patient used with
permission from Medtronic Mini-Med, Inc.

2 SYSTEM AND ATTACK MODELS

2.1 Background and System Model

An infusion pump infuses fluids or medicine into a
patient’s circulatory system. Wireless insulin pumps are
widely used to deliver insulin into a diabetic patient’s
body to treat diabetes. An insulin pump usually delivers
a single type of rapid-acting insulin in two ways:

• A bolus dose that is pumped to cover food eaten or
to correct a high BG level.

• A basal dose that is pumped continuously at an ad-
justable basal rate to deliver insulin needed between
meals and at night.

It is the responsibility of the pump user to start a
bolus or change the basal rate manually. The patient
set the bolus dosages according to the algorithm built-
in the pump and basal rate suggested by the doctors.
The bolus dosages and basal rates could be changed
through Carelink USB by doctor or nurses or attackers.
The times of delivering bolus in a day depend on the
patient’s behavior. Figure 1 shows the insulin infusion
record for a diabetic patient over 24 hours. As illustrated
in the figure, the insulin basal rates are slightly different
during different time periods within one day. The basal
rate is a continuous infusion that lasts for 24 hours.
The infusions with the bolus dosages are discrete and
occur around 7am, 10am, 12pm, 5pm, and 7pm each day.
The bolus dosages have three categories: normal, square,
and dual. Patients choose a type of bolus with specified
amounts of dosages. The diabetic individual usually
delivers a square bolus or a normal bolus at a fixed time
interval that accounts for breakfast, lunch, dinner, and
other cyclical events throughout the day. Factors such as
carbohydrate (carb) ratio, insulin sensitivity, and target
high BG are typically unique to each patient.

Figure 2 shows the components of a Medtronic
Paradigm real-time insulin pump system. The OneTouch
meter obtains BG readings from the patients’ finger prick
tests. The BG level is transmitted from the OneTouch
meter to the insulin pump via the wireless link 2. The
sensor tests the glucose trend (up or down) in patients’
interstitial fluid. And it sends the trend to continuous
glucose monitor system via wireless link 3 and to pump
via wireless link 6. Wireless links 2 and 6 use similar
protocol and suffer the same attacks. The insulin pump
delivers insulin to the patient. The remote control unit

is operated by the user to send instructions (such as
suspend and resume basal rate) to the insulin pump via
wireless link 1. Wireless link 4 and 7 transmit historical
glucose readings to a USB device that uploads the in-
formation to a web service. Wireless link 5 allows the
Carelink USB device to gather reports on BG trends and
patterns. Wireless link 6 sends current glucose levels to
the pump. A laptop or PC is utilized by the Carelink
USB device to upload data to a web-based management
system.

2.2 Overdose Attack over Wireless

Given the wireless insulin pump system, we discuss
potential attacks. To connect two components, a user
must manually enter the SN of that component being
wirelessly connected. Once all of the wireless connection-
s among components are established, the insulin pump
can display BG readings from sensors and adjust the
bolus dosage and basal rate according to control unit
commands.

The wireless communication in the system is not en-
crypted. As a result, attackers can easily compromise the
wireless links in this system. Various malicious actions
can be conducted after the wireless links are compro-
mised. For example, attackers can display incorrect BG
readings on the insulin pump via link 2. We refer to
this attack as Radcliffe’s attack. Another attack is that
an attacker suspends the basal rate delivery using link
1. We do not discuss this attack in our paper because it
can be easily noticed by patients.

Insulin pump users can modify the pump settings
using the Carelink Pro software on a computing device,
such as a laptop. The new settings are uploaded to
the pump using the attached Carelink USB device via
wireless link 5. In this case, attackers may use cus-
tomized software and a wireless sniffer to obtain the
SN of all pumps within 300 feet, and can, therefore,
compromise wireless link 5 to change the settings of the
pump without being noticed. Using this security flaw,
an attacker can 1) disable the alarms of the pump, 2)
change the maximum allowable dosage of the pump,
and 3) deliver a fatal dose to the insulin pump user. The
delivery of a lethal dose is life-threatening and must be
defended against.

In this paper, we focus on the attacks that are based on
the compromised wireless link 5. Particularly, we focus
on two types of attacks related as follows,

• Single acute overdose. This attack issues a one-time
overdose (underdose) to the patient. A significant
amount of medication that is larger (less) than the
normal dosage will be delivered to the patient using
the insulin pump in a short period. Given that a
dosage of this magnitude is fatal, it is critical to
prevent this attack.

• Chronic overdose. This attack issues extra portions
of medication to the patient over a long period,
e. g. weeks or months. One or two instances of
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Fig. 2. A real time insulin pump system used with permis-
sion from Medtronic Mini-Med, Inc.

the small overdose are not critical; however, such
overdoses for a long period can put the patient’s life
in danger. It is the attack could not be identified by
one-time check. The clinicians and patients may not
notice the small amount of overdose, since it does
not cause obvious symptoms until the dosages have
accumulated to a dangerous level. This can also
cause various complications to the patient. It can be
defend against because we use blood glucose (BG)
as a parameter. It works as a close-loop feedback
to another parameter such as EB (expected bolus).
When there is a chronic underdose attack, the BG
will be higher and the EB will be larger. So the
increased EB will correct such a chronic underdose
attack.

The authentication scheme is crucial. However, the
existing authentication with a code is not secure if an
attacker can get close enough. Right now, there are
no authentication schemes over wireless link 5. In this
paper, we assume the wireless link 5 has a standard
authentication scheme and the patient’s parameters can
only be changed manually. The devices only provide
the interface to set the parameters manually. The system
utilizes standard authentication protocol ISO 9798-2.

3 DATA ANALYSIS

Our study is based on real insulin pump records pro-
vided by anonymous diabetic patients. Over the last
year, several patients used Medtronic wireless insulin
pumps at their homes for at least three months. All those
patients were able to upload their infusion log data to
the Carelink online management system.

