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Abstract—We consider the problem of deployment of cameras
inside a complex indoor setting for surveillance applications. We
formulate the problem of the minimum guarding network that
places a minimum number of cameras satisfying both visual
coverage of the domain and wireless network connectivity. We
prove that finding the minimum guarding network in both the
geometric setting and discrete setting is NP-hard. We also give a
2-approximation algorithm to the geometric minimum guarding
network. Motivated by the connection of this problem with the
watchman tour problem and the art gallery problem, we develop
two algorithms that generate satisfactory results in a prototype
testbed and in our simulations.

Index Terms—Visibility Coverage, Wireless Connectivity, Cam-
era Networks

I. INTRODUCTION

With the recent advancement of pervasive computing, wire-

less networks, and optical sensing, wireless camera networks

are deployed for a wide range of applications. In many ex-

isting systems for infrastructure monitoring and home health-

care, camera network deployments heavily rely on existing

infrastructure. Typically, a node is plugged into the wall and

directly connects to a local network access point through wire

or wireless. However, infrastructure support is not available in

many scenarios such as first responder and military applica-

tions, where the network needs to be deployed quickly with

little infrastructure support. For example, soldiers deploy a

camera network to monitor suspicious activities in a building

during military operations. These applications impose a unique

set of requirements on camera network deployment: (1) Full

visibility coverage: the whole building needs to be monitored

completely; (2) Wireless connectivity: all camera nodes need to

be self-organized to form a wireless network to transfer data to

a base station over wireless communications. Relay nodes may

be introduced. (3) Low deployment cost: it is desirable to use

a minimum number of devices for the low deployment effort

and short deployment time. In addition, the floor plan of the

interior of a building typically has a complex geometric shape.

All these constraints make the camera network deployment

problem very challenging.

In this paper, we initiate the study of camera deployment

that satisfies both visibility coverage and wireless connectivity.

For modeling visibility coverage, we assume that each cam-

era’s sensing range is only restricted by line of sight. This

is a generalization of the “cone” model [32] of a camera.

To enable wireless communication, we assume that wireless

camera nodes and relay nodes have fixed communication range

of r. When the cameras are deployed such that they do not

naturally form a connected network, wireless relay nodes may

be introduced to restore connectivity. With the two models,

we formulate the Minimum Connected Guarding Network

Problem, which minimizes the number of cameras and relay

nodes while satisfying both visibility coverage and wireless

connectivity constraints.

The integration of isotropic sensing and wireless networking

makes this problem unique and interesting. Many previous

studies have proposed algorithms [9, 25, 31] to maximize the

visibility coverage of the camera network, but little attention

is given to the problem of providing a connected network

while minimizing the wireless communication cost, which is

an essential requirement under many applications. Whereas

related sensor network coverage research [14, 15] provides

valuable insights to sensor deployment, they usually assume

short range circular sensing models, which do not apply for

optical cameras. This paper will focus on filling this missing

gap.

The solution to the minimum connected guarding network

problem clearly depends on the scale of the wireless com-

munication range of the sensor nodes. Take one extreme, say

the communication range is large enough such that any two

nodes inside the building can directly communicate with each

other. this problem boils down to the classical Art Gallery

Problem (AGP), which aims at finding a minimum number of

guards such that any point in the building is within direct line

of sight of at least one guard. The art gallery problem is a

well known NP-hard problem and a considerable amount of

literature has been published on this topic[17][12][24]. Take

the other extreme, say that the communication range is very

small compared to the scale of the area being monitored, we

basically need to place the sensors along a path to keep them

connected. Thus the problem converges to finding a connected

geometric network such that any point in the area is visible to

at least one point of the network. It is not hard to show that

such a network must be a tree when its length is minimized.

So far, however, there has been little discussion about finding

a minimum guarding tree for a polygon. A closely related

problem is the watchman route problem [2], i.e., finding a

route of minimum length that guards an entire polygon. It is

known that the watchman route problem is NP-hard for the

general polygon with holes [5]. But nothing is known about
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the hardness if the problem if the nodes are connected as a

tree.

In this paper we first show that the Minimum Connected

Guarding Network problem is NP-hard, when the wireless

communication range is a constant r. We also show that under

one extreme setting that the communication range converges to

zero, this problem, which is termed the Geometric Minimum

Guarding Network problem, is still NP-hard to solve. We then

give an approximation algorithm with constant approximation

ratio to this special case [2].

