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Abstract— We introduce a model-based meal detection and
estimation method for the treatment of type 1 diabetes that
automatically detects the occurrence and estimates the amount
of carbohydrate (CHO) intake from continuous glucose monitor
(CGM) data. Meal detection and estimation play a critical role
in closed-loop insulin control by enabling automatic regula-
tion of post-meal insulin dosing in artificial pancreas systems
without manual meal announcements by the patient. Our
approach to meal detection is based on a novel technique we call
Committed Moving Horizon Estimation (CMHE), an extension
of Moving Horizon Estimation (MHE). While MHE alone is
not well-suited for disturbance estimation and meal detection,
CMHE aggregates the meal disturbances estimated by multiple
MHE instances to balance future and past information at
decision time, thus providing timely detection and accurate
estimation. We evaluated our CMHE-based meal detection and
estimation method in-silico, using a nonlinear ODE gluco-
regulatory model and random meal profiles to generate blood
glucose and CGM signals. CGM data is used to detect meal
occurrences and to estimate their onset, duration, and CHO
amount. At the optimal operating point of the detector, we
achieve an 88.5% daily detection rate and, more importantly,
a 100% detection rate, with an average of 18.86 minutes onset
deviation, and 70.50% CHO amount estimation accuracy for
the main meals (i.e., excluding snacks).

I. INTRODUCTION

Type 1 Diabetes Mellitus (T1DM) is an autoimmune
disease in which the human pancreas is unable to produce a
sufficient amount of insulin to regulate blood glucose (BG)
levels. In healthy subjects, insulin is released in amounts
commensurate with current BG levels, and circulating insulin
promotes glucose uptake in muscle and adipose (fatty) tissue.
This process maintains BG within a healthy, safe range
(70–180 mg/dL) [1]. In T1DM, insufficient insulin causes
hyperglycemia (high BG), a condition that if untreated, can
lead to health issues such as cardiovascular disease, kidney
damage, and blindness.

In the U.S., approximately 30.3 million people have di-
abetes, about which 5–10% is T1DM [2]. T1DM patients
require everyday insulin therapy to maintain healthy BG
levels. The artificial pancreas (AP) [3] is a system for
automated, closed-loop insulin delivery, consisting of a con-
tinuous glucose monitor (CGM) that provides readings of
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subcutaneous glucose levels, a wearable insulin pump for the
infusion of insulin, and control algorithms for computing the
insulin amount that best keeps the BG in range.

Designing a fully closed-loop AP is, however, difficult:
meals are a major (and unknown) disturbance, as they in-
crease BG rapidly unless a timely and adequate insulin dose
is administered. Indeed, no commercial AP device exists
that is able to automatically regulate post-meal glucose.
This means that every T1DM patient has to announce, at
every meal, the amount of ingested carbohydrates (CHO)
so that the appropriate insulin dose can be delivered. This
manual procedure is not just a burden on the patient but
also inherently dangerous, as inaccurate or delayed CHO
information can lead to an incorrect insulin dosage. In
particular, insulin overdose causes hypoglycemia (low BG),
which may result in coma, brain damage, or even death.

This paper focuses on automated meal detection and
estimation (MDE), i.e., the problem of detecting, only from
CGM measurements, the occurrence of meals in the recent
past, as well as estimating their time of occurrence and
amount of ingested CHO. Accurate and timely MDE has
the potential to replace meal announcements, thus enabling
fully closed-loop insulin therapy.

Our approach to MDE is based on a novel technique that
we call Committed Moving Horizon Estimation (CMHE),
which allows us to estimate both the timing and size of
unannounced meals, information that is vital to achieve
closed-loop insulin control. As the name implies, CMHE
is based on Moving Horizon Estimation (MHE) [4], a con-
strained optimization technique for state estimation that given
a plant model and a bounded history of observed outputs
(or measurements), determines the sequence of system states
and disturbances that minimizes the discrepancy between
predicted and observed outputs. In the MDE context, the
model describes the human gluco-regulatory system and the
disturbances are the meal amounts that we seek to estimate.
MHE has been previously used for state estimation in insulin
control for T1DM [5]–[7], but not as a disturbance estimation
technique.

MHE provides a principled way to deal with meal distur-
bance estimation. First, MHE has an important probabilistic
interpretation, as it (roughly) corresponds to maximizing the
likelihood of state and disturbance estimations given the
observed outputs [8]. In contrast, Kalman filters are optimal
in this sense only if disturbances are normally distributed,
which is not the case for meals in T1DM. Second, MHE
allows one to incorporate additional constraints on the size,
onset, duration, and shape of the meal disturbances, in such



a way that only realistic meals are considered. For example,
one can incorporate bounds on the meal-intake profile based
on patient data [5]. Third, MHE provides a unique solution
to both state and meal estimation in insulin control, even
though the present paper focuses on meal estimation only.