3.1 Infusion Record Analysis
Since the dataset was real patient data in a format
proprietary to Medtronic Inc., a substantial effort was
required to clean the data. First of all, many of the
recorded events are not directly related to the delivered
patients’ dosages. Secondly, there is a time difference

between the time of recording features that we used
in Section 3.3 and 3.5 and the programming of doses.
We preprocess this data by an automation tool to make
it suitable for analysis. This tool retrieves the feature
set for each record related to the basal rate and bolus,
adds a label, and normalizes the feature, and classifies it
into basal rate logs and bolus logs. Then, we count the
occurrences of each bolus according to the time label
on each day. We also calculate the total dosage of bolus
during each period ∆, which starts when the patient
requires a bolus. The mean E and standard deviation
σ of daily total insulin were calculated, as well.

From the preprocessed data set, we find that the
estimated bolus dose and other nine variables (BG level,
active insulin and insulin sensitivity etc.) were correlat-
ed. There are a few other variables (e. g. the amount of
exercise) that are known to affect the estimated bolus
level. Unfortunately, we do not have access to this data.

We explore the infusion records of patient A over the
course of several days. We observe that, during breakfast
time, there are 1-2 bolus doses; during lunch time, there
are 1-3 bolus doses; during dinner time, there are also
only 1-2 bolus doses. Figure 3 is a histogram of patient
A’s daily bolus dosage in 3 months. It shows that the
bolus delivery was highly aligned with the time of the
day. We also perform the Shapiro-Wilk test for all the
patients’ total daily insulin. The test result shows that
they all obey normal distribution because all of the ps
of them are greater than 0.05. These results suggest that
the mean of daily total insulin dosage of a patient was
stable over the treatment period. For example, Figure
4.a is a histogram of patient A’s total daily insulin for 3
months, which indicates to us it may follow the normal
distribution. In Fig. 4.a, the y-axis is the number of days
having a special total daily insulin. Figure 4.b shows
the mean E and 2-standard deviation 2σ of patient A’s
total daily insulin in 3 months. We can see that they are
bounded within [E−2σ, E+2σ]. We plot the histogram
and probability of the 3-month total daily insulin dose.
In Figure 4.c, the number represents the number of days
having a special total daily insulin. The unit of the above
subfigure is percent. And it shows that the 99.5% of daily
total insulin falls in the range [22-44].

3.2 Patient Insulin Dosage Pattern 1

From the study results, we observe that there generally
exist patterns of bolus and basal rate infusions, even
though each patient may have his/her own circadian
rhythm. A patient’s eating habits can be manifested from
various factors, including their profession, diet, exercise
routine, degree of insulin sensitivity, or a host of other
factors. However, there are five main periods related to
the infusion. These are breakfast, lunch, dinner, evening,
and the time when the patient is asleep. A patient
can choose a preferred time for infusion during one of
these time periods. Typically, a patient requires a high
insulin dose in the morning, and less around 4-6pm,
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(a) The histogram of patient A’s daily total
insulin dosage in 3 months

(b) The 2σ-errorbar of patient A’s daily total
insulin dosage

(c) The histogram and probability of patient A’s
daily total insulin dosage in 3 months

Fig. 4. Patient A’s daily total insulin dosage analysis

Fig. 3. The histogram of patient A’s daily bolus dosage in
3 months

then more after 12am to counter regulatory hormones
during the night. Different patients also exhibit different
peak times of BG levels. Although there are exceptions
preventing adherence to a rigorous schedule, the patient
still has his/her own schedule pattern based on the
functions that the insulin pump can provide. We rea-
sonably believe that each patient exhibits a pattern that
is distinguished enough that it may be used to identify
abnormal events.

3.3 Bolus Data Feature Set 1
Our assumption is that the history records are helpful in
the prediction of the insulin dosage of the same patient.
This is true for 10 patients we have consulted because
that a diabetes tends to have a strict meal plan and the
parameters stored in the pump are suggested by a doctor
and seldom changed. Having this in mind, we extract
related features. The features we consider to be relevant
to our regression model are: Time, Estimate Bolus, Target
High BG, Target Low BG, Carb Ratio, Insulin Sensitivity,
Carb Input, BG Input, Correction Estimate, Food Esti-
mate, Active Insulin, Daily Total Insulin, Basal Pattern

Name, Index, Basal Rate, and Start Time. All of these
features are expected to have a strong correlation with
the timestamps of the records. We will use some of them
in our detection models.

3.4 Patient Bolus Dosage Pattern 2

Reexamining the patient data, we observe that generally
the bolus dosage selected (Bo) equals the estimated
bolus (EB) if the patient uses the bolus wizard function,
even though each patient may have his/her own circa-
dian rhythm. If the patient doesn’t use the bolus wizard
function, he/she seldom has bolus doses or the dosage
he/she selects is stable. Some patients using bolus wiz-
ard may adjust the Bo according to the estimated bolus
EB; however, the adjustment behavior has patterns. The
total number of adjustments in a day is less than 2
times. Also, if the patient makes a positive (Bo − EB)
several times continually, he/she usually makes another
negative (Bo − EB) to balance the increasing insulin
behavior. As we observed, the total adjustment dosage∑

(Bo−EB) in a day has a threshold unless the patient
eats a lot during an event, exercises a lot or is sick. Based
on the functions that the insulin pump can provide, the
patient has no way to avoid the algorithm embedded
and control the time a dosage used. If the bolus type is
not “Normal”, the total (Bo − EB) in a small window
is supposed to be 0 because the patient wants to split a
big EB into several small bolus dosages. Otherwise, we
think the total (Bo−EB) in a small window is not 0 is
an adjustment event. Besides, the adjustment range has
a threshold.

