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Extensive empirical studies presented in this paper confirm that the quality of radio communication between
low-power sensor devices varies significantly with time and environment. This phenomenon indicates that
the previous topology control solutions, which use static transmission power, transmission range, and link
quality, might not be effective in the physical world. To address this issue, online transmission power control
that adapts to external changes is necessary. This paper presents ATPC, a lightweight algorithm for Adap-
tive Transmission Power Control in wireless sensor networks. In ATPC, each node builds a model for each
of its neighbors, describing the correlation between transmission power and link quality. With this model,
we employ a feedback-based transmission power control algorithm to dynamically maintain individual link
quality over time. The intellectual contribution of this work lies in a novel pairwise transmission power con-
trol, which is significantly different from existing node-level or network-level power control methods. Also
different from most existing simulation work, the ATPC design is guided by extensive field experiments of
link quality dynamics at various locations over a long period of time. The results from the real-world ex-
periments demonstrate that 1) with pairwise adjustment, ATPC achieves more energy savings with a finer
tuning capability and 2) with online control, ATPC is robust even with environmental changes over time.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network Protocols

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Adaptive control, Feedback, Link Quality, Sensor Network, Transmis-
sion Power Control

ACM Reference Format:
Shan Lin, Fei Miao, Jingbin Zhang, Gang Zhou, Lin Gu, Tian He, John A. Stankovic, Sang Son, and George

This work is supported by the National Science Foundation, under NSF grants CNS-1239108, CNS-1218718,
CNS-0931239, IIS-1231680, and CNS-1253506 (CAREER). We would like to thank Professor Gang Tao,
Professor Lionel M. Ni, and anonymous reviewers for their insightful comments.
Author’s addresses: S. Lin, Department of Electrical and Computer Engineering, Stony Brook University; F.
Miao, Department of Electrical and Systems Engineering, University of Pennsylvania; J. Zhang, Department
of Computer Science, University of Virginia; G. Zhou, Computer Science Department, College of William
and Mary; L. Gu, NingBo ShuFang Information Tecknology Co. ,LTD; T. He, Computer Science Department,
University of Minnesota; J. A. Stankovic, Computer Science Department, University of Virginia; S. Son,
Computer Science Department, University of Virginia; G. J. Pappas, Department of Electrical and Systems
Engineering, University of Pennsylvania.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c⃝ 0 ACM 1539-9087/0/-ART0 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: 0.



0:2 S. Lin et al.

J. Pappas, 2014. ATPC: Adaptive Transmission Power Control for Wireless Sensor Networks. ACM Trans.
Embedd. Comput. Syst. 0, 0, Article 0 ( 0), 31 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
With the integration of sensing and communication abilities in tiny devices, wireless
sensor networks are widely deployed in a variety of environments, supporting military
surveillance [Arora et al. 2004; Liu et al. 2003], emergency response [Xu et al. 2004; Liu
et al. 2010], medical care [Stankovic et al. 2005; Asare et al. 2012], and scientific explo-
ration [Tolle et al. 2005]. The in-situ impact from these environments, together with
energy constraints of the nodes, makes reliable and efficient wireless communication a
challenging task. Under a constrained energy supply, reliability and efficiency are of-
ten at odds with each other. Reliability can be improved by transmitting packets at the
maximum transmission power [He et al. 2004; Werner-Allen et al. 2006], but this situ-
ation introduces unnecessarily high energy consumption. To provide system designers
with the ability to dynamically control the transmission power, popularly used radio
hardware such as CC1000 [ChipconCC1000 2005] and CC2420 [ChipconCC2420 2005]
offers a register to specify the transmission power level during runtime. It is desirable
to specify the minimum transmission power level that achieves the required commu-
nication reliability for the sake of saving power and increasing the system lifetime.

Although theoretical study and simulation provide a valuable and solid foundation,
solutions found by such efforts may not be effective in real running systems. Simpli-
fied assumptions can be found in these studies, for example, static transmission power,
static transmission range, and static link quality. These studies do not consider the
spatial-temporal impact on wireless communication. In this paper, we present system-
atic studies on these impacts. There are a number of empirical studies on communica-
tion reality conducted with real sensor devices [Zhao and Govindan 2003; Woo et al.
2003; Zhou et al. 2004; Cerpa et al. 2005; Reijers et al. 2004; Lal et al. 2003]. Their
results suggest that for a specified transmission power and communication distance,
the received signal power varies and the link quality is unstable. But they do not focus
on a systematic study on the radio and link dynamics in the context of different trans-
mission power settings. Our extensive experiments with MICAz [CROSSBOW 2004]
confirm the observations presented in previous work. We also go further and explore
the radio and link dynamics when different transmission power levels are applied.
Our experimental results identify that link quality changes differently according to
spatial-temporal factors in a real sensor network. To address this issue, we design a
pairwise transmission power control. Our empirical study also reveals that it is feasi-
ble to choose a minimal and environment-adapting transmission power level to save
power, while guaranteeing specified link quality at the same time.

To achieve the optimal power consumption for specified link qualities, we propose
ATPC, an adaptive transmission power control algorithm for wireless sensor networks.
The result of applying ATPC is that every node knows the proper transmission power
level to use for each of its neighbors, and every node maintains good link qualities with
its neighbors by dynamically adjusting the transmission power through on-demand
feedback packets. Uniquely, ATPC adopts a feedback-based and pairwise transmission
power control. By collecting the link quality history, ATPC builds a model for each
neighbor of the node. This model represents an in-situ correlation between transmis-
sion power levels and link qualities. With such a model, ATPC tunes the transmis-
sion power according to monitored link quality changes. The changes of transmission
power level reflect changes in the surrounding environment. ATPC supports packet-
level transmission power control at runtime for MAC and upper layer protocols. For
example, routing protocols with transmission power as a metric [Singh et al. 1998;

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: 0.



ATPC: Adaptive Transmission Power Control for Wireless Sensor Networks 0:3

(a) Experiments on a Grass
Field

(b) Experiments in a Parking
Lot

(c) Experiments in a Corridor

Fig. 1. Experimental Sites

Subbarao 1999; Gomez et al. 2003; Ganesan et al. 2001; Chipara et al. 2006] can make
use of ATPC by choosing the route with optimal power consumption to forward pack-
ets.

The topic of transmission power control is not new, but our approach is quite unique.
In state-of-art research, many transmission power control solutions use a single trans-
mission power for the whole network, not making full use of the configurable trans-
mission power provided by radio hardware to reduce energy consumption. We refer to
this group as network-level solutions, and typical examples in this group are [Park and
Sivakumar 2002b; Narayanaswamy et al. 2002; Bettstetter 2002; Kirousis et al. 2000;
Santi and Blough 2003]. Also, some other work takes the configurable transmission
powers into consideration. They either assume that each node chooses a single trans-
mission power for all the neighbors [Bettstetter 2002; Kirousis et al. 2000; Kubisch
et al. 2003; Ramanathan and R-Hain 2000; Wattenhofer et al. 2001; Kawadia et al.
2001; Park and Sivakumar 2002a; Rodoplu and Meng 1999; Li et al. 2002], which we
refer to as node-level solutions, or nodes use different transmission powers for differ-
ent neighbors [Liu and Li 2002; Xue and Kumar 2004; Blough et al. 2003], which we
call neighbor-level solutions. While these solutions provide a solid foundation for our
research, ATPC goes further to support packet-level transmission power control in a
pairwise manner.

Also, most existing real wireless sensor network systems use a network-level trans-
mission power for each node, such as in [He et al. 2004; Werner-Allen et al. 2006].
These coarse-level power controls lead to high energy consumption. The authors
of [Son et al. 2004] present a valuable study about the impact of variable transmission
power on link quality. Through our empirical experiments with the MICAz platform,
it is observed that different transmission powers are needed to achieve the same link
quality over time. This leads to our feedback-based transmission power control design,
which is not addressed in [Son et al. 2004]. Also, the authors of [Son et al. 2004] use
a fixed number of transmission powers (13 levels), which fixes the maximum accuracy
for power tuning. The ATPC we propose chooses different transmission power levels
based on the dynamics of link quality, and it also allows for better tuning accuracy and
more energy savings. Our approach essentially represents a good tradeoff between ac-
curacy and cost, a finer control at each node in exchange for less energy consumption
when transmitting the packets.

In this work, we invest a fair amount of effort to obtain empirical results from three
different sites and over a reasonably long time period. These results give practical
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guidance to the overarching design of ATPC. We demonstrate that ATPC greatly ex-
tends the system lifetime by choosing a proper transmission power for each packet
transmission, without jeopardizing the quality of data delivery. In our 3-day experi-
ment with 43 MICAz motes, ATPC achieves above a 98% end-to-end Packet Reception
Ratio in natural environment through fair and rainy days. The solutions without on-
line tuning can barely deliver half of packets. Compared to other solutions, ATPC also
significantly saves transmission power. With equivalent communication performance,
ATPC only consumes 53.6% of the transmission energy of the maximum transmission
power solution and 78.8% of the transmission energy of the network-level transmission
power solution. More specifically, the contributions of our work lie in two aspects.