In terms of algorithm development for practical implemen-

tations, we consider two possible deployment settings. In the

first setting, termed the Connected Visibility region Planning

(CVP), we assume that the building floor plan is known

and the network designer has plenty of time to deploy and

optimize the network. CVP first identifies a set of camera

locations that guarantee the visibility coverage of the domain,

and then remove redundant cameras by identifying overlapping

viability regions. This algorithm is computationally intensive

but produces near optimal deployment result in practice. In

the second setting, termed the Connected Visibility region

Tracking (CVT), we assume first responder applications in

which in-field deployment must be done quickly. We employ

the watchman tour based solution, which places sensors along

the shortest watchman route.

The proposed deployment algorithms are evaluated in real

scenarios. We build a wireless camera network testbed to

validate the effectiveness and accuracy of our algorithms. Each

node of this testbed consists of four off-the-shelf components:

a beagle board computer, a Wi-Fi radio, a webcam, and a

battery cape. Real deployment in our campus building achieves

above 99% wireless connectivity and satisfactory visibility

coverage (Currently the cameras are not panoramic). We also

implement a simulation framework to compare the perfor-

mance of CVP, CVT and the classical 3-coloring algorithm.

Compared with existing solutions, our deployments strategies

have significantly better wireless communication connectivity

and lower power consumption.

II. MODEL AND HARDNESS

In this section, we will formulate the wireless camera

deployment problem rigorously and prove the hardness of the

problem.

We consider an indoor scenario and the domain of deploy-

ment is modelled by a polygon P . A camera node is a wireless

node with visual sensing range defined by line of sight, and

wireless communication range defined as a disk of radius r.

We would like to place a minimum number of cameras inside

P such that two conditions are met:

• All nodes collectively “guard” the entire polygon P in

the sense that any point of P has a direct line of sight

path to at least one camera;

• The nodes form a connected network using wireless

communication.

This problem is denoted as the Minimum Connected Guarding

Network problem.

Fig. 1: Given an instance of the minimum geometric rectilinear

Steiner tree (left), we turn it to an instance in which each point

is replaced by a T-junction obstacle (shown to the right).

If the input polygon is convex, then the camera deployment

problem is trivial — placing one camera in any location inside

the polygon can ensure full coverage (and it is trivially a

connected network). Therefore, we will focus on the setting

when P is non-convex.

Theorem 1. Finding the minimum connected guarding net-

work is NP-hard, even in a simple polygon P .

Proof: We use an induction from the standard art gallery

problem. Given an arbitrary art gallery instance with an input

polygon P , we scale the polygon P down such that it is

within a unit disk. The optimum solution for the art gallery

problem does not change. But the cameras in any guarding

solution form a complete graph. Thus if we have a solution

for the minimum connected guarding network, it is the optimal

solution for the art gallery problem, which is known to be NP-

hard to find.

Notice that the proof above depends on the communication

range being a fixed constant. When the size of the deployment

domain is much greater than the communication range, i.e.,

r → 0, the minimum connected network becomes a geometric

graph that guards the polygon P . We would like to find such

a geometric network with minimum total length. We call this

problem the Minimum Geometric Guarding Network problem.

This problem is also NP-hard for a general polygon P .

Theorem 2. Finding the minimum geometric guarding net-

work in a general polygon with holes is NP-hard.

Proof: We use reduction from the minimum geometric

rectilinear Steiner tree problem in the plane. Given n points

on a unit lattice called sites, we would like to find a tree T
connecting the n sites with minimum total length. The tree

may use other non-site lattice points as vertices and all edges

of the tree must be either horizontal or vertical. See the left

figure in Figure 1. Given such an instance, we construct an

instance for the guarding problem. We first enlarge lattice

edges to narrow corridors. Each lattice grid becomes a ‘hole’

of the polygon. In particular, a site vertex will map to a small

‘T-junction’ gadget hole such that one must visit the junction

point in order to guard it. The T-junction hole is small enough

to fit inside the corridor. See Figure 1 for the sizes of the

corridor and the T-junction hole.