3.5 Bolus Data Feature Set 2

We find that a patient knows his body and the patient
has a unique psychological behavior during the adjust-
ment process through our data analysis. This informa-
tion is helpful in the prediction of the insulin dosage
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of the same patient. This is true for the 10 patients we
analyze. Having this in mind, we extract related features.
The features we consider to be relevant to our second
bolus dosage abnormal detection model are Time, Esti-
mate Bolus, Insulin Sensitivity, Bolus Dosage Selected,
and Date. The composite feature (Bo−EB) is expected
to have a strong correlation with the timestamps of the
records. We will use some of them in our detection
models.

4 DETAILS OF PIPAC SCHEME

In this Section, we present our access control scheme in
detail. If our model returns “Fail”, the dosage will not
be accepted by the insulin pump, and an alarm will be
issued to the patient, as well. Our scheme can defend
against the two kinds of attacks that we have outlined.

4.1 Overall Detection Model

The goal of our scheme is to identify abnormal infusions
of bolus dosage, basal rate, and total daily insulin. Table
1 summarizes the notations used in the rest of the paper.
Our scheme includes two bolus abnormal dosage detec-
tion models, one updated basal abnormal rate detection
model and one algorithm to combine them. Figure 5
illustrates the total abnormal dosage detection process.
Firstly, at reset time (generally at 0am), we check whether
the total daily insulin falls in the safety range. If it
falls out safety range, we send an alarm to the patients.
Otherwise, we check the operation type. If it is bolus
dosage, we check whether the vector has EB feature. If
“Yes”, we can choose bolus abnormal dosage detection
model 1 or 2 to monitor the bolus dosage. Otherwise, we
can use abnormal dosage detection model 1 to detection
the abnormal bolus dosage. If it is a basal rate, we adopt
the abnormal basal rate detection model to monitor it in
real time. For all above detections, if the dosage pass the
detection, we will continue the safe dose. Otherwise, we
block the dose and alarm the patient.

We use the Mean Squared Error (MSE) to measure the
performance, which is given in equation (1). The error is
the difference between the estimated value and the real
value, where m̄ is the test sample size.

MSE =
1

m̄

∑m̄
i=1(f(ui − vi))

2. (1)

SCC2 =
(m̄

∑m̄
i=1(f(xi)yi)−

∑m̄
i=1 f(xi)

∑m̄
i=1(yi))

2

(m̄
∑m̄

i=1 f(xi)2 − (
∑m̄

i=1 f(xi))2)(m̄
∑m̄

i=1 y
2
i − (

∑m̄
i=1 yi)

2)
(2)

The squared correlation coefficient (SCC) is the pre-
dictive percent of behavior in the output that can be
explained by the input. If the SCC value is between 70%
to 100%, it is considered to have a strong relationship.
By any regression method, we only can predict a value.
Instead, we want to obtain a safety range. According to

Fig. 5. Abnormal dosage detection process

TABLE 1
Notations description in PIPAC scheme

Notation Description
Bolusp, Basalp Predicted Bolus and Basal rate

CB, Bo Cumulative bolus dosage from ∆st,
Bolus dosage to be checked

∆, ∆st Time window, Start Time of each ∆

SRl, SRu Lower bound and upper bound of safety range
TL, EB, Ba Time label, Estimate bolus,

Basal rate to be checked
BGh, BGl, Target high BG, Target low BG,

CR, IS Carb ratio, Insulin sensitivity
T, CI, BGi, Time, Carb input, BG input

CE, FE Correction estimate, Food estimate
AI, OT Active insulin, Operation type

PN, Index Pattern name, Index in pattern
R, ST Basal rate, Start time of one rate

D, TDI Dosage, Total daily insulin
TBA, TBT Temp Basal Amount, Temp Basal Type

TBD Temp Basal Duration

the definition of MSE, we define the safety range SR
for bolus dosage and basal rate as follows.

Definition 1:
SR = [SRl, SRu], where SRl = Y − 2

√
MSE, the

SRu = Y + 2
√
MSE, and Y is the regression output

for an input vector.
Regardless of the values of bolus dosage and basal

rate, we will use the above safety range SR instead.

4.2 Detection Model 1 for Abnormal Bolus Dosage
As illustrated in Fig. 1, the bolus doses
(blue dotted lines) are discrete. A patient’s
records can be denoted as a vector: x =<
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TL(x), EB(x), BGh(x), BGl(x), CR(x), IS(x), CI(x),
BGi(x), CE(x), FE(x), AI(x), T (x) >, representing
Time label, Estimate Bolus, Target High BG, Target Low
BG, Carb Ratio, Insulin Sensitivity, Carb Input, BG Input,
Correction Estimate, Food Estimate, Active Insulin and
Time, respectively. For TL(x), we may represent one
day as [1-24], [1-12], or [1-8]. For other features, we
use the original values from the patient’s records.
The main types of insulin are bolus and basal. Many
patients calculate their estimated bolus using bolus
wizard function. Bolus wizard function determines the
estimated bolus according to the following rule:

• If BGi(x) > BGh(x),

EB(x) = BGi(x)−BGh(x)
IS

+ CI
CR

−AI(x); (3)

• If BGi(x) < BGl(x),

EB(x) = BGi(x)−BGl(x)
IS

+ CI
CR

−AI(x); (4)

• Otherwise,

EB(x) = CI
CR

−AI(x). (5)

These rules come from the insulin absorption curve
[34] in human body and are embedded in the insulin
pump as a bolus wizard function. So a patient needs the
pump to help them to calculate an estimated bolus for
reference.

To deliver one bolus, a patient has to enter “BG Input”
and “Food Estimate” values. Considering “BG Input”
as a feature, our scheme has the close-loop properties.
Based on the patient pattern, we choose the support
vector machine (SVM) [?] regression model to predict
bolus dosages. We choose SVM and feature set according
to the formula 3, 4, 5 in Section 4.2 and experimental
results analysis. After comparisons, we chose SVM. In
this paper, we only list and compare the results using
linear regression and SVM regression in Section 5. An
SVM model is a representation of the examples as points
in space, mapped so that the examples of the separate
categories are divided by a clear gap that is as wide as
possible. New examples are then mapped into that same
space and predicted to belong to a category based on
which side of the gap they fall on.