— Our systematic study and experiments reveal the spatiotemporal impacts on wireless
communication and identify the relationship between dynamics of link quality and
transmission power control.

— With run-time pairwise transmission power control, we achieve high packet delivery
ratio successfully with small energy consumption under realistic scenarios.

The rest of this paper is organized as follows: the motivation of this work is presented
in Section 2. In Section 3, the design of ATPC is stated. In Section 4, ATPC is evaluated
in real world experiments. The state of the art is analyzed in Section 5. In Section 6,
conclusions are given and future work is pointed out.

2. MOTIVATION
Radio communication quality between low power sensor devices is affected by spa-
tial and temporal factors. The spatial factors include the surrounding environment,
such as terrain and the distance between the transmitter and the receiver. Tempo-
ral factors include surrounding environmental changes in general, such as weather
conditions. In this section, we present experimental results for investigation of these
impacts. We note that previous empirical studies on communication reality [Zhao and
Govindan 2003; Cerpa et al. 2005; Zhou et al. 2004; Ganesan et al. 2002; Reijers et al.
2004; Lal et al. 2003] suggest that for a specified transmission power, fixed communi-
cation distance, and antenna direction, the received signal power and the link quality
vary. But they do not focus on a systematic study of the radio and link dynamics when
different transmission powers are considered. We conducted these measurements, and
we are the first to study systematically the spatial and temporal impacts on the cor-
relation between transmission power and Received Signal Strength Indicator (RSSI)/
Link Quality Indicator (LQI) [IEEE 802.15.4 1999]. Both RSSI and LQI are useful link
metrics provided by CC2420 [ChipconCC2420 2005]. RSSI is a measurement of signal
power which is averaged over 8 symbol periods of each incoming packet. LQI is a mea-
surement of the “chip error rate” [ChipconCC2420 2005] which is also implemented
based on samples of the error rate for the first eight symbols of each incoming packet.
Transmission power level index refers to the value specified for the RF output power
provided by CC2420 [ChipconCC2420 2005]. It can be mapped to output power in units
of dBm.

Our empirical results show that link quality is significantly influenced by spatiotem-
poral factors, and that every link is influenced to a different degree in a real system.
This observation proves that the assumptions made from previous work about the
static impact of the environment on link quality do not hold. Solutions based on these
simplifying assumptions may not accurately capture the dynamics of communication
quality, and may result in highly unstable communication performance in real wire-
less sensor networks. Therefore, the in-situ transmission power control is essential for
maintaining good link quality in reality.
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Fig. 2. Transmission Power vs. RSSI/LQI at Different Distances in Different Environments

2.1. Investigation of Spatial Impact
To investigate the spatial impact, we study the correlation between transmission
power and link qualities in three different environments: a parking lot, a grass field,
and a corridor, as shown in Figure 1. We use one MICAz as the transmitter and a
second MICAz as the receiver. They are put on the ground at different locations, main-
taining the same antenna direction. The transmitter sends out 100 packets (20 packets
per second) at each transmission power level. The receiver records the average RSSI,
the average LQI, and the number of packets received at each transmission power level.
The experiments are repeated with 5 different pairs of motes in the same environmen-
tal conditions to obtain statistical confidence.
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Figure 2 shows our experimental data obtained from one pair of nodes in differ-
ent environments. Each curve demonstrates the correlation between the transmission
power and RSSI/LQI at a certain distance of that pair. The confidence intervals (97%)
of RSSI/LQI are also plotted on Figure 2. Clearly, there is a strong correlation between
transmission power level and RSSI/LQI. We note that there is an approximately lin-
ear correlation between transmission power and RSSI in Figures 2 (a) (c) (e). The LQI
curves in Figures 2 (b) (d) (f) also present approximately linear correlations when the
LQI readings are small. However, the LQI readings suffer saturation when they get
close to 110, which is the maximum quality frame detectable by the CC2420 [Chip-
conCC2420 2005]. We also notice that each LQI curve and its corresponding RSSI
curve demonstrate similar trends and variations. This is because the LQI reading is
also a representation of the SNR value, which is the ratio of the received signal power
level to the background noise level.

The slopes of RSSI curves generally decrease as the distance increases, but this is
not always true. According to [Shankar 2001], RSSI is inversely proportional to the
square of the distance. To obtain the same amount of RSSI increase, a larger trans-
mission power increase is needed at a longer distance. However, in reality, this rule
doesn’t always hold. For example, in Figures 2 (a) and (c), the slopes of RSSI curves at
a distance of 18 feet are bigger than those at a distance of 12 feet, which is caused by
multi-path reflection and scattering [Zhao and Govindan 2003]. Therefore, this mea-
sured correlation is a better reflection of the communication reality.

The shapes of RSSI/LQI curves based on the results from a grass field (Figures 2
(a) and (b)), a parking lot (Figures 2 (c) and (d)) and a corridor (Figures 2 (e) and (f))
are significantly different from one another, even with the same distance and antenna
direction between a pair of nodes. For example, with a transmission power level of
20 and a distance of 12 feet, the RSSI is -90 dBm on a grass field (Figure 2 (a)), while
above -70 dBm in a corridor (Figure 2 (e)). Even though the curves for 12 feet on a grass
field and on a parking lot are similar (Figures 2 (a) and (c)), the 6 feet curves in these
two environments are not quite the same (Figures 2 (a) and (c)). These experimental re-
sults confirm that radio propagation among low power sensor devices can be influenced
largely by environment [Zhao and Govindan 2003] [Zhou et al. 2004] [Ganesan et al.
2002]. Moreover, RSSI/LQI with specified transmission power and distance varies in a
very small range and the degree of variations is related to the environment. According
to the confidence intervals (97%) shown on Figure 2, RSSI readings are more stable
than LQI. The confidence intervals of RSSI are not observable at most of the sampling
points in Figures 2 (a) (c) and (e).

2.2. Investigation of Temporal Impact
We also investigate the impact of time on the correlation between transmission power
and link quality. Empirical results in this section suggest that this correlation changes
slowly but noticeably over a long period of time. Therefore, online transmission power
control is requisite to maintain the quality of communication over time.

A 72-hour outdoor experiment is conducted to demonstrate the variations of the
radio communication quality over time. We place 9 MICAz motes in a line with a 3-
feet spacing. These motes are wrapped in tupperware containers to protect against the
weather. The tupperware containers are placed in brushwood. They are about 0.5 feet
high above the ground because the brushwood is very dense. During the experiment,
each mote sends out a group of 20 packets at each transmission power level every
hour. The transmission rate is 10 packets per second. All the other motes receive and
record the average RSSI and the number of packets they received at each transmission
power level. The transmissions of different motes are scheduled at different times to
avoid collision.
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Fig. 3. Transmission Power vs. RSSI at Different Times

In this experiment, data obtained from different pairs exhibit similar trends. Fig-
ure 3 presents our empirical data obtained from a pair of motes at a distance of 9 feet
apart. Each curve represents the correlation between transmission power and RSSI at
a specific time. The correlation between transmission power and RSSI every 8-hour is
plotted in Figure 3 (a). The shapes of these curves are different due to environmen-
tal dynamics. As a result, different transmission power levels are needed to reach the
same link quality at different times. For example, to maintain RSSI value at -89 dBm,
the transmission power level needs to be 11 at 0 AM on the first day, while at 4 PM
on the second day the transmission power level needs to be 20. Figure 3 (b) shows the
hourly changes of the correlation. From Figure 3 (b), we can see that the relation be-
tween transmission power and RSSI changes more gradually and continuously than
that in Figure 3 (a). For example, the maximum change in RSSI is 8 dBm over an
8-hour period in Figure 3 (a), while it is 3 dBm over a one-hour period in Figure 3 (b).

These curves are approximately parallel, and the relationship between transmission
power and RSSI varies differently at different times of day. For example, in Figure 3
(a) the curve at 4 PM on the first day is much lower than the curve at 8 AM on the
first day. The same variation happens on curves at 8 AM and 4 PM on the second day,
but the degree of variation is different. All these results indicate that it is critical for
transmission power control algorithms proposed for sensor networks to address the
temporal dynamics of communication quality.

2.3. Dynamics of Transmission Power Control
To establish an effective transmission power control mechanism, we need to under-
stand the dynamics between link qualities and RSSI/LQI values. In this section, we
present empirical results that demonstrate the relation between the link quality and
RSSI/LQI. The key observations, which serve as the basis of our work, are as follows:

— Both RSSI and LQI can be effectively used as binary link quality metrics for trans-
mission power control.