Now we can verify that for a positive integer m, there exists
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a rectilinear Steiner tree of length at most m if and only if

there exists a minimum geometric guarding network of length

at most m+ 3ǫ. Take a very small ǫ say 0.1. This shows that

the minimum geometric guarding network problem is NP-hard

for a polygon with holes.

Given the hardness results, we then move on to find

approximation algorithms and practical solutions with good

performance in reality.

III. MINIMUM GEOMETRIC GUARDING NETWORK

In this section we first show some useful properties of the

minimum geometric guarding network. Then we present a

2-approximate solution for the minimum geometric guarding

network problem in a simple polygon. This algorithm is also a

building block for the general case when r 6= 0, to be discussed

afterwards.

We represent the input polygon P by a sequence of ver-

tices v1, v2, · · · , vn, with n ≥ 4. For i = 1, 2, ..., n − 1,

ei = (vi, vi+1) represents an edge of the polygon connecting

node vi and vi+1. For ease of presentation, we also impose a

direction upon each edge such that the interior of the polygon

lies to the left of the edge, or equivalently, the boundary of

P is directed counterclockwise. We also assume that without

loss of generality that the vertices of P are in general position,

i.e., no three vertices are collinear.

A vertex v is a reflex vertex if the interior angle at v is

greater than π; a vertex is called convex otherwise. A chain

of vertices between vi and vj is defined as all the vertices that

will be encountered if one scans from vi counterclockwise to

vj . The visibility polygon of a point x inside P , denoted by

V (x), is defined as the set of points in P with direct line of

sight from x.

We say a set of points M inside P are guards or a guard

cover, if for any point p ∈ P , there is a point q ∈ M such

that q sees p. We also say that a guard cover is able to guard

P .

Theorem 3. Given a polygon P , the minimum geometric

network is a tree of polygonal curves.

Proof: Take any geometric guarding network G within P ,

we can find a finite size guard cover M on G. In particular, we

take each reflex vertex vi and extend its two adjacent edges,

vi−1vi and vivi+1. This gives us at most n lines forming an

arrangement cutting the polygon P into convex pieces. We

take all vertices of this arrangement within P . For each such

vertex, we take a point on G visible to it and add it to the guard

cover M . Clearly the number of guards is at most O(n2).
Further, the points of M is a guard cover.

Now take a minimum Steiner tree T upon the guards M .

Clearly T guards P . Also T is no longer than the total

length of G. This shows that the minimum geometric guarding

network must be a tree made of polygonal curves.

Therefore from the above theorem we can also denote the

optimal solution as the minimum geometric guarding tree.

To get a 2-approximation to the minimum geometric guard

network, the idea is to make use of a watchman tour for a

given polygon P . A watchman tour is a (closed) cycle inside

P that guards P . That is, any point of P has direct line of

sight to at least one point on the tour [3]. Although finding

the shortest watchman tour in a general polygon with holes

is NP-hard [3], there is an O(log n)-approximation algorithm

for a rectilinear version with restricted visibility [20]. The

watchman tour problem for a simple polygon is solvable in

polynomial time (for a tour with a fixed starting point see [26,

29], and for the floating tour without a given starting point

see [27]).

We show in the following theorem that the optimum watch-

man tour is a 2-approximation to the minimum geometric

guarding network.

Theorem 4. Inside a polygon P , the optimum watchman

tour is a 2-approximation to the minimum geometric guarding

network. This is true for both cases when a fixed starting point

is given, or not given.

Proof: First any watchman tour is clearly a geometric

guarding tree. We take the minimum geometric guarding tree

T , double all edges in the tree which then form a tour along the

tree, visiting each edge exactly twice, once in each direction.

This resulting tour is a watchman tour. It has length exactly

twice the length of the minimum geometric guarding tree,

which is no shorter than the length of the optimal watchman

tour. This proves the theorem.

IV. ALGORITHMS FOR MINIMUM GUARDING NETWORK

In this section we describe algorithms for finding guarding

network, when the communication range of camera nodes is

a fixed constant r > 0. Our aim is to provide practically

interesting algorithms for real system implementation, to be

explained in the next section. We use two approaches. The

first one is to find minimum watchman tour and place cameras

along the tour, keep the same visibility coverage. The second

one is to find art gallery solutions to ensure visibility coverage

and then add extra relay nodes along a spanning tree to connect

the guards. We describe the two algorithms respectively and

we compare their performance on realistic floor plans.