In our SVM based design, we select the best hy-
perplane representing the largest gap between the two
classes. Hence, we choose the hyperplane such that the
distance from it to the nearest data point on each class is
maximized. The optimization problem to maximize the
margin with a kernel trick is formulated as follows:

min{1
2
wTw + C

∑l
i=1 ξi}

subject to : qi(w
Tφ(pi) + b) ≥ 1− ξi, ξi ≥ 0.

(6)

where qi is either 1 or -1, indicating the class to which
the point pi belongs. Each pi is a n-dimensional real
vector. The training vector pi is mapped into a higher
dimensional space by the function φ. Then the SVM finds

Algorithm 1 Abnormal Bolus Dosage Detection Model
1

1: Input: Vector x to predict, Bo(x) to be checked, ∆st,
CB;

2: Output: Pass or Fail;
3: Get best C and γ through GA method off-line;
4: Get SVM model using best C and γ;
5: Predict Bolusp(x) for Vector x using SVM regression

and get MSE;
6: Calculate the SR for ∆;
7: if EB(x) is not 0 then
8: ∆st = T (x), CB = Bo(x);
9: for each x when T (x) is in [∆st,∆st +∆] do

10: CB = CB +Bo(x);
11: if CB falls in SR then
12: RETURN PASS;
13: else
14: RETURN FAIL;
15: else
16: if Bo falls in SR then
17: RETURN PASS;
18: else
19: RETURN FAIL;

a linear separating hyperplane with the maximal margin
in this higher dimensional space. C(>0) is the penalty
parameter of the error term. In equation (6), w is also
in the transformed space, and w =

∑
i aiqiφ(pi). Dot

products with w for classification can again be computed
by the kernel trick, i.e., w • φ(p) =

∑
i aiqik(pi, pj).

Hence, once we obtain C and γ that maximize the
margin, we obtain the SVM of normal behavior. The
kernel function k(pi, pj) = φ(pi)

Tφ(pj). In our work,
we use a radial basis function as the kernel function:
k(pi, pj) = exp(−γ∥pi − pj∥2), γ > 0.

The use of SVM requires the user-defined penalty
parameter C for error and kernel specific parameters γ.

We use a genetic algorithm (GA) ([23]) to get the
optimal C and γ. After we obtain the optimal parameters
(i.e., the best model), we test it using additional data and
get MSE. After having the MSE and the Y = Bolusr for
an input vector x, we can calculate the safety range SR of
bolus dosage within a time window ∆. Then, we check
whether EB(x) is 0 or not. If “No”, we record the T (x)
as ∆st and initiate CB = Bo(x). Then we check each x
when T (x) is in [∆st,∆st+∆], we update the cumulative
bolus dosage CB from the start time of ∆st by adding
the bolus dosage Bo(x). If the updated CB falls out of
SR, it is an abnormal bolus dosage and an alarm will
be sent to the patient. Otherwise, it is considered as a
normal bolus dosage. If EB(x) is 0, we check whether
Bo falls in SR. If “Yes”, it is a normal bolus dosage.
Otherwise, it is an abnormal bolus dosage. The detection
model is presented in Algorithm 1.
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Algorithm 2 Abnormal Basal Rate Detection
1: Input: Vector w to predict, Basal rate Ba(w) to check;
2: Output: Pass or Fail;
3: Get best C and γ through GA method off-line;
4: Get SVM model using best C and γ;
5: Predict Basalp(w) for Vector w using SVM regression

and get MSE;
6: Calculate the SR(w);
7: if Ba(w) falls in SR(w) then
8: RETURN PASS;
9: else

10: RETURN FAIL;

4.3 Detection Model for Abnormal Basal Rate
As we can see in Fig. 1, the basal rates (black solid
line) are slightly different during different time periods
of the day. In addition, the basal rate follows the rules
in Section 3.2. Because the basal rate within one day
is a piecewise function, we choose the SVM to predict
the basal rate. For basal rate prediction, we only needs
a small record set that includes all the patterns since
the patterns are seldom changed. Here, we slightly
change our model showed in [25]. We add Temp (tem-
porary) Basal Amount, Temp Basal Type, Temp Basal
Duration as features. Temp Basal Amount represents
the ratio of it to the initial setting. The Temp Basal
Duration represents the time the temporary basal rate
will last. The data can be denoted as a vector: w =<
TL(w), PN(w), Index(w), R(w), ST (w), TBA(w),
TBT (w), TBD(w) >, representing Time label, Pattern
Name, Index, Rate, and Start Time, Temp Basal Amount,
Temp Basal Type, Temp Basal Duration, respectively.
Regarding TL(w), we label the Time according to the
time interval of the pattern. For example, if the time is
1:00pm and it falls in the fifth interval of the pattern;
we label the time as 5. ST (w) should be divided by
3600000, which changes its unit from millisecond to hour.
We use the generic algorithm to get optimal parameters
and MSE. After we obtain the MSE at the testing phase
and the Y = Basalr(w) at the detection phase, we can
calculate the safety range SR(w) of basal rate at this time.
If the basal rate Ba(w) to be checked falls out of the
SR(w), it is an abnormal basal rate, and we will send
an alarm to the patient. Otherwise, it is considered as a
normal basal rate. We present our model in Algorithm
2.