— The link quality between a pair of motes is a detectable function of transmission
power.
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Fig. 4. RSSI vs. PRR in Different Environments

2.3.1. Link Quality Threshold. Wireless link quality refers to the radio channel commu-
nication performance between a pair of nodes. PRR (packet reception ratio) is the most
direct metric for link quality. However, the PRR value can only be obtained statisti-
cally over a long period of time. Our experiments indicate that both RSSI and LQI
can be used effectively as binary link quality metrics for transmission power control1.
We record the PRR and the average RSSI/LQI for every group of 100 packets from a
grass field (Figures 4 (a) and (d)), a parking lot (Figures 4 (b) and (e)) and a corridor
(Figures 4 (c) and (f)). All experimental results show that both RSSI and LQI have a
strong relationship with PRR. There is a clear threshold to achieve a nearly perfect
PRR. However, these thresholds are slightly different in different environments. Take
RSSI as an example: the 95% PRR threshold of RSSI is around -90 dBm on the grass
field (Figure 4 (a)), -91 dBm on the parking lot (Figure 4 (b)), and -89 dBm in the
corridor (Figure 4 (c)).

2.3.2. Relations between Transmission Power and RSSI/LQI. Radio irregularity results in
radio signal strength variation in different directions, but the signal strength at any
point within the radio transmission range has a detectable correlation with transmis-
sion power in a short time period.

In short term experiments, the correlation between transmission power and
RSSI/LQI for a pair of motes at a certain distance is generally monotonic and continu-
ous. From Figure 2, the overall trend of RSSI increases linearly when the transmission
power increases.

However, RSSI/LQI fluctuates in a small range at any fixed transmission power
level. So, the correlation between transmission power and RSSI/LQI is not determin-
istic. For example, Figure 5 shows the RSSI upper bound and lower bound of 100 re-

1It is still controversial whether RSSI or LQI is a better indicator on link quality [Zhao and Govindan 2003]
[Reijers et al. 2004] [Lal et al. 2003].
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Fig. 5. Transmission Power vs. RSSI

ceived packets at each transmission power level when we place two motes 6-feet apart
on a grass field. This result confirms the observation from previous studies [Zhao and
Govindan 2003; Zhou et al. 2004; Ganesan et al. 2002].

There are mainly three reasons for the fluctuation in the RSSI and LQI curves.
First, fading [Shankar 2001] causes signal strength variation at any specific distance.
Second, the background noise impairs the channel quality seriously when the radio
signal is not significantly stronger than the noise signal. Third, the radio hardware
doesn’t provide strictly stable functionality [ChipconCC2420 2005].

Since the variation is small, this relation can be approximated by a linear curve. The
correlation between RSSI and transmission power is approximately linear, and the cor-
relation between LQI and transmission power is also approximately linear in a range.
From the confidence intervals in Figure 2, we can see that RSSI and LQI are both rel-
atively stable when these values are not small. All the points with confidence intervals
bigger than 1 correspond to low link quality points in Figure 4, and the RSSI/LQI val-
ues which have the most fluctuations are below the good link quality thresholds. Since
we are only interested in RSSI/LQI samplings that are above or equal to the good link
quality threshold, it is feasible to use a linear curve to approximate this correlation.
This linear curve is built based on samples of RSSI/LQI. This curve roughly represents
the in-situ correlation between RSSI/LQI and transmission power.

This in-situ correlation between transmission power and RSSI/LQI is largely influ-
enced by environments, and this correlation changes over time. Both the shape and
the degree of variation depend on the environment. This correlation also dynamically
fluctuates when the surrounding environmental conditions change. The fluctuation is
continuous, and the changing speed depends on many factors, among which the degree
of environmental variation is one of the main factors.

3. DESIGN OF ATPC
Guided by the observations obtained from empirical experiments, in this section, we
propose our Adaptive Transmission Power Control (ATPC) design. The objectives of
ATPC are: 1) to make every node in a sensor network find the minimum transmission
power levels that can provide good link qualities for its neighboring nodes, to address
the spatial impact, and 2) to dynamically change the pairwise transmission power level

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: 0.



0:10 S. Lin et al.

Fig. 6. Overview of the Pairwise ATPC Design

over time, to address the temporal impact. Through ATPC, we can maintain good link
qualities between pairs of nodes with the in-situ transmission power control.

Figure 6 shows the main idea of ATPC: a neighbor table is maintained at each node
and a feedback closed loop for transmission power control runs between each pair of
nodes. The neighbor table contains the proper transmission power levels that this node
should use for its neighboring nodes and the parameters for the linear predictive mod-
els of transmission power control. The proper transmission power level is defined here
as the minimum transmission power level that supports a good link quality between
a pair of nodes. The linear transmission power predictive model is used to describe
the in-situ relation between the transmission powers and link qualities. Our empirical
data indicate that this in-situ relation is not strictly linear. Therefore, we cannot use
this model to calculate the transmission power directly. Our solution is to apply feed-
back control theory to form a closed loop to gradually adjust the transmission power.
It is known that feedback control allows a linear model to converge within the region
when a non-linear system can be approximated by a linear model, so we can safely
design a small-signal linear control for our system, even if our linear model is just a
rough approximation of reality.

3.1. Predictive Model for Transmission Power Control
The design objective is to establish models that reflect the correlation of the transmis-
sion power and the link quality between the senders and the receivers. Based on our
empirical study and analysis in Section 2, we formulate a predictive model to charac-
terize the relation between transmission power and link quality. Since no single model
can capture precisely the per-network, or even per-node behavior, we shall establish
pairwise models, reflecting the in-situ impact on individual links. Based on these mod-
els, we can predict the proper transmission power level that leads to the link quality
threshold.

The idea of this predictive model is to use a function to approximate the distribution
of RSSIs at different transmission power levels, and to adapt to environmental changes
by modifying the function over time. This function is constructed from sample pairs of
the transmission power levels and RSSIs via a curve-fitting approach. To obtain these
samples, every node broadcasts a group of beacons at different transmission power
levels, and its neighbors record the RSSI of each beacon that they can hear and return
those values.
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We formulate this predictive model in the following way. Technically, this model uses
a vector TP and a matrix R. TP = {tp1, tp2, ..., tpN}. TP is the vector containing dif-
ferent transmission power levels that this mote uses to send out beacons. |TP | = N . N ,
the number of different transmission power levels, is subject to the accuracy require-
ment for applications. Ideally the more sampling data we have, the more accurate this
model could be. Matrix R consists of a set of RSSI vectors Ri, one for each neighbor
(R = {R1, R2, ..., Rn}T ). Ri =

{
r1i , r

2
i , ..., r

N
i

}
is the RSSI vector for the neighbor i,

in which rji is a RSSI value measured at node i corresponding to the beacon sent by
transmission power level tpj . We use a linear function (Equation 1) to characterize the
relationship between transmission power and RSSI on a pairwise basis.

ri(tpj) = ai · tpj + bi (1)
We adopt a least square approximation, which requires little computation overhead

and can be easily applied in sensor devices. Based on the vectors of samples, the coeffi-
cients ai and bi of Equation 1 are determined through this least square approximation
method by minimizing S2. ∑(

ri(tpj)− rji

)2
= S2 (2)

Accordingly, the estimated value of ai and bi can be obtained in Equation 3:[
âi

b̂i

]
=

1

N
∑N

j=1 (tpj)
2 − (

∑N
j=1 tpj)

2
×
[∑N

j=1 r
j
i

∑N
j=1 (tpj)

2 −
∑N

j=1 tpj
∑N

j=1 tpj · r
j
i

N
∑N

j=1 tpj · r
j
i−

∑N
j=1 tpj

∑N
j=1 r

j
i

]
,(3)

where i is the neighboring node’s ID and j is the number of transmissions attempted.
Using âi and b̂i together with a link quality threshold RSSILQ identified based on
experiments in Section 2.3, we can calculate the desired transmission power

tpj =

[
RSSILQ − b̂i

âi

]
∈ TP,

where [·] means the function that round the inside value to the nearest integer in the
set TP .

Note that Equation 3 only establishes an initial model. We need to update this model
continuously while the environment changes over time in a running system. Basically,
the values of ai and bi are functions of time. These functions allow us to use the latest
samples to adjust our curve model dynamically. Based on our experimental results in
Section 2, ai, the slope of a curve, changes slightly in our 3-day experiment, while bi
changes noticeably over time. We assume the real model of the linear function for the
relationship between transmission power and RSSI on a pairwise basis at time t is:

ri(tp(t)) = ai · tp(t) + bi(t), (4)
Therefore, once the predictive model of ATPC is built, ai does not change any longer.

bi(t) is calculated by the latest transmission power and RSSI pairs from the following
feedback-based equation.

∆b̂i(t) = b̂i(t)− b̂i(t+ 1)

=

K∑
k=1

[RSSILQ − ri,k(t− 1)]

K
= RSSILQ − ri(t− 1),

(5)

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: 0.



0:12 S. Lin et al.

where ri(t− 1) is the average value of K readings denoted by

ri(t− 1) =
1

K

K∑
k=1

ri,k(t− 1). (6)

Here ri,k(t − 1), k = 1, . . . ,K is one reading of RSSI value of the neighboring node i
during time period t−1, and K is the number of feedback responses received from this
neighboring node at time period t − 1. Thus we deduct the error (5) from the previous
estimation, and get a new estimation of bi(t) as

b̂i(t) = b̂i(t− 1)−∆b̂i(t). (7)

The transmission power at time t is then adjusted given the adapted b̂i(t) as

tp(t) =

[
RSSILQ − b̂i(t)

ai

]
. (8)

Although the link quality varies significantly over a long period of time, it changes
gradually and continuously at a slow rate. Our experiments indicate that one packet
per hour between a pair is enough to maintain the freshness of the model in a natural
environment. If the network has a reasonable amount of traffic, such as several packets
per hour, nodes can use these packets to measure link quality change and piggyback
RSSI readings. In this way, these models are refreshed with little overhead.