A. Connected Visibility region Tracking

In the following we describe the Connected Visibility region

Tracking (CVT) algorithm. The first step of CVT is to compute

the optimal watchman tour inside a simple polygon. We adapt

the algorithm by Chin et al. [5] and Tan et al. [26] which in

runtime O(n4) finds the shortest watchman route for simple

polygon through a given point s within the polygon. The

concept is to find the“cuts” in P that the watchman route

must touch to guard the whole polygon, and visit these cuts

using a shortest tour.

For a given polygon P , suppose vi is a reflex vertex in P
and one of its adjacent vertices is v′. We shoot a ray from v′

to v, hitting the polygon at y, then the visibility cut C = vy
is a cut of P and separated P into two parts. We call the part

of P not containing v′ the essential piece of P , denoted as

P (C). Suppose the watchman route has not visited the part of
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v

C C ′

P (C ′)

P (C)

y

v′

Fig. 2: Cut C dominates C ′ since P (C ′) contains P (C) – any

tour that visits P (C) must also visit C ′ and guard P (C ′). C
is also an essential cut.

P (C) yet, then it must at least touch the visibility cut C in the

later route to guard P (C). A visibility cut Cj is dominated

by another cut Ci if P (Cj) contains P (Ci), which means if

the route passes Ci to touch P (Ci), then P (Cj) is covered.

We call a cut essential cut if it is not dominated by any other

cuts.

With the essential cut, the origin watchman route problem

is reduced to finding the shortest route that touches every

essential cut inside a polygon. In brief, we triangulate the

given polygon and “reflex” the polygon using the essential

cuts as mirrors in order. After these reflections we pick the

shortest path connecting the starting point s and its image,

which becomes a tour in the original polygon P . We elaborate

the details below.

We first list the essential cuts in clockwise order,

{C1, C2, · · · , Ck}. Starting from point s, we want to find a

path to visit this cut list. We enumerate on the first cut to visit

starting from s and take the shortest tour. If the first cut to visit

is Ci, then the tour visits π = Ci, Ci+1, · · · , Ck, C1, · · · , Ci−1

in this order.

Once the path touches the next essential cut C on the list,

we reflect the polygon using C as an mirror. Thus the tour goes

straight through the cut in the reflected copy. In the original

polygon P the tour is reflected back at C. The path finding

process will stop when it visits the last cut Ci−1 in the list

and it goes back to s. In other words, the reflections with

respect to the cuts will generate a sequence of k copies of the

polygon P glued along the cuts in the same order π – this

glued polygon is denoted by P̂ . The minimum watchman tour

is found by finding the shortest path inside P̂ connecting the

starting point s and the image of s in the last copy of P . We

can get the watchman route T by mapping this path back to

the original polygon.

Once the shortest watchman route R of a polygon P is

acquired, the cameras will be installed at every vertex of R.

Furthermore, we walk through all the cuts and add cameras

at the intersections of T with them only when needed (i.e.,

if the cameras placed at junctions of R cannot cover P (Ci)
for a cut Ci, we add one more camera at the intersection of

Ci with R). This set of guards is sufficient to guard P . See

figure 3 for example.

Fig. 3: For a given polygon P with a starting point s with

watchman route marked as red line and cameras as red dots.

The essential cut Ce of P corresponding to s is marked as red

dashed line, the visibility cuts of P according to s are marked

as green dashed line. Notice that a guard (in green) is added

at the intersection of the watchman tour and one visibility cut.

vi−1vi+1

vi

Fig. 4: The guarding region of vi (shaded).

Once the cameras are placed, we add extra relay nodes

(with or without cameras) along the watchman tour to connect

the adjacent cameras. The relay nodes are placed uniformly

while ensuring adjacent relay nodes have distances smaller

than communication range r.

B. Connected Visibility region Planning

The second algorithm, Connected Visibility region Planning

(CVP), is to first find an art gallery solution to ensure visibility

coverage and then add extra relay nodes along a spanning tree

to connect the guards. In a simple polygon without holes, only

reflex vertices can block the view. The basic idea of CVP is to

deploy cameras such that for each reflex point in P that may

obstructs the view, at least one camera can look around it.