4.4 Daily Total Insulin Dosage Monitoring Model
Before we design the detection scheme, we have verified
that the total insulin dose follows the normal (Gaus-
sian) distribution by Shapiro-wilk test. Thus, we can
determine the normal total daily insulin dose region
according to the properties of Gaussian distribution. For
example, for the confidence of 99.7%, the safety range
of total daily insulin dose is [E − 3σ, E + 3σ], where E
is the mean of the total daily insulin dose in 3 months,

Algorithm 3 Abnormal Dosage Detection Process
1: Input: Vector s;
2: Output: Pass or Fail or Deactivation;
3: if BGi(s) ≥ 250 then
4: RETURN Deactivation;
5: else
6: if BGi(s) ≤ 40 then
7: deliver an alarm to the patient;
8: else
9: if PASS Algorithm 1 or 2 by OT (s) and Time is

not reset time then
10: RETURN PASS;
11: else
12: if Time is reset time then
13: if TDI is in safety range then
14: RETURN PASS;
15: else
16: RETURN FAIL;

and σ is the standard deviation of the total daily insulin
dose in 3 months.

4.5 Combining The Three Models Together
To combine the three models together, we use a vector
s =< OT (s), T (s), ∆(s), D(s), TDI(s) >.
OT (s), T (s), ∆(s), D(s), and TDI(s) represent Opera-
tion Type, Time, Time Interval, Dosage, and Total Daily
Insulin, respectively. Operation Type includes bolus or
basal, and Time is the event time. ∆ is a fixed time
window. Dosage is the actual dosage. Total Daily Insulin
is the actual value. If the BGi is higher than 250 (mg/dl),
it is an emergency requiring deactivation PIPAC scheme.
If the BGi is lower than 40 (mg/dl), deliver an alarm to
the patient. Otherwise, choose either Algorithm 1 or 2
by the Operation Type OT (s). After this, we check the
TDI every 24 hours (at personal reset time). Algorithm
3 implements this scheme.

4.6 Abnormal Bolus Detection Model 2
All the thresholds in this subsection are determined
through data analysis or data mining. Different patients
have different thresholds.

As discussed in Section 3.4. the features that
we used are: Date, Time, Bolus Volume Selected
(Bo), Bolus Type (BT ), Estimate Bolus (EB), In-
sulin Sensitivity (IS). Then we have vector u =<
D(u), T (u), Bo(u), BT (u), EB(x) >. Thtotal represents
the threshold of total bolus adjustment amount in a day.
Thd represents the threshold of bolus adjustment range
per dosage, which depends on Insulin Sensitivity (IS)
of the patient. Thtimes represents the threshold of total
adjustment in a small time window ∆. The larger the
IS, the larger Thd, and Thtotal. Thtimes = 2 or 3.

At the beginning of the day, we set the total bolus
adjustment amount in a day (representing as TotalDif )
to 0, the total number of adjustment event (representing
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Algorithm 4 Abnormal Bolus Dosage Detection Model
2

1: Input: Vector u to predict, Bo(u) to be checked, OldT;
2: Output: Pass or Fail;
3: Get Thd, Thtotal, and Thtimes through off-line anal-

ysis;
4: OldT=11:59pm;
5: if T (u) < OldT then
6: TotalDif = 0, TotalDifTimes = 0, SubDif = 0;
7: if (Bo(u)− EB(u)) == 0 then
8: RETURN PASS;
9: else

10: ∆st = T (u);
11: if BT (u) !==“Normal” then
12: for each T (u) in [∆st,∆st +∆] do
13: SubDif = SubDif + (Bo− EB);
14: if SubDif == 0 then
15: RETURN PASS;
16: else
17: TotalDifTimes = TotalDifTimes + 1,

TotalDif = TotalDif + SubDif , SubDif = 0;
18: if TotalDifTimes > Thtimes then
19: RETURN Fail;
20: else
21: if BT (u) ==“Normal” then
22: if (Bo(u)− EB(u)) > Thd then
23: RETURN Fail;
24: else
25: TotalDif = TotalDif + (Bo(u) − EB(u)),

TotalDifTimes = TotalDifTimes + 1;
26: if TotalDifTimes > Thtimes then
27: RETURN Fail;
28: else
29: RETURN PASS;
30: else
31: if TotalDif > Thtotal then
32: RETURN FAIL;
33: else
34: RETURN PASS;

as TotalDifTimes) to 0, and the total bolus adjustment
amount in a small time window (representing as SubDif )
to 0.

If BT (u)!=“Normal”, check whether SubDif is 0. If
“YES”, it is safe. Otherwise, the total number of adjust-
ment event increases by 1 and the total bolus adjustment
amount increases by SubDif , then reset the SubDif to 0.

If BT (u)==“Normal”, check whether (Bo(u) −
EB(u)) > Thd. If “YES”, it is unsafe. Otherwise, check
whether the number of (Bo(u)−EB(u)) is 0 > Thtimes.
If “Yes”, it is unsafe. Otherwise, it is safe. At the end of
the day, we check whether the total bolus adjustment
amount is less than the Thtotal. If “YES”, it is safe.
Otherwise, it is unsafe and an alarm is sent to the
patient. Algorithm 4 implements this scheme.

TABLE 2
Bolus dosage test results using non-linear SVM

regression
Add missing Time label bestC bestγ MSE SCC

data?
Yes 48 5.4062 0.0009 0.0006 0.9990
Yes 12 6.9513 0.0134 0.0022 0.9988
Yes 8 44.05 0.0029 0.0011 0.9995
No 48 3.5472 0.0334 0.0079 0.9953
No 12 9.43 0.1345 0.0407 0.9758
No 8 7.65 0.014 0.0033 0.9980

5 PERFORMANCE EVALUATION

We conduct experiments using real patient data to eval-
uate the performance of our scheme.

5.1 Experimental Setup for Support Vector Ma-
chines
SVM is a form of supervised learning, which provides
an effective way to predict bolus dosage and basal rate.
In this work, we design an efficient dosage prediction
scheme using multiple SVMs. The use of SVMs requires
setting user-defined parameters such as C, type of ker-
nel, and γ. The SCC and MSE values were compared to
choose a suitable time label methods. In our experiment,
we choose the radial basis function as the kernel func-
tion. In addition, we use a GA in combination with k-
fold (k=5) cross validation scheme [24] to get the optimal
parameters C and γ for a non-linear SVM regression
using kernel function. After obtaining the best model
using the optimal parameters, we test it using additional
data. All computations were carried out using a desktop
computer with 2.6GB of RAM and a 2.27GHz of Intel(R)
Core(TM) 2 Duo CPU.