3.2. Analysis of ATPC Model

We use the average feedback value of RSSI to re-estimate b̂i(t), and adjust the trans-
mission power tp(t) according to the desired RSSI threshold RSSILQ at every time step
t. In this subsection we analyze conditions that the RSSI value will fall into the desired
range when we apply the tp(t) value computed by the ATPC model in this paper.

We make the following assumptions in this subsection:
(1). We have the exact value of RSSILQ (middle of the range of the upper bound

RSSIH and lower bound RSSIL of RSSI value) set for ATPC model.

Fig. 7. Feedback Closed Loop Overview for ATPC
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(2). The measurement of ri,k(t − 1), k = 1, · · · ,K is accurate, i.e., the RSSI value
calculated from the real model equals to the measured average value. It means

ri(t− 1) = ri(tp(t− 1)),

where ri(tp(t−1)) represents the true RSSI value of after we sent tp(t−1) at time t−1.

3.2.1. When the estimated âi is equal to ai. When the estimated slope âi of model (4)
equals to the true value of ai (from the experiment figures we know that ai > 0), i.e.,
âi = ai > 0, the estimated model of equation (4) only has a time-varying parameter
b̂i(t) to be adjusted

r̂i(tp(t)) = ai · tp(t) + b̂i(t). (9)

Here r̂i(tp(t)) is the RSSI we calculate based on the newly estimated b̂i(t) value at time
t, given measurements of ri(t− 1).

Assume we have received ri(tp(t)) = ri(t), and ri(tp(t)) is not in the desired range.
To study the difference between ri(tp(t+ 1)) and ri(tp(t)), we plug equation (8) of tp(t)
into the model described in (4) and get

ri(tp(t+ 1))− ri(tp(t))

=ai · tp(t+ 1) + bi(t+ 1)− (ai · tp(t) + bi(t))

=ai ·

([
RSSILQ − b̂i(t+ 1)

ai

]
−

[
RSSILQ − b̂i(t)

ai

])
+ bi(t+ 1)− bi(t),

Here tp(t) is an integer, such that:

RSSILQ − b̂i(t)

ai
− 1 ≤ tp(t) =

[
RSSILQ − b̂i(t)

ai

]
≤ RSSILQ − b̂i(t)

ai
+ 1.

Thus ri(tp(t+ 1))− ri(tp(t)) satisfies

ai
b̂i(t)− b̂i(t+ 1)

ai
+ bi(t+ 1)− bi(t)− 2ai

≤ri(tp(t+ 1))− ri(tp(t))

≤ai
b̂i(t)− b̂i(t+ 1)

ai
+ bi(t+ 1)− bi(t) + 2ai.

By equation (5), the above inequality is equivalent to:

RSSILQ − ri(t) + bi(t+ 1)− bi(t)− 2ai
≤ri(tp(t+ 1))− ri(tp(t))

≤RSSILQ − ri(t) + bi(t+ 1)− bi(t) + 2ai.

To get a more accurate range of ri(tp(t + 1)) − ri(tp(t)), we define ∆It to mea-
sure how much the integer approximation of tp(t) differs from the original value of
RSSILQ−b̂i(t+1)

ai
as

∆It =

[
RSSILQ − b̂i(t)

ai

]
− RSSILQ − b̂i(t)

ai
,

∆It+1 =

[
RSSILQ − b̂i(t+ 1)

ai

]
− RSSILQ − b̂i(t+ 1)

ai
,

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: 0.



0:14 S. Lin et al.

where |∆It| < 1, t = 1, 2, . . . , then

ri(tp(t+ 1))− ri(tp(t)) = RSSILQ − ri(t) + ai(∆It+1 −∆It) + bi(t+ 1)− bi(t).

The value of ri(tp(t+ 1)) satisfies:

ri(tp(t+ 1)) = RSSILQ + ai(∆It+1 −∆It) + bi(t+ 1)− bi(t). (10)

We then derive conditions that ri(tp(t + 1)) falls in different ranges based on equa-
tion (10).

The necessary and sufficient condition for RSSIL ≤ ri(tp(t+ 1)) ≤ RSSIH is

RSSIL −RSSILQ − ai(∆It+1 −∆It) ≤ bi(t+ 1)− bi(t)

≤ RSSIH −RSSILQ − ai(∆It+1 −∆It).
(11)

The necessary and sufficient condition for ri(tp(t+ 1)) < RSSIL is
bi(t+ 1)− bi(t) < RSSIL −RSSILQ − ai(∆It+1 −∆It).

The necessary and sufficient condition for ri(tp(t+ 1)) > RSSIH is
bi(t+ 1)− bi(t) > RSSIH −RSSILQ − ai(∆It+1 −∆It).

A special case when ri(tp(t+ 1)) will always fall in the desired range:
Since |∆It| < 1, |∆It+1| < 1, ∆It+1 −∆It is bounded in

|∆It+1 −∆It| < 2.

When RSSIH −RSSIL > 4ai(ai > 0), the following inequalities always hold

RSSIL −RSSILQ − ai(∆It+1 −∆It) < 0,

RSSIH −RSSILQ − ai(∆It+1 −∆It) > 0.

When bi(t) = bi(t + 1) is satisfied, i.e., the true parameter bi does not change with
time, we always have ri(tp(t+ 1)) ∈ [RSSIL, RSSIH ], because the following inequality
is true:

RSSIL −RSSILQ − ai(∆It+1 −∆It) ≤ 0 ≤ RSSIH −RSSILQ − ai(∆It+1 −∆It).

This is a special case when assumptions (1) and (2) hold, bi(t) stays static during time
t and t + 1, we directly get a desired RSSI value by the ATPC method introduced in
this paper.

Conclusion: We summarize the above process to reach the following conclusion:
given the function of relation between transmission power and RSSI at time t, t+ 1 as
equation (4), and the condition that the estimation of the slope is accurate, i.e., âi = ai,
the RSSI value will be in the desired range (ri(t+ 1) ∈ [RSSIL, RSSIH ]), if and only if
the difference between bi(t), bi(t+ 1) satisfies (11).

3.2.2. When the estimation of ai has an error ∆ai. In the previous model analysis section,
we assume that the real ai does not change with time, i.e., a = ai(1) = ai(2) = ai(3) =
. . ., and we have an accurate estimation of ai, i.e., âi = ai > 0. In practice, this may
not be the case, and it is possible that the real ai(t) slightly changes with time t, or
the estimated âi we use in (9) is inaccurate. In either case, the estimation error is
bounded, and we show the complete conditions for ri(tp(t + 1)) to be regulated inside
[RSSIL, RSSIH ], considering errors of âi and value changes of bi(t).

We assume the real ai(t) in (4) is the estimated âi in (9) plus some bounded error.
Define the estimation error ∆ai(t) as:

ai(t) = âi +∆ai(t), ∆ai(t) ∈ R, |∆ai(t)| < ϵi, t = 1, 2, . . . . (12)
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In the following discussion, we show how ∆ai(t) will affect the results when we adjust
the transmission power according to an inaccurate âi.

Considering inaccurate âi, we define the transmission power according to measured
average ri(t), estimated b̂i(t), âi as:

tp(t) =

[
RSSILQ − b̂i(t)

âi

]
. (13)

Assume the integer approximation has a tail measured by:

∆I ′t =

[
RSSILQ − b̂i(t)

âi

]
− RSSILQ − b̂i(t)

âi
. (14)

To show the conditions for r(tp(t+1)) ∈ [RSSIL, RSSIH ] when âi ̸= ai(t) or âi ̸= ai(t+1)
or ai(t) ̸= ai(t+1), we derive the equation of r(tp(t+1)) similar as the analysis process
for time-invariant âi = ai.

ri(tp(t+ 1))− ri(tp(t))

=ai(t+ 1) · tp(t+ 1) + bi(t+ 1)− (ai(t) · tp(t) + bi(t))

=ai(t+ 1)

(
RSSILQ − b̂i(t+ 1)

âi
+∆I ′t+1

)
− ai(t)

(
RSSILQ − b̂i(t)

âi
+∆I ′t

)
+ bi(t+ 1)− bi(t)

=(2RSSILQ − ri(t)− b̂i(t))

(
1 +

∆ai(t+ 1)

âi

)
− (RSSILQ − b̂i(t))

(
1 +

∆ai(t)

âi

)
+ (âi +∆ai(t+ 1))∆I ′t+1 − (âi +∆ai(t))∆I ′t + bi(t+ 1)− bi(t)

=RSSILQ

(
1 +

2∆ai(t+ 1)−∆ai(t)

âi

)
− (âi +∆ai(t))∆I ′t

+ b̂i(t)
∆ai(t)−∆ai(t+ 1)

âi
+ (âi +∆ai(t+ 1))∆I ′t+1

− ri(t)

(
1 +

∆ai(t+ 1)

âi

)
+ bi(t+ 1)− bi(t).