Let vi be a reflex vertex of P , and vi−1 and vi+1 be its

two neighboring vertices, then we define a guarding region

R(vi) as the wedge Wi bounded by extending the two edges

vi+1vi and vi−1vi inside P . We select a guard within Wi. See

Figure 4 for an example.

We choose a hitting set M = {m1,m2, · · · ,mk} of the

guarding regions for all reflex vertices, i.e., any guarding

region contains at least one guard in M .

Finding a hitting set for a collection of geometric regions

is NP-hard. But one could use a greedy algorithm to find a
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solution with approximation ratio of lnn [7]. Specifically, at

each stage, we will find a guard that lies in the maximum

number of uncovered reflex vertices, until all reflex vertices

are covered.

We place cameras at the positions of the guards selected

above. We add extra relay nodes to connect them into a

connected graph, similar to the case of watchman tour based

algorithm. In this case, we use the minimum spanning tree

connecting the guards. If any edge in the MST is longer than

r (the communication range of these nodes), we deploy relays

along this edge uniformly to ensure adjacent relay nodes have

distances smaller than r.

C. Relay Deployment

To perform monitoring tasks, all camera nodes must be

connected to the network. Connectivity is achieved when two

camera nodes are within each other’s communication range.

When the distances between adjacent deployment locations of

camera nodes in the MST exceed this range, which is possible

in many cases, wireless relay nodes are needed. Its main

functionality is to exchange data messages among camera

nodes. For sparse camera node deployments, more than one

relay nodes are deployed to connect adjacent cameras.

The optimization goals of relay nodes deployment are: (1)

forming a connected wireless camera network so that every

node can reliably transfer their data to a specified base station.

(2) minimizing the total communication power consumption.

The key parameter here is the communication range, which

is dynamic in real systems because it’s affected by the deploy-

ment environments. For example, the communication range of

a node in an open corridor is longer than that of a node in

an office with closed door. For deployment planning CVP, we

choose a conservative communication range for all nodes that

ensures a connected graph. For dynamic camera deployment

CVT, variable communication ranges are used for nodes at

different locations. The specific communication range can be

obtained at deployment time [18].

If relay nodes are equipped with camera sensors, their

visibility coverage after deployment can overlap with that of

original guards. Therefore, it provides opportunity to remove

the original camera nodes while maintaining full visibility

coverage. Intuitively, for any camera gi ∈ G, consider the

two, if such exist, relays gj , gk that have the closest distance

from gi. If R(gi) ⊆ R(gj)∪R(gk) and distance(gj , gk) < r,

then the camera gi can be eliminated. An example is shown

in Figure 5.

V. SYSTEM IMPLEMENTATION

We implement a wireless camera network testbed for in-

door deployment and evaluation. This testbed has 12 battery-

powered wireless camera nodes, each node is built based

on the off-the-shelf BeagleBone low power development

board [8]. It is a credit-card-sized (3.4”×2.1”) Linux computer

with an AM335x 720MHz ARM processor. We choose the

BeagleBone as our deployment platform because its processor

is powerful enough for video processing, but its low power

vj

vkvi

gj
gi

gk

Fig. 5: Guard Reduction

Fig. 6: Battery-powered Wireless Camera Node

design allows it to be powered by 4 AA batteries. Moreover,

it has rich hardware interfaces to expand the its functionality,

including plug-in components like cameras and wireless radio

adapters. A picture of the camera node is shown in Figure 6.

For each camera node, we install the Angstrom distribu-

tion [19], which is an Linux operating system distribution

designed for low power embedded devices. For Wi-Fi commu-

nication, each node utilizes a USB Wi-Fi dongle with Realtek

RTL8192CU chipset. We also attempted an alternative setup

by installing Ubuntu version 13.04 and Belkin F5D7050v3

USB Wi-Fi dongle. In our observation, there is no discernible

difference in the results between these two setups.

Each BeagleBone is equipped with a 3.1 megapixel Aptina

CMOS digital image sensor MT9T111 via the extension board.

This camera integrates on-chip functions such as anti-shake

and auto focus, and is programmable through serial interface.