5.2 Experiments for Abnormal Bolus Dosage Detec-
tion
5.2.1 Experimental Results of Bolus Abnormal Detec-
tion Model 1
In our experiments, we first preprocess the patient’s
records. The total sample size of each patient varies. It is
close to 500. We use 80% of the samples to train the SVM
model, and the remaining 20% to test it. After we use a
GA to get the optimal parameters C and γ, we use them
to obtain the optimal SVM model for each patient. Then
we test it. Table 2 shows the best parameters and the test
results including the MSE and SCC for patient A. We
then use a linear SVM model to repeat our experiments
after we obtain the best C.

Table 2 lists the MSE and SCC of patient A using the
linear SVM regression scheme. Comparing Table 2 and
3, we can see that a non-linear SVM is more suitable
for Bolus dosage prediction because the MSE of a non-
linear SVM is smaller than a linear SVM. In addition, the
real time labeled as [1-48] within a day gives a better
result for patient A. We choose the non-linear SVM to
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TABLE 3
Bolus dosage test results using linear SVM regression

Add missing data? Time label MSE SCC

Yes 48 0.0022 0.9988
Yes 12 0.0198 0.9894
Yes 8 0.0280 0.9866
No 48 0.0383 0.9767
No 12 0.0394 0.9761
No 8 0.0409 0.9751

TABLE 4
Bolus dosage test results using non-linear SVM

regression

Patient label best MSE best SCC

A 0.0011 0.9874
B 0.0887 0.8976
C 0.0005 0.9983
D N/A N/A

TABLE 5
Bolus dosage test results using Linear regression

Patient label best MSE

A 0.0108
B 0.0002
C 0.0105
D N/A

predict the Bolus dosage for patient A, and the best
MSE that we get by using the near optimal linear SVM
regression is 0.0006. We find that [Bolusp − 2

√
0.0006,

Bolusp + 2
√
0.0006] is the safety range for that time

window ∆. Recall that SCC = 70% to 100% is considered
as a strong relationship. In our scheme, the best SCC is
greater than 99%. This means that we can use the SVM
regression to predict a patient’s bolus dosage in real time,
according to their previous bolus dosage pattern. We
also repeat these experiments for other patients. Table
4 shows the results. Table 5 shows the test results using
linear regression.

5.2.2 Experimental Results of Bolus Abnormal Detec-
tion Model 2

This model achieves the similar results as the non-linear
SVM regression method. At the same time, it saves a lot
of computation and memory. We don’t need to get the
best parameters using the GA method offline, while we
can do a simple data mining process to get the three
thresholds. Table 6 shows the test results using bolus
abnormal dosage detection model 2. We can see that
model 2 can achieve similar MSE level as non-linear
SVM regression method while keeping low cost. Thus,
we prefer to the bolus abnormal dosage detection model
2 when the patient applies bolus wizard. If the patient
does not have an EB at all, we still chose the non-linear
SVM regression model or linear SVM regression model
in real time.

TABLE 6
Bolus dosage test results using model 2

Patient label Thd Thtotal Thtimes MSE

A 0.3 0.5 2 0.0000
B 1.5 3 2 0.0056
C 0.2 0.5 1 0.000
D N/A N/A N/A N/A

TABLE 7
Basal rate test results using non-linear SVM regression

Patient label bestC bestγ MSE SCC

Patient A 83.73 26.8 0.0004 0.9682
Patient B 25.14 705.43 0.0001 0.9999
Patient C 74.78 967.87 0.0003 0.9261
Patient D 34.4 5.5 0.0001 0.9999

TABLE 8
Basal rate test results using linear SVM regression

Patient label MSE SCC

Patient A 3.03487 0.010829
Patient B 0.0100 1.0000
Patient C 1.0914 0.3744
Patient D 1.0801 0.3909

5.2.3 Parameter Update Policy

Our scheme can monitor the “Raw-Type” data in logs
and capture changed settings. If there is no configuration
change to insulin sensitivity, carb ratio, target low BG
and target high BG, the SVM regression model is adjust-
ed every 90 days to handle patient dynamics. A subset of
the previous 90-day history is used for training, and the
new regression is used for the next 90-day interval. After
the adjustment, the corresponding parameters C and γ
are also changed. When the patient is sick, the parameter
adjustment cycle can be changed from 90 days to one
week.

5.3 Experiments for Abnormal Basal Rate Detection

5.3.1 Experimental Results

In our experiments, we first preprocessed the patients’
records. The total sample size is about 600 for each
patient. We use 80% of the samples to train the SVM
model, and the remaining 20% to test it. We use a similar
approach as the previous subsection. For the patient A,
the best C=83.73 and the best γ =26.8. After we obtain
the best model using the optimal parameters, we run
tests. Table 6 shows the best parameters and test results
including the MSE and SCC for four patients. We then
use a linear SVM model to repeat the experiments after
we get the best C.

Table 7 lists the MSE and SCC of 4 patients using
the non-linear SVM regression scheme. Table 8 lists the
MSE and SCC of 4 patients using the linear SVM
regression scheme. Table 9 lists the MSE and SCC of 4
patients using the linear regression scheme. Comparing
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TABLE 9
Basal rate test results using Linear regression

Patient label best MSE

A N/A
B 0.2335
C 0.0100
D 0.0101

TABLE 10
Accuracy of the system of four patients

Patient label Accuracy
Patient A 99.43%
Patient B 99.12%
Patient C 99.99%
Patient D 98.89%

Table 7, 8 and 9, we can see that non-linear SVM re-
gression is more suitable for Basal rate prediction. When
we use the non-linear SVM to predict the Basal rate, for
patient A, the MSE is close to 0.0004. We determine that
[Basalp − 2

√
0.0004, Basalp + 2

√
0.0004] is safety range

for the Basal rate. In our scheme, the SCC is greater than
95%, indicating that we can use this SVM-based scheme
to predict patient basal rate in real time, according to
their previous basal rate pattern.