Assume the measured RSSI is true value (or the error can be neglected), i.e., ri(t) =
ri(tp(t)), then

ri(tp(t+ 1))

=RSSILQ

(
1 +

2∆ai(t+ 1)−∆ai(t)

âi

)
− ri(t)

∆ai(t+ 1)

âi

+ b̂i(t)
∆ai(t)−∆ai(t+ 1)

âi
+ (âi +∆ai(t+ 1))∆I ′t+1 − (âi +∆ai(t))∆I ′t + bi(t+ 1)− bi(t)

Thus, conditions for ri(tp(t+ 1)) to fall in different intervals are described as follow-
ing.
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Condition for RSSIL ≤ ri(tp(t+ 1)) ≤ RSSIH

RSSIL −RSSILQ

(
1 +

2∆ai(t+ 1)−∆ai(t)

âi

)
+ ri(t)

∆ai(t+ 1)

âi(j)

+ b̂i(t)
∆ai(t)−∆ai(t+ 1)

âi
+ (âi +∆ai(t+ 1))∆I ′t+1 − (âi +∆ai(t))∆I ′t

≤ bi(j + 1)− bi(j)

≤ RSSIH −RSSILQ

(
1 +

2∆ai(t+ 1)−∆ai(t)

âi

)
+ ri(t)

∆ai(t+ 1)

âi(j)

+ b̂i(t)
∆ai(t)−∆ai(t+ 1)

âi
+ (âi +∆ai(t+ 1))∆I ′t+1 − (âi +∆ai(t))∆I ′t.

(15)

Compare the above inequality with (11), there are some tale items related to
∆ai(t),∆ai(t + 1). When ∆ai(t) ≈ 0, and ∆ai(t + 1) ≈ 0, or the estimation error of
âi is negligible, inequality (15) reduces to the form of (11).

Similarly, conditions for ri(tp(t+ 1)) outside the range [RSSIL, RSSIH ] are:
Condition for ri(tp(t+ 1)) < RSSIL:

bi(t+ 1)− bi(t)

< RSSIL −RSSILQ

(
1 +

2∆ai(t+ 1)−∆ai(t)

âi

)
+ ri(t)

∆ai(t+ 1)

âi(j)

+ b̂i(t)
∆ai(t)−∆ai(t+ 1)

âi
+ (âi +∆ai(t+ 1))∆I ′t+1 − (âi +∆ai(t))∆I ′t

Condition for ri(tp(t+ 1)) > RSSIH :

bi(t+ 1)− bi(t)

> RSSIH −RSSILQ

(
1 +

2∆ai(t+ 1)−∆ai(t)

âi

)
+ ri(t)

∆ai(t+ 1)

âi(j)

+ b̂i(t)
∆ai(t)−∆ai(t+ 1)

âi
+ (âi +∆ai(t+ 1))∆I ′t+1 − (âi +∆ai(t))∆I ′t

Conclusion: Considering both the estimation error and value change of parameters
ai(t), bi(t) in function (9), we show similar inequality form of conditions for ri(tp(t +
1)) to be in the desired range. When the estimation error of ai(t) is insignificant, the
conditions reduce to the same with those in Section 3.2.1.

The conditions for ri(tp(t+ 1)) to fall in [RSSIL, RSSH ] are related to the difference
between the true values of bi(t + 1) and bi(t). The adjustment process requires that
bi(t+ 1)− bi(t) is in a specific range to terminate the transmission power adjustment.
When the RSSI feedback value keeps oscillating outside the desired range after many
steps, one possible reason is that the difference between bi(t + 1) and bi(t) is outside
the corresponding range. If we increase the sampling rate under this case, the range
width of bi(t+1)− bi(t) is expected to reduce, since the true parameters of model (4) is
expected to vary smaller in a shorter time. Hence, we have a better chance to regulate
the signal strength inside the desired range in fewer following steps by increasing the
sampling rate.

3.3. Adaptive Design
3.3.1. Adaptive Sampling. The adaptive transmission power controller can use both

data and control packets to obtain link quality samples, RSSI feedbacks of these
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packets from neighboring nodes are sent back to the controller to adjust transmis-
sion power level and update the ATPC control model during runtime. Regardless of
feedback packet loss, the ATPC controller obtains a sample on each link quality when
the sender node transmits a packet and the receiver node receives it.

The traditional control designs [Jung and Vaidya 2002; He et al. 2003] typically
requires a fixed sampling rate so that the control loop can capture the changes of
measured signal and take adjustments. This sampling rate poses a tradeoff on control
performance and cost. A high sampling rate provides prompt information on the link
quality, but it also uses more bandwidth and energy to transmit these packets. A low
sampling rate reduces the control cost in terms of bandwidth and energy, but can cause
the power control to converge slowly, even causing temporary packet loss. A good sam-
pling rate is very important for control design to achieve desired stability and control
accuracy.

We propose an adaptive sampling approach to find a good tradeoff between control
performance and cost. The adaptive sampling design achieves both fast reactions to
link dynamics and low energy cost. The basic idea is to change the sampling rate
according to the dynamics of link quality. When the link quality varies quickly and
data packets go along this link, nodes need to sample link quality at a high rate for
agile reaction to link quality changes. On the other hand, nodes sample link quality at
a low rate when link quality does not change significantly or few data packets go along
this link to save energy.

The adaptive transmission power control changes the sampling rate at the following
four events:

— If either one of the following two conditions happen, a node decreases the sampling
rate by a factor of p: a) the received signal strength of the incoming packet stays
within the specified range of good link quality, and b) no data packets are transmitted
along this link in the last sampling cycle.

— A node increases the sampling rate by a factor of q, if received signal strength of the
incoming packet changes significantly outside the specified range of good link quality
by a threshold s.

— A node transmits an on-demand sampling packet if it receives a packet requesting
for sampling from a neighbor node. A neighbor requests for sampling if it does not
hear from the sender for a long period l, to maintain link connectivity in case data
packets and regular sampling packets on this link get lost.

— Data packets can serve as the sampling packets and feedback packets. If data packets
are transmitted in a sampling period, nodes change the sampling rate in the following
two conditions: a) if the RSSI samples stay with the specified range of good link
quality, only the last data packet in this period serve as the sampling packet, and
b) if some RSSI samples do not stay within the specified range of good link quality,
these packets serve as the sampling packets.

In a network with stable link qualities, both the second and third conditions rarely
happen. Therefore, the sampling rate decreases exponentially, up to a constant thresh-
old Rhigh. When the link quality varies significantly, affected nodes reset their sam-
pling rate to Rlow. So the power control can converge fast without losing packets.

3.3.2. Adaptive Link Quality Threshold. The set point value in the transmission power
control is critical for our power control design to achieve reliable link quality. This set
point represents the minimum receiving signal strength of packets that allows them
to be received reliably. The underlying model of this design is the SNR model [Tse and
Viswanath 2005; Sarkar et al. 2007]. According to the SNR model, if the signal power
(represented by RSSI) to background noise power ratio is larger than a fixed value,
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the noise can not corrupt the signal. Therefore, if the background noise level does not
change, the RSSI reading can determine if the packets can be received successfully.

Existing topology control works usually assume a fixed link quality threshold in all
environments. However, this simplified assumption does not hold in real systems. The
background noise level may change in different locations and over time. Adjusting the
RSSI threshold based on the background noise level is critical for our power control
design. If we use a high RSSI threshold as the set point, the link would be reliable
but the energy saving is limited. In order to save energy, we should use a low RSSI
threshold as the set point, but it can cause packet loss where background noise level
is high.

To find an accurate RSSI threshold, we have conducted extensive experiments in
different locations and environments. Our experimental results show that the RSSI
threshold has different values in different environments as shown in Section 2.3.1: the
95% PRR threshold of RSSI is around -90 dBm on the grass field (Figure 4(a)), -91
dBm on the parking lot (Figure 4 (b)), and -89 dBm in the corridor (Figure 4 (c)). These
empirical values serve as the basis for our selection of the set point in real deployment.

3.4. Reliable Unicast, Multicast, and Broadcast
In wireless sensor networks, unicast, multicast, and broadcast are three main commu-
nication services to transfer information from one node to other nodes. By integrating
ATPC with these main communication paradigms at MAC layer, we achieve reliable
unicast, multicast, and broadcast. For each packet transmission, the power control in-
tegration allows us to use the transmission power (if exist) that can achieve reliable
packet delivery. The existing MAC layer services need to be modified slightly. Here we
propose our designs for power controlled unicast, multicast, and broadcast.