To be applied in face identification applications, the horizontal

pixel density requirement is approximately 5 pixel/cm. There-

fore, by applying the auto focus function, the maximum scene

width is 4 meters, with variable monitoring distance within the

building (< 50 feet). Major system parameters of the camera

are shown in the Table I.

A. Experiments

We firstly plot the floor plan of the Computer and Infor-

mation Science department building in Temple University as

System Parameters Value

Maximum Picture Resolution 2048 x 1536
Maximum Frame Rate 30fps
Wireless Communication Range 60+feet
Wireless Bandwidth 54Mbps
Processing Speed 720MHz

TABLE I: Camera Node Specification
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(a) System Deployment (b) Pictures taken by sensor node

Fig. 8: Sensor Node Deployment

Link ID Length(feet) Packet Loss Rate

1 25 4%
2 8 0%
3 30 4%
4 15 0%
5 43 0%
6 13 0%
7 44 0%

TABLE II: CVP Wireless Link Packet Loss Rate

sample input polygon for deployment algorithms. As shown

in Figure 7(a), the thick line represents the input polygon. In

Figure 7(b), 7(c), and 7(d), the black points represent camera

deployment locations and the dash lines represent the wireless

links. The actual camera system deployed on the wall is shown

in Figure 8.

Next we evaluate the network’s wireless connectivity. We

set the Wi-Fi mode to be Ad-Hoc, and tune 2.412 Ghz as the

communication frequency. The power management function is

turned off so that the Wi-Fi communication will be running

at highest performance.

For each wireless link in this network deployed in Figure 7b,

we execute the ”ping” command between each pair of nodes

for 50 times and record the packet loss rate. The result is

shown in Table II. We have assigned each wireless link an ID.

We can see the lengths of the wireless links range from 8 to

44 feet, and all links have packet loss ratios smaller than 5%.

To assess the wireless connection quality, we conducted a

long term experiment. We deploy two cameras at the two ends

of the corridor, which is 43 feet in length. We ping from one

of the node to the other once per second for one hours and

record the success rate. This experiment is repeated for three

different times. The results are shown in Table III.

It is apparent from Table III that reliable wireless connec-

Exp # Transmitted # Received Avg RTT Duration

1 3580 3573 16.875ms 3593893ms
2 3909 3901 18.007ms 3927517ms
3 3693 3689 35.513ms 3722935ms

TABLE III: Long Term Wireless Connectivity

tions are ensured. The packet loss rates are all smaller than

1%. Since the length of the wireless link is 43 feet, which

is the longest one in the CVP deployment in our department

building floor plan, we can see that the CVP deployment forms

a reliable wireless network with no need for extra wireless

relay nodes.

Finally we test the system’s power by measuring the voltage

and current when the Wi-Fi module is both on and off. We

found that the power of a node is about 1.22W and 0.72W

when the Wi-Fi is on and off, respectively. An ordinary AA

Alkaline long-life battery can hold about 5000J of energy, so

the system is expected to sustain for hours. We configure a

node to take pictures and exchange hello messages with its

neighbours, and its battery life is above 5 hours.

B. Discussion

Since we adopt visibility sensing and circular communica-

tion models in our deployment algorithms, it is important to

validate these models with real experiments. We have tested

qualities of sensing and communication using our testbed in

real deployment experiments. Experimental results show that

both models are valid. However, for effective and efficient

camera network deployment, both models can be further

improved under realistic constraints.

Visibility Model. Line of sight is a simplified abstraction for

optical sensing. In real deployment, various factors, including

indoor obstacles and light settings, influence the sensing

quality. Building constructions, such as interior doors and

furnitures can block the view of cameras. Solution to this prob-

lem is to adaptively adjust the height of camera deployments

produced by deployment algorithm. In our experiments, most

of the obstacles can be avoided after in-situ tuning during

the deployment. Light settings can also significantly affect the

quality of pictures taken by the optical sensor. In our building,

although the lights are always on, the level of illumination is

not consistent in different areas. To obtain clear views of all the

areas, extra camera nodes may be needed to cover relatively

dark areas.

Wireless Communication Model. The realistic communica-

tion range is not a perfect disk. Instead, it is highly directional

under a complex indoor building structure like our department.

The communication range of a node in the corridor is much

larger than that of a node in the office room. This observation

suggests that relay nodes’ positions can be fine tuned during

deployment. Another issue is that the Wi-Fi channel may need

to be tuned at deployment time, to avoid interference with

existing wireless networks if any are presented.