5.3.2 Parameter Update Policy

Our scheme can monitor the “Raw-Type” and capture
changed settings that have. If the “ChangeBasalProfile”
is not actively used, the linear SVM regression is adjust-
ed every 90 days if the patient is not sick. When the
patient is sick, the parameter adjustment cycle can be
set to one week.

The parameter update policy of the Total Daily Insulin
Prediction Model is similar to the one in the previous
subsection.

5.4 Experiments using All Data

Using the datasets of all patients, we obtain a number
of abnormal vectors (including time, bolus dosage, basal
rate, etc.) and use these abnormalities to test our PIPAC
scheme. Here, we choose the time window ∆ = 15mins.
Table 10 shows the accuracy of detecting abnormal
dosages when we choose the best suitable model for the
bolus dosage and basal rate. At last, we use synthetic
data (including the real data and abnormal data) to test
the algorithm 3. We test all the synthetic data instead of
20% testing data in the real data. Less than 2% dosages in
the whole synthetic data were mis-classified. That is the
false rejection rate plus the false acceptance rate. There
are abnormal data generated by us. It means that there
will be at most 1 false alarms every 10 days (we assume
5 dosages per day).

6 EXTENSION

6.1 Communication Range of Wireless Link 5 Tests
We tested the maximum successful data exchange range.
It is 3.45m, while it ranges from 0.23m-23m in the Care-
link USB manual. 3.45m is a protective communication
range when the patient is indoor.

6.2 Off-line Detection of Settings Change through
USB
When we examine the patient csv logs off-line, we find
that logs with ”ACTION REQUESTOR=rf diagnostic”
are related to the USB’s application. So we can check
the events adjacent to such logs. If the event is related
to the setting changes and the patient does not visit the
doctors at that time, it is suspicious according to our
assumption. This event may be caused by the attackers.

6.3 Energy Adjustment
As we can see from Fig. 8, the PC user application
needs to detect the signal strength before continuing the
communications. So if we adjust the output power, we
can limit the access of unauthorized Carelink USB. Ac-
cording to the user manual of Carelink USB, d = 2.3

√
P

holds. Here, d represents transmission distance. If we
want to make sure the communication range is 1-3m,
the maximum output power rating of the transmitter P
should be less than 1.701w by adjusting the resistance.

7 DISCUSSIONS

7.1 Naive Solution
A simple public key pair can be applied for authentica-
tion over wireless link 5 because each device is certified
by the vendor. Both pump and read/controller can have
a certificate installed to solve the authentication issue.
The problem with this scheme is that there may not
be a trusted third party available all of the time. A
simple public-key authentication is needed only once
to authenticate the pump and the reader/control. All
remaining operations can be done with a shared secret
via symmetric encryption. A user code can be used
as another parameter to set up a shared secret. In the
meantime, we can encrypt the wireless control link
easily. Another concern is that if every device needs to
maintain a public key pair, it is a burden for patients
that possess several devices. Also, the patients do not
want the vendor (knowing all the SN) to have that sort
of power and control over their devices and data.

7.2 Safety Analysis
Under our scheme, for one patient, the maximum error
of Bolus dosage is 2

√
MSE. For patient A, 2

√
MSE =

0.048, suppose the total number of safety ranges we
counted is 10 in a day, then the total error of insulin is
10× 0.048 = 0.48(u). This is less than 1u and therefore is
negligible. For basal rate, the maximum error is 2

√
MSE,
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and the maximum number dose hours that may be
administered in one day is 24. Hence, the total insulin
error is 2

√
MSE × 24. For patient A, 2

√
MSE = 0.04,

hence the total insulin error is 24 × 0.04 = 0.96(u). It is
less than 1u and is also negligible. In summary, it is safe
to use our scheme.

7.3 Overhead Analysis
A Medtronic insulin pump operates at 916.5 MHZ. It re-
quires approximately 0.5ms to finish the non-linear SVM
regression. The energy consumed is negligible compared
with ordinary therapy or communication. However, if
we use non-linear SVM regression, it may require several
minutes to obtain the optimal C and γ via the GA
method when we update the model every 3 months.
From this point of view, the linear SVM regression for
bolus prediction still has its advantage. Furthermore, the
verification time of our scheme is short, which is very
important in regards to the patient’s convenience. Our
scheme needs to store two small records for Basal rate
and Bolus dosage detection. In addition, we need to
store the PIPAC program in the insulin pump. All the
storage requirements are acceptable given the computing
resources of today’s insulin pumps.

7.4 Energy Consumption
For wireless insulin pump d = 2.3

√
P holds. Here, d

represents transmission distance. If we want to make
sure the communication range is 1m, the maximum
output power rating of the transmitter P should be
less than 0.189w by adjusting the resistance. The P is
lowered significantly.

7.5 Security Analysis
7.5.1 Defending Against the First Attack
The first attack is to deliver one large overdose in one
shot. Since the upper bound of SR is Y +2

√
MSE, and

the 2
√
MSE = 0.048 is far less than 1u, it is impossible to

deliver (in one shot) a dose 1u larger than the estimated
dosage. Hence, we can defend against this attack. Since
the error of BG measurements is far less than insulin
sensitivity, according to Equations (3)(4), the error of
calculated insulin is small, then we ignore it.

7.5.2 Defending Against the Second Attack
If the attacker gradually increases the dose over a period
of several days, our system can still defend against this
attack. First, BGi is one of the features being monitored.
If the attack happens, BGi will be lowered. Correspond-
ingly, the predicted bolus SR will be decreased. Hence,
the attack will be detected due to the detection of bolus
(or basal rate) out-of-range. Second, we monitor the
cumulative bolus dosage CB within a time window. It is
impossible for an attacker to deliver total bolus greater
than SRu unless BGi is greater than 250 mg/dl. For
basal rate, this kind of attack does not affect the total

insulin a lot. Third, our scheme verifies the TDI daily.
A suspicious dose can be identified if the TDI falls out
of the corresponding safety range. The patient can then
check the history log and discover the attack.