Unicast at MAC layer typically transmit a packet with default transmission power.
With ATPC, at the MAC layer every unicast procedure needs to find the corresponding
transmission power level in the ATPC neighbor table given the neighbor id in the
packet, and then set the transmission power level before the original procedure. The
power level provided by ATPC table also indicates whether this neighbor is within the
node’s reliable communication range. For example, if the transmission power level is
less than the maximum, packets transmitted to this neighbor will be reliably received.

Multicast and Broadcast with power control are also important, since many routing
protocols, such as Georgraphic Forwarding (GF) algorithm, rely on reliable links to
forward packets to next hop neighbors. ATPC provides the reliable link list that can be
natrually used by these routing protocols. Therefore, we design MAC layer multicast
and broadcast with ATPC.

Since broadcast is a specical case of multicast, here we use multicast to illustrate
our design. When a multicast transmission is processed to send a packet to a subset
of neighors, it needs to find the maximal transmission power level of the transmission
power levels for these neighbors in the ATPC table, and then set this power level
for the multicast transmission. Every neighor in this multicast subset who receive
this packet, will transmit a feedback to the sender with its RSSI as feedback. The
power controller at the sender makes an model update only on the entries where the
transmission power levels are obtained.

In the following three conditions, the reliable neighbor set changes: dramatic link
quality changes, a new node appears, and an original node disappears. ATPC auto-
matically detects link quality variations over time and update the reliable neighbor
set, as well as nodes joining/leaving the network, since it has periodic beacons with
maximum power level, which keeps all the topology information.
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For other routing algorithm designs, such as opportunistic routing, ATPC is not suit-
able and nodes should use the maximum transmission power for each packet transmis-
sion.

3.5. Implementation of ATPC
The implementation of ATPC on sensor devices is presented in this subsection. We dis-
cuss mainly four aspects: 1) the two phase design and the feedback closed loop for pair-
wise transmission power control, 2) the parameters that affect system performance, 3)
the techniques that optimize system performance and reduce the cost, and 4) the other
issues.

ATPC has two phases, the initialization phase and the runtime tuning phase.
In the initialization phase, a mote computes a predictive model and chooses a proper

transmission power level based on that model for each neighbor. Since wireless com-
munication is broadcast in nature, all the neighbors can receive beacons and measure
link qualities in parallel. Based on this property, every node broadcasts beacons with
different transmission power levels in the initialization phase, and its neighbors mea-
sure RSSI/LQI values corresponding to these beacons and send these values back by a
notification packet.

In the runtime tuning phase, a lightweight feedback mechanism is adopted to mon-
itor the link quality change and tune the transmission power online. Figure 7 is an
overview picture of the feedback mechanism in ATPC. To simplify the description, we
show a pair of nodes. Each node has an ATPC module for transmission power control.
This module adopts a predictive model described in the previous subsection for each
neighbor. It also maintains a list of proper transmission power levels for neighbors of
this mote. When node A has a packet to send to its neighbor B, it first adjusts the
transmission power to the level indicated by its neighbor table in the ATPC module,
and then transmits the packet. When receiving this packet, the link quality moni-
tor module at its neighbor B takes a measurement of the link quality. Based on the
difference between the desired link quality and actual measurements, the link qual-
ity monitor module decides whether a notification packet is necessary. A notification
packet is necessary when 1) the link quality falls below the desired level or 2) the link
quality is good but the current signal energy is so high that it wastes the transmission
energy. The notification packet contains the measured link quality difference. When
node A receives a notification from its neighbor B, the ATPC module in node A uses
the link quality difference as the input to the predictive model and calculates a new
transmission power level for its neighbor B.

If achieving good link quality requires using the maximum transmission power level,
ATPC adjusts the transmission power to the maximum level. If using the maximum
transmission power level could not achieve good link quality, this link is marked so that
routing protocols, like [Singh et al. 1998; Lin et al. 2009; Subbarao 1999; Gomez et al.
2003; Ganesan et al. 2001; Chipara et al. 2006; Lin et al. 2008], can choose another
route based on the neighbor table provided by ATPC. If all the routes cannot provide
good link quality, the mote can do best-effort transmission to a neighbor with relative
good link quality by using the maximum transmission power level.

There is a tradeoff between accuracy and cost when applying ATPC. The practical
values of these parameters are obtained from analysis and empirical results. These
important parameters include the link quality thresholds, the sampling rate of trans-
mission power control, the number of sample packets in the initialization phase, and
the small-signal adjustment of transmission power control, which is proportional to the
link quality error. Choices of parameters are essential for obtaining good performance.

The link quality monitor can have any of the following three criteria to estimate
link quality changes. The first one is the link quality reflected by the RSSI value, the
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second one is the LQI value if available, and the last one is the packet reception ratio
as detected by sequence number monitoring. Our design is compatible with all these
methods. Without loss of generality, we use both RSSI and PRR in our experiments.
We note that the theory described in section 3.1 is good guidance in ideal conditions.

To monitor the link quality by referring to RSSI values, we set two link quality
thresholds. LQupper is an upper threshold and LQlower is a lower threshold. As long as
the RSSI value of the received packet lies within this range, the system is in steady
state. When a link is in steady state, the receiver does not need to send a notifica-
tion packet to the sender, and the sender does not adjust the transmission power. The
range of [LQlower, LQupper] is critical to energy savings and tuning accuracy. If the
range of [LQlower, LQupper] is too small, radio signal fading may result in the oscilla-
tion of transmission power. If the range of [LQlower, LQupper] is too big, the transmis-
sion power control result may not be accurate enough, and the optimal power control
will not be achieved. In our implementation, the value of LQlower is chosen to guar-
antee that the link quality does not drop below the tolerance level. With respect to
LQupper in our design, its value is chosen to trade off the energy cost paid to transmit
notifications and the energy saved to transmit data packets. This is a simple calcula-
tion for choosing LQupper which compares the energy consumed by sending a control
packet with the energy saved for n data packets after tuning the transmission power.
In our experiment, we use n = 2 for simplicity. Thus, energy savings are achieved when
at least two data packets are transmitted using the tuned transmission power level,
compared to the energy consumed by transmitting a notification packet.

A good feedback sampling rate is essential to maintain the link quality at a desired
level while minimizing the control overhead. Two main factors influence the feedback
sampling rate: link quality dynamics and network traffic. On one hand, the higher the
link quality dynamics, the higher the sampling rate needed. Based on our empirical
results in Figure 3, the maximum link quality variation per 8-hour is 8 dBm and the
maximum link quality variation per hour is 3 dBm. In order to keep link quality error
under 3 dBm, a sampling rate of 1 packet per hour is necessary. On the other hand,
the regular network traffic can be used for ATPC sampling purposes and considered
as ATPC’s input. When the network traffic is higher than this sampling rate, notifica-
tion packets can be sent on demand. There is only a low number of notification packets
needed and the control overhead is minimized. Our running system evaluation demon-
strates that this design is very efficient. On average, 8 on-demand notification packets
are sent per link per day to deal with the runtime link quality dynamics.

In applications with periodic multi-hop traffic, an overhearing approach can save the
overhead of notification packets. Along the data transfer route, when a node is forward-
ing packets to its next hop, it can incorporate an extra byte to record the RSSI value of
the previous hop transmission in the packet, and then the sender of the previous hop
can overhear the corresponding RSSI, thus eliminating explicit notifications.

Another optimization technique is to use ATPC only on critical paths with heavy
traffic, so ATPC can extend the system lifetime while supporting a high quality end-
to-end communication with little control overhead. For those links with a low traffic
load, directly using a conservative transmission power level is a good tradeoff between
communication quality and energy savings. This is because nodes do not need to peri-
odically generate control packets to monitor link quality.

Based on our empirical results, the RSSI readings can be affected by stochastic en-
vironmental noise. For example, the RSSI with a certain beacon packet can be unex-
pectedly high or low, which is inconsistent with the monotonic relationship between
transmission power and RSSI. Filtering such noise input can enhance the accuracy
of ATPC’s modeling. On the other hand, if some RSSI with a certain transmission
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power level falls in our desired link quality range, using the corresponding transmis-
sion power level directly also enhances ATPC’s performance.

The code for ATPC mainly includes functions for linear approximation. The code size
is 14122 bytes in ROM. The data structures in ATPC mainly include a neighbor table,
a vector TP and a matrix R as described in Section 3.1. For a node with 20 neighbors,
the data size is 2167 bytes in RAM.

4. EXPERIMENTAL EVALUATION
ATPC is evaluated in outdoor environments. We first evaluate ATPC’s predictive model
described in Section 3.1 with a short term experiment. We then describe a 72-hour
experiment to compare ATPC against network-level uniform transmission power so-
lutions and a node-level non-uniform transmission power solution. According to our
empirical results, ATPC’s advantages lie in three core aspects:

(1) ATPC maintains high communication quality over time in changing weather condi-
tions. It has significantly better link qualities than using static transmission power
in a long term experiment, which confirms our observations in Section 2.2. More-
over, it maintains equivalent link qualities as using the maximum transmission
power solution.

(2) ATPC achieves significant energy savings compared to other network-level trans-
mission power solutions. ATPC only consumes 53.6% of the transmission energy of
the maximum transmission power solution, and 78.8% of the transmission energy
of the network-level transmission power solution.