From these observations, we can see that it is also important

to perform in-situ tuning on sensing and communication after

deployment planning.

VI. SIMULATION

A. Experiment Setup

We have implemented a simulation framework for the

camera deployment algorithms. In the experiments, we take
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(a) Floor Plan (b) CVP Deployment (c) CVT Deployment (d) 3-Coloring Deployment

Fig. 7: Simulation with a Real Floor Plan

the floor plans of 20 realistic buildings as inputs. These

buildings include hotels, classrooms, houses and museums.

The CVP, CVT and 3-coloring algorithm are implemented.

The simulation shows that all three algorithms are able to

ensure full visibility coverage, so we will focus on comparing

their camera numbers, number of relay nodes and wireless

transmission power.

As a baseline, we choose the well known 3-coloring algo-

rithm [30]. It firstly triangulate the polygon P . The vertices

of the polygon are then 3-colored in such a way that every

triangle has all three different colors. Once a 3-coloring is

found, the color with the fewest vertices forms a valid guard

set with at most ⌊n/3⌋ guards [10].

B. Camera Number

The camera number is an important metric to evaluate the

performance of a deployment algorithm. The camera number

is directly related to the construction cost. Besides, as the

camera number grows, the video data size also increases. This

will cast heavier burden on power supply because wireless

data communication is energy expensive. To evaluate the

algorithms’ performance, we simulate them on 20 real floor

plans and record the required camera numbers. The results are

shown in Figure 9.

Figure 9 compares CVP, CVT and 3-coloring algorithm

in terms of camera numbers. They require 4.2, 4.8 and

5.9 cameras on average, respectively. Besides, the 3-coloring

algorithm’s camera number has a standard deviation of 2.1,

while those of CVP and CVT are 1.6. Therefore, on average,

CVP and CVT require fewer cameras than the 3-coloring

algorithm.

C. Number of Relay Nodes

To assess these three algorithms in terms of wireless connec-

tivity, we compare the number relay nodes required by them.

Since the wireless communication quality depends on many

factors, which cannot be predicted before in-situ experiments,
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we conduct simulations with various different communication

ranges. Figure 10 presents the necessary number of relay nodes

required by these three algorithms.

From Figure 10, we can see that the numbers of relay nodes

drop dramatically when the communication range increases

from 10 to 40 feet, but remains relatively stable when this

value grows greater than 40 feet. These results indicate that
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TABLE IV: Radio Characteristics

Operation Energy Dissipated

Transmitter Electronics (ETx−elec)
Receiver Electronics (ERx−elec) 50 nJ/bit
(ETx−elec = ERx−elec = Eelec)
Transmit Amplifier (ǫamp) 100 pJ/bit/m2

when designing realistic systems, the communication range

should be around 40 feet, on average, so that maximum

marginal benefits are improved.

We also discover that the CVT has a good performance in

terms of relay node number. On average, it requires 14.4, 6.25,

2.25, 0.95 and 0.6 relays when the communication range is 10,

20, 40, 60 and 80 feet, respectively. This is because the CVT

deploys cameras along the shortest watchman route, which is

the shortest path that can guard the polygon. Since the CVT’s

total distance of wireless links is smaller, it requires less relays

when compared with CVP and 3-coloring algorithm.

It is noted that using the CVP and CVT algorithms, the

wireless links are mostly in direct line of sight, which greatly

facilitate the deployment of wireless relays. Besides, when

two camera nodes are in direct line of sight, their mutual

communication range is larger compared to the condition when

obstacles exist because obstacles significantly affect wireless

communication quality. In experiment, we can see that using

3-Coloring deployment, obstacles between connected cameras

frequently occur.

D. Transmission Cost

The wireless transmission cost is another important issue in

the wireless camera network, because the battery capacity is

limited and the power consumption of wireless transmission

is large. Currently, there is a great deal of research in the area

of radio transmission cost in wireless sensor networks. In this

paper, we will adopt the radio model constructed in [11]. To

transmit k bits of message to a distance d using this radio

model, the power consume by a node is shown in Equation 1.