7.5.3 Defending Against the Radcliffe’s Attack
We can monitor: (1) the BG reading from the sensor; and
(2) patient’s BGi input. As the BG testing technology
may have some errors, we use the following approach:
if the difference between (1) and (2) is more than 20%,
then we consider that there may be intercepting attack
between the sensor and the pump. The above approach
cannot defend against the Radcliffe’s attack 100% but can
mitigate it.

7.6 Emergency Situations
It is an orthogonal problem to allow easy access to med-
ical devices when emergencies arise. Many researchers
suggested utilizing open access operated by clinical staff
during emergencies, e.g., in [12], [13], and [15]. To handle
an emergency situation, we can deactivate the PIPAC
scheme. Some literatures (e.g. in [17] and [19]) focus
on the emergency case. Also since a large dose has
a high probability of causing hypoglycemia, doctors
and patients try to avoid this from happening. For a
patient with elevated body mass, the maximum dose
may be set to a larger dose. These patients’ safety ranges
are also set to a larger value. If the patient becomes
hypoglycemic, our scheme issues an alarm to the patient,
and the patient can have an emergency food ration that
is high in sugar to relieve this situation. What’s more,
in emergency situations, i.e. the BG is over 250(mg/dl)
or lower than 50(mg/dl), the safety range will vary
accordingly because our scheme is an online prediction
scheme rather than a classification scheme. Thus, our
PIPAC scheme can cover this case. When the expected
dose is larger than the maximal dose limit, the doctor can
change the settings. Also, the patients can split a large
dose into several small doses. We observe this method
in the patients’ medical records. Even though, in this
paper we still deactivate the PIPAC scheme to allow
open access to wireless insulin pumps.

8 RELATED WORK

A hacker showed how to deliver a 80-volt shock to an
ICD [37]. Using an easily obtained USB device, Rad-
cliffe [9] was able to capture data transmitted from the
computer and control the insulin pump’s operations.
Barnaby Jack was able to deliver fatal doses to diabetic
patients [6]. Thankfully this attack was only hypothetical
and did not result in any actual deaths. Literature [8]
[28] propose a traditional cryptographic solution (rolling
code) and body-coupled communication to protect the
wireless link. However, Jack’s attack exploits a vulner-
ability between the Carelink USB and the pump, nei-
ther of which can utilize body-coupled communication.
Paper [11] establishes a safety-assured implementation
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of Patient-Controlled Analgesic insulin pump software
based on the generic PCA reference model provided
by the U.S. FDA. Paper [36] builds a generic insulin
infusion pump model architecture and presents a has
corresponding hazard analysis document to help later
software design. Paper [35] identifies a set of safety
requirement that can be formally verified against pump
software. Measurements in paper [29] show that in free
air, intentional EMI under 10 W can inhibit pacing and
induce defibrillation shocks at distances up to 1 - 2 m
on implantable cardiac electronic devices.

There are also many solutions proposed to address
the security issues of IMDs during non-emergency situ-
ations. Literatures [10], [30] and [31] tried to design and
develop energy-aware security techniques to reduce the
induced energy overhead. The authors of [30] proposed
a lightweight security protocol based on a static secret
key implemented on ultra-low power ASIC. Authors
of [12], [13] and [18] proposed using an additional
external device. However, these external devices may
become stolen, lost, or forgotten by the patient. The
device also discloses the patient’s status. Most impor-
tantly, this kind of solution adds another device that
must be managed by the patient, making it an incon-
venient solution for patients, especially when diabetic
patients already have to wear many devices. Certificate-
based approaches have been proposed in [14], but it
requires the device to access the Internet and verify
certificates. Rasmussen et al. proposed allowing IMDs
to emit an audible alert when engaging in a transaction
[15]. However, this approach may consume scarce power
resources. Our previous work [16] proposed to utilize
the patient’s IMD access pattern and designs a novel
SVM-based scheme to address the resource depletion
attack. It uses a classification scheme rather than the
regression scheme used here. It is very effective in non-
emergency situations. In another previous work [17],
we proposed a novel Biometric-Based two-level Secure
Access Control scheme for IMDs when the patient is in
emergency situations (such as a coma). Literature [25]
proposed a novel patient infusion patterns based access
control scheme (PIPAC) for wireless insulin pumps. This
scheme employs a supervised learning approach to learn
normal patient infusion patterns and calculates a safety
range for the total dose in a time window. Then, it detects
the abnormal infusions using safety range. The proposed
algorithm is evaluated with real insulin pump logs used
by several patients for up to 6 months. The evaluation
results demonstrate that our scheme can reliably detect
the single overdose attack with a success rate up to 98%
and defend against the chronic overdose attack with
a very high success rate. Our book [26] gave several
defense methods for the wireless insulin pump systems.
Our new paper [27] proposed a new near field commu-
nication base access control scheme for wireless medical
device systems. [20] proposed using friendly jamming
to prevent an adversarial access to IMDs. In addition,
literature [21] deals with jamming attacks, which can

be used to handle the Radcliffe’s attack in our paper.
Literatures [22] [32] [33] focus on security of health care
systems.

9 CONCLUSIONS

For wireless insulin pump systems, there are two kinds
of harmful attacks that are related to dosages, and the
vulnerability comes from no authentication on wireless
link 5. In this paper, we proposed a PIP based access
control scheme that can defend against these attacks. Our
scheme leverages the patient dosage history to generate
several detection models, and then we determined the
safety ranges for each input vector. We employed real
patient data to test our scheme, and the results show that
our scheme works well and exhibits good performance.
Our scheme can be generalized to other infusion systems
as well.
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