(3) ATPC accurately predicts the proper transmission power level and adjusts the
transmission power level in time to meet environmental changes, adapting to spa-
tial and temporal factors.

4.1. Initialization Phase
In the initialization phase of ATPC, each mote broadcasts a group of beacons. Its neigh-
bors record the RSSI and the corresponding transmission power level of each beacon
that they can hear, and then send them back to the beaconing node. Using these pairs
of values as input for the ATPC module, the beaconing node builds the predictive mod-
els and computes the transmission power level for each of its neighbors.
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Fig. 9. Topology
Fig. 10. Experimental Site

Date March 19 March 20 March 21 March 22
High 56º F 54º F 41º F 49º F
Low 27ºF 31ºF 31º F 30º F
Precip. 0 inch 0 inch 0.05 inch 0 inch
Condition Fair Mostly Fair Cloudy, Light

Rain during
10am~12am

Mostly Fair

Fig. 11. Weather Conditions over 72 Hours

To evaluate the accuracy of the initialization phase, an experiment is conducted in
a parking lot with 8 MICAz motes; it is repeated for 5 times. These motes are put in
a line 3 feet apart from adjacent nodes. Each mote runs ATPC’s initialization phase
in a different time slot, sending out 8 beacons at a fixed rate using different transmis-
sion power levels. These transmission power levels are distributed uniformly in the
transmission power range supported by the CC2420 radio chip. After the initialization
phase of ATPC, each mote sends a group of 100 packets to its neighbors using pre-
dicted transmission power levels. Its neighbors record the average RSSI and PRR. The
experimental results are shown in Figure 8 (a) and Figure 8 (b). Every point in Fig-
ure 8 (a) demonstrates a pair of the predicted transmission power level and the PRR
when using that power level. In all these experiments, the average PRR is 99.0%. From
Figure 8 (a), we can see that all the RSSI readings are above or equal to -91 dBm. The
standard deviation of the RSSI is 2. According to Section 2.3.1, RSSIs that are above
-91 dBm means good link quality in a parking lot. These results prove that the predic-
tive model of ATPC works well. Moreover, in our long term experiments, the predicted
transmission power levels of all the nodes that were obtained in ATPC’s initialization
phase are in the desired range.

4.2. Runtime Performance
To evaluate the runtime performance, we compare ATPC against existing transmis-
sion power control algorithms: network-level uniform solutions and a node-level non-
uniform solution (Non-uniform). Two kinds of network-level transmission power lev-
els are used: the max transmission power level (Max) and the minimum transmission
power level over nodes in the network that allows them to reach their neighbors (Uni-
form). A 72-hour continuous experiment is conducted to evaluate the energy savings
and communication quality of ATPC over time. The empirical data shows that ATPC
achieves the best overall performance in terms of communication quality and energy
consumption. The 3-hop end-to-end PRR of ATPC is constantly above 98% over three
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Fig. 12. E2E PRR

days, and ATPC greatly saves transmission power consumption compared to network-
level uniform transmission power solutions.

4.2.1. Experiment Setup. A 72-hour experiment is conducted on a grass field with 43
MICAz motes. These motes are deployed according to a randomly generated topology.
They form a spanning tree as shown in Figure 9. The root of the spanning tree is at
the center of Figure 9. The deployed area is a 15-by-15 meter square. Figure 10 is
a picture of the node deployment for one of our experiments on a grass field. All the
motes are placed in tupperware containers to protect against the weather. According to
our experiments, these plastic boxes (non-conducting material) do not attenuate radio
waves significantly.

There are 24 total leaf nodes in this spanning tree. These leaf nodes report data to
the base node hourly. Each hour is evenly divided into 24 time slots and different leaf
nodes are assigned to different time slots. Transmissions of different motes are sched-
uled at different times to avoid collision. Each leaf node reports 32 packets to the base
node at a transmission rate of 15 packets per minute in its time slot. These packets are
divided into 4 groups, corresponding to different transmission power control solutions:
ATPC, Max, Uniform, and Non-Uniform. These four algorithms are evaluated in the
same environment. The predicted transmission power level obtained in ATPC’s initial-
ization phase is used for Non-Uniform, which satisfies the assumption that it is the
minimum transmission power for each node to reach its neighbors. We use the maxi-
mum predicted transmission power level of all nodes obtained in ATPC’s initialization
phase for Uniform. This transmission power level is the minimum transmission power
level over all nodes to reach their neighbors. Max, Uniform, and Non-Uniform all use
static transmission power. The statistical data about number of packets sent and re-
ceived and the transmission power level used for each solution are recorded at each
mote. In this experiment, for simplicity, each node considers its parent in the spanning
tree as its neighbor. This experiment is deployed on 6 PM on March 19, and finished
on 7 PM on March 22. There was a shower that lasted for 2 hours on the morning of
March 21. Figure 11 shows the weather conditions of these days.
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4.2.2. Data Delivery Ratio. Figure 12 shows the cumulative end-to-end PRR over time.
From this figure, we can see that Max achieves 100% end-to-end PRR all the time. As
using the maximum transmission power makes the RSSI values at the receiver the
highest of all solutions, it is robust to random environmental changes and noise.

ATPC and Uniform both achieve around 98% cumulative end-to-end PRR. ATPC has
a little better performance than Uniform for 83% of the experimental time. However,
the reasons for packet loss of these two solutions are quite different. For ATPC, half
of these end-to-end links have 100% PRR. The other 12 links from leaves to the base
node suffer from random packet loss from time to time. For Uniform, the packet loss
mainly happens at 2 specific links. These links have the same predicted transmission
power level as the uniform transmission power level. We pick up one of these two links
and plot its PRRs over time in Figure 13. From Figure 13, we compare the PRRs of this
link when it works in Uniform and ATPC. This link quality maintained by this static
transmission power level is much more vulnerable to environmental changes. After
the first 12 hours, the PRR of the link with static transmission power in Uniform drops
dramatically, and it is above 95% PRR only 25% of the time. On the other hand, the
same link with ATPC constantly achieves above 99% PRR while exposed in the same
environment and using the same radio hardware. These two weak links are between
leaf nodes and first-level parent nodes, so the packet loss they caused does not have
a big impact on the average end-to-end PRR. However, if such a static transmission
power level is used at links with more traffic, such as a link between a 2-level parent
and the base, the end-to-end communication quality would drop severely.

Non-Uniform solution has weak performance over time. All the links in this solution
are vulnerable to link quality variation. However, in the short term and in relatively
static weather conditions, Non-Uniform can achieve more than 99% end-to-end PRR,
as shown in Figure 12. After the first 12 hours, the communication quality of Non-
Uniform becomes poor and unstable. We also notice that the variation of its trend
is much bigger than other solutions. It means the end-to-end PRR with these static
transmission power levels at certain time periods can be significantly better or worse
than at other time periods of the day. This observation confirms our judgment that the
dynamics of link quality may make communication performance unstable and unpre-
dictable when assuming static transmission power.
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Fig. 14. Transmission Power Consumption Over Time

Considering the quality of wireless communication, ATPC and maximum transmis-
sion power solutions are proper to apply in real systems.

4.2.3. Power Consumption. The total energy consumption of the network is measured
in the radio’s transmission mode when different schemes are used. We calculate the
total energy spent in the transmit state of the system by the following formula,

E =
∑n

i=1

∑max

j=min
(NumDij × TEj × LD

+NumCi ×maxTE × LC),
(16)

where i is the node ID and j is the transmission power level. NumDij is the number
of data packets sent at node i with transmission power level j. TEj is the transmis-
sion energy consumed per bit from [ChipconCC2420 2005]. LD is the length of a data
packet, which is 45 bytes. All the control packets are sent with the maximum transmis-
sion power level. NumCi is the number of control packets (beacons and notifications)
sent at node i. maxTE is the transmission energy per bit when using the maximum
transmission power level. We get maxTE also from [ChipconCC2420 2005]. LC is the
length of a control packet, which is 19 bytes. In our experiments, the ratio of the num-
ber of control packets and the number of data packets is 3.9%. The ratio of the energy
consumed by control packets and the energy consumed by data packets is 1.9%. ATPC
achieves energy-efficient transmission with small control overhead.

For better comparison, we take the energy consumption of the Max scheme as the
base line, which is unit 1 in Figure 14. The power consumptions of the other three
schemes are represented as percentage values compared with this base line. The em-
pirical data demonstrate that ATPC and Non-Uniform consume the least transmission
energy. Considering that ATPC has much better communication quality than Non-
Uniform, ATPC is the most energy-efficient solution. In Figure 14, ATPC has much
less transmission energy consumption than Max and Uniform. Although ATPC has
extra beacon and feedback packets, the average transmission energy consumption of
ATPC is about 53.6% of Max and 78.8% of Uniform.