ETx(k, d) = ETx−elec(k) + ETx−amp(k, d)

ETx(k, d) = Eelec ∗ k + ǫamp ∗ k ∗ d2
(1)

To receive this message, the power spends by wireless node

is shown in Equation 2:

ERx(k) = ERx−elec(k)

ERx(k) = Eelec ∗ k
(2)

The physical meaning of the parameters in Equation 1 and 2

are summarized in Table IV.

The camera nodes are modeled after the VIVOTEK CC8130

1MP Panoramic View camera. they are operating at frame rate

of 10 fps with image resolution at 1280 × 800. The images

are encoded in H.264 format and the video will be compressed

with a ratio of 30%. Therefore, the data bandwidth of each

camera is 254 kbit/s. If the camera network keeps operating
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for 5 hours, then each camera node will generate 4.5Gbit of

data.

In order to collect these video data, the camera nodes send

them link after link to arrive at a data sink. In this experiment,

we select one camera node for each camera network to be the

data sink, and compute power consumption of the network

during the data transmission process.

From Figure 11, we can see that using CVP, CVT and 3-

coloring algorithm to deploy camera networks, the network

communication power is 0.18, 0.23 and 0.34 mW, respectively.

One reason why CVP achieves lower communication cost than

3-coloring is that CVP deploys cameras in the internal regions

of the polygons, while the 3-coloring algorithm deploys cam-

eras at the vertices of the polygons. On average, deploying

cameras in the internal regions can reduce the mutual distances

between the camera nodes. Since the wireless power consump-

tion is proportional to the square of link distance, reducing

camera nodes’ mutual distances can effectively reduce the

communication power.

In summary, CVP and CVT outperform the classical 3-

coloring algorithm in terms of camera number, number of

relay nodes and communication power. Specifically, CVP

can achieve a near optimal performance in necessary camera

numbers, while CVT can reduce the number of relays sig-

nificantly. Both these algorithms can reduce communication

power compared with 3-coloring algorithm.

VII. RELATED WORK

The Art Gallery problem, finding the minimum number

of guards to see a given polygon, is a classical problem in

computational geometry and is well known to be NP-hard [24].

It is also well known that ⌊n/3⌋ cameras are occasionally

necessary and always sufficient to cover a simple polygon

with n vertices [6]. In a polygon with n vertices and h holes,

⌊(n + h)/3⌋ vertex guards are always sufficient [13]. If the

polygon is orthogonal (having only horizontal and vertical

edges), ⌊n/4⌋ vertex guards are always sufficient [16].

The Watchman Tour Problem deals with finding a route in

a simple polygon P such that each point in the interior of P
can be seen from at least one point along the route[28]. [4]
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proposes an O(n4) algorithm to solve the problem of finding

the shortest watchman route that is restricted to pass through a

starting point s on the boundary of P . [23] gave an O(f(n)n2)
time solution to the problem without restricting to any starting

points. The authors of [1] applies the concept of essential cut

to solve this problem. They design an algorithm to find out all

essential cuts in the polygon, then a simple route that visits all

these essential cuts will ensure coverage of the entire polygon.

To solve the camera network deployment problem, previ-

ous researchers proposed many different camera models and

deployment algorithms. [22] ”cone” shape of camera views.

The authors of [33] construct a detailed model for the 3-

dimensional field of view of cameras. [31] introduces a camera

deployment scenario that requires that neighbouring cameras

should have hand-off regions. [21] models obstacles in a

probabilistic way, and designs a deployment algorithm that

ensures visibility coverage with high confidence. However,

all these papers only focus on visibility coverage, and none

of these papers consider about wireless connectivity. Instead,

in our paper we assume the camera’s sensing range is only

restricted by line of sight, and we optimize the communication

costs while ensuring visibility coverage.

VIII. CONCLUSION

We formally define the Connected Minimum Guarding Set

problem. We prove the hardness of the problem and design 2-

approximation algorithm in the geometric setting. Inspired by

solutions to watchman tour and art gallery problem, we also

develop two algorithms to solve this problem. Experiments are

conducted on an implemented prototype of the proposed sys-

tem to evaluate its feasibility and the effectiveness. In extended

simulations, we test the proposed algorithms on realistic floor

plans. All the experiment results demonstrate that the proposed

algorithms can ensure visibility coverage and reduce camera

numbers and communication power significantly.
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