The trend of ATPC’s energy consumption varies a little bit. The main factor causing
this variation is the transmission power level variation. There are only 3 feedback
packets per link per day on average. Comparing ATPC with Non-Uniform in the first 6
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hours, ATPC has similar energy consumption as Non-Uniform. The reason is that the
transmission power level of each mote does not change much in the first 6 hours. In
the next 6 hours, Non-Uniform has higher energy consumption than ATPC because a
large number of nodes decrease their transmission power level to save energy in ATPC.
Later, the transmission energy of Non-Uniform drops mainly because of its low PRR,
which reduces the number of transmission relays.

Max and Uniform have relatively stable transmission energy consumptions because
they use a static transmission power level and their network throughput is stable.
The transmission power level used in Uniform largely depends on the topology. In a
network with long distance neighbors, this uniform transmission power level tends to
get close to the maximum transmission power level. Both solutions waste significant
transmission energy compared to ATPC.

The total energy consumption of the Non-Uniform varies because its network
throughput varies. Compared to the other solutions, it consumes the least transmis-
sion energy over time. It doesn’t have the overhead of feedback in ATPC, but the energy
is not used efficiently due to its low communication quality. However, it may provide
good communication quality and save energy in the short term.

We choose three links and plot the average transmission power they used over time
in Figure 15. All these links constantly have above 98% PRR. From Figure 15, we have
two main observations as follows.

From a historical record of the tuning process in ATPC, it is confirmed that link
qualities vary significantly in reality. Though all these links work in the same envi-
ronment, the tuning rate and range of transmission power for different links can be
significantly different. We can see Link A has a large varying range, which means high
sensitivity to environmental changes. Transmission power of Link C is quite stable; it
is a robust link to environmental changes. The variation of transmission power of Link
B is in between. Link B is a more typical case in our experiments.

ATPC is robust in handling dynamics of link quality in reality, according to differ-
ences of link conditions. Although all these links are exposed to the same environment,
the impacts of the environment on them are link-specific. ATPC successfully adjusts
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the transmission power differently. It also confirms our judgments in Section 2.3.2 both
that environmental change is a major reason for the transmission power adjustment,
and that the adjustment speed depends on the variation speed of the environment.

To summarize, ATPC maintains above 98% end-to-end communication quality while
saving transmission power significantly. The static non-uniform transmission power
solution may work well on the short term in static environments, but its communi-
cation qualities are very vulnerable to environmental changes. The maximum trans-
mission power solution is robust with regard to environmental changes but wastes
transmission energy.

5. STATE OF THE ART
There are three categories of research topics related to our ATPC: Transmission Power
Control, Topology Control and empirical studies on wireless radio communication.

There is a small number of research on realistic transmission power control for wire-
less sensor networks. The authors of [Son et al. 2004] provide a valuable study about
the impact of transmission power control on link qualities and propose a novel black-
listing approach. The ATPC we propose is different from their work. First, since link
quality varies with time, different transmission powers are needed to maintain the
same desired link quality. ATPC uses a feedback-based scheme to pick optimal power
levels at different times; this is not addressed in [Son et al. 2004]. Second, protocol [Son
et al. 2004] fixes the number of configurable power levels, reducing the design flex-
ibility and also limiting the maximum power tuning accuracy that can be achieved.
Also, [Jeong et al. 2007] makes an experimental comparison of several existing trans-
mission power control algorithms, and in [Heidemann and Ye 2004], the authors give
a short survey of transmission power control. In [Fu et al. 2012], the authors pro-
posed PID control based solution to adjust transmission power. In [Lee and Chung
2011], the authors investigate the impact of temperature on power control and pro-
pose temperature-aware power adjustment scheme.

There is some other work on transmission power control evaluated in simulation.
In [Ramanathan and R-Hain 2000], the authors formulate the transmission power ad-
justment problem for static and dynamic network topologies. The authors of [Watten-
hofer et al. 2001] describe a power control algorithm to increase transmission power to
reach neighbors. Protocol [Narayanaswamy et al. 2002] introduces cluster-based trans-
mission power control. The authors of [Li et al. 2005] propose an algorithm which
increases transmission power to reach neighbors in every cone of a certain degree.
In [Sabitha and Thyagarajan 2012], a fuzzy logic based transmission power control
design is introduced by the authors. In [Xing et al. 2009], the authors consider trans-
mission scheduling and power control optimization. In [Cotuk et al. 2013], the authors
investigate the impact of different power control stradegies on network lifetime. The
authors of [Valli and Dananjayan 2010] introduces a good theory based power control
scheme. In [Zhu et al. 2012], the authors study event detection in power-controlled
and duty-cycled sensor networks. Most of these works are simulation-based and they
ignore the in-situ impact on communication quality in reality. Our approach is based
on systematic empirical studies and we adopt a unique feedback-based approach, tun-
ing link quality pairwise.

Topology control research is a well-studied area in ad hoc and sensor network com-
munities. The goal of a significant portion of these efforts is to achieve better network
performance, considering throughput, connectivity, network size, traffic load, and so
on. These works can be classified in three major categories according to the transmis-
sion range and power assumptions: network-level uniform transmission power [Park
and Sivakumar 2002b; Narayanaswamy et al. 2002; Bettstetter 2002; Kirousis et al.
2000; Santi and Blough 2003], node-level non-uniform transmission power [Gomez
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and Campbell 2004; Bettstetter 2002; Kirousis et al. 2000; Kubisch et al. 2003; Ra-
manathan and R-Hain 2000; Wattenhofer et al. 2001; Kawadia et al. 2001; Park and
Sivakumar 2002a; Rodoplu and Meng 1999; Li et al. 2002], and neighbor-level trans-
mission power solutions [Liu and Li 2002; Xue and Kumar 2004; Blough et al. 2003].
Most of these works are based on simulations, which carry the assumptions that the
transmission range is static, circular, and within the transmission range the link
quality is perfect and never changes. However, such assumptions do not hold in re-
ality. Therefore, solutions making these assumptions may lead to unstable and unpre-
dictable communication qualities. ATPC, based on empirical studies about communi-
cation reality, addresses the practical issues of radio and link dynamics.

There are a number of experimental research results on radio communication reality
in wireless sensor networks. Authors of [Hackmann et al. 2008] investigate different
link quality metrics for power control in indoor environments. In [Srinivasan et al.
2010], authors present empirical studies of wireless sensor network performances in
home environment. In [Chipara et al. 2010], hospital wireless experimental results are
presented. The authors of [Feng et al. 2013] investigate the beamforming scheduling
algorithm and related power control issues. In [Ganesan et al. 2002; Woo et al. 2003;
Jeong et al. 2007], the authors extensively study communication reality in a large
scale sensor network. The authors of [Zhao and Govindan 2003] study the impact of
spatial-temporal characteristics on packet loss, and its environmental dependence on
packet delivery performance in a wireless sensor network. The authors of [Zhou et al.
2004; Zhou et al. 2011] give a lot of insight on causes of the link quality variations.
Authors of [Park et al. 2010] studies the impacts of key parameters in the medium
access control layer on energy consumption of the network. In [Reijers et al. 2004], the
authors suggest using RSSI value as a reliable parameter to predict a reception rate.
The authors of [Lal et al. 2003] study the relationship between SNR and PRR. With
different foci, these experimental works are complementary to our work.

Although the literature is rich, simplifying assumptions may hinder most work from
being applied directly to physically deployed sensor networks. We believe a practical
transmission power control algorithm like ATPC is the key to apply previous theoreti-
cal work to real-world wireless sensor networks.

6. CONCLUSIONS AND FUTURE WORK
We believe there is a serious gap between existing theory work and the in-situ practice.
As a solid step towards the in-situ topology control in sensor networks, ATPC presents
a lightweight transmission power control technique in a pairwise manner. This fine-
granularity tuning trades off computation and local memory (e.g., need a table in each
node) with communication, a much more costly operation in terms of energy. Our in-
situ experiments reveal the correlation between RSSI/LQI and link quality. Such ob-
servations guide us to set up a model to predict the proper transmission power, which
is enough to guarantee a good packet reception ratio. We acknowledge that this work
is by no means conclusive. However, it indicates a worthwhile direction for future re-
search, so that we can build sensor systems for practical deployment.

Our experiments are designed without congestion and collision. According to our ex-
perimental results, ATPC works very well in TDMA protocols. In a low utilization
network, where collision and congestion do not happen very frequently, ATPC can
still work well. This is because feedback control is renowned for its ability to handle
stochastic disturbances.

Conflicting transmissions and interferences may impact the performance of ATPC.
However, the capture effect makes the influence of collision and interference on ATPC
less serious. Since a packet can be received even when there are overlapped radio sig-
nals raised by simultaneous transmission, using RSSI/LQI of such a packet may drive
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ATPC to unsteady state. In [Whitehouse et al. 2005], the authors address a technique
to detect packet collision. In [Zhou et al. 2005], the authors create an approach to de-
tect interferences. By adopting such techniques, RSSI/LQI for packets identified from
packet collision is not considered as input for ATPC. Therefore, ATPC is expected to
work equally well in a CSMA network by filtering disturbances caused by collision and
interference. This is one of the major future works for ATPC.
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