MHE alone, however, is not sufficient for accurate meal
estimation. An individual MHE instance (i.e., a standard
MHE optimization problem) executed at time t returns N
disturbance estimates, one for each time point in the MHE
window [t−N, t−1]. Here N is the MHE window size; i.e.,
the number of time steps in the past (and thus the number of
past measurements) we consider for estimation. This implies
that one has N admissible estimates for the disturbance
value at any given time point t, because t is included in the
time windows of all the MHE instances executed at times
t+ 1, . . . , t+N . Thus, the problem arises of how to select a
value for the disturbance at time t out of these N candidates,
a problem that MHE alone cannot solve. Below we argue
that we cannot commit to only one of the N estimates, and
discuss how our method addresses this issue.

Let us denote with δt+1
t , . . . , δt+Nt the estimates for the

disturbance at time t obtained through the t+1, . . . , t+N -th
MHE instances, respectively. Committing to δt+1

t only (i.e.,
estimate of the t + 1-th MHE instance) is not a suitable
strategy because the corresponding MHE instance does not
consider measurements after time t, and thus there is no
evidence of the effects of the disturbance on the dynamics.
In glucose metabolism, like many other control systems, the
effect on the output is not immediate, but rather depends on
delays due to digestion and transport from the blood to the
subcutaneous compartment where measurements are taken.
In other words, this strategy fails because it does not have
enough look-ahead.

On the other hand, committing to the disturbance with
the most look-ahead, δt+Nt , is not ideal either because this
strategy ignores past information; i.e., the series of past mea-
surements and disturbances outside the prediction window
that led to the state at t.1 Indeed, on observing a glucose
increase at time t it is impossible, without past information,
to decide whether the increase was due to a meal at time t or
at an earlier time. Even more importantly, using the estimate
of the t+N -th MHE instance, this strategy prevents timely
MDE as it requires a time delay of N in order to produce
the final estimate for the current time. In our context, the
MHE window size N is of the order of hours, a delay that is
unacceptable for meal-detection purposes, whereas choosing
a smaller N would affect the performance of MHE and the
quality of its estimations.

Our proposed Committed MHE (CMHE) is an extension
of MHE that solves the above commitment problem. CMHE
considers a so-called commitment level V < N , and instead
of committing to only one estimate, obtains the final dis-
turbance value at time t by combining (e.g. via a weighted
average) the estimates of the V MHE instances from time

1The arrival cost term in the MHE objective function summarizes past
information about the measurements, but does not capture past disturbances;
see Eq. 9.

t+ 1 to t+V . Thus, CMHE overcomes the above problems
because it accounts for both future and past information,
as it considers MHE estimations having up to time V of
look-ahead (δt+Vt ), and up to time N of history (δt+1

t ). See
also Figure 1 for an illustration of CMHE. Another key
advantage of CMHE is that it provides timely detection, with
guaranteed and adjustable delay V .

The idea of CHME is inspired by [9], where the authors
apply the the principle of commitment level to finite-horizon
control problems. To the best of out knowledge, we are the
first to apply this principle to the estimation problem.

In summary, the main contributions of this paper are the
following:

• We introduce a model-based meal detection method for
artificial pancreas systems that automatically announces
carbohydrate intake and estimates the amount. Com-
pared to existing solutions that focus on the detection
of the occurrence of a meal, our method also estimates
the size of a meal, which is essential for the safe and
effective operation of a closed-loop insulin pump.

• We propose a novel technique called Committed Mov-
ing Horizon Estimation that derives the final meal
estimate from the candidates produced by the MHE in-
stances. CMHE crucially ensures that the final detection
decision occurs within a fixed and adjustable delay.

• We design an online detection algorithm that filters out
potential noise from CMHE estimates to derive the start
time, duration, and CHO amount of meals.

• We evaluate our approach in silico using synthetic CGM
measurements generated from a high-fidelity gluco-
regulatory model [10] and randomly generated meal
profiles. We achieve a 88.5% overall detection rate
and most importantly, for large meals (i.e., excluding
snacks), a 100% detection rate, with an average of 18.86
minutes of onset deviation, and 70.50% CHO amount
estimation accuracy.

The structure of the rest of the paper is the following.
Section II provides relevant background information. Sec-
tion III introduces our Committed Moving Horizon Estima-
tion technique. Section IV presents our experimental results.
Section V considers related work. Section VI offers our
concluding remarks and directions for future work.

II. BACKGROUND

A. CGM measurements from virtual patient

CGM measurements for our experiments are generated
from Hovorka’s well-established virtual patient model [10],
a system of non-linear ODEs describing the human glucose-
insulin metabolism across several physiological compart-
ments (e.g., gut, blood, subcutaneous). The model is executed
in closed-loop with the MPC-based insulin controller of [5].
The CGM is derived by adding Gaussian noise to the subcu-
taneous glucose variable of the model. CGM measurements
are produced with period of 5 minutes. Since, as we will
see, our MDE method works with a 1-minute resolution, we
interpolate the CGM signal using a Savitzky-Golay filter.



B. Estimation model

For efficiency reasons, linear models are often used to
predict and estimate the physiological state of the patient for
insulin control and state estimation algorithms in the AP. For
MHE, we also employ a linear model, an extension of the
model presented in [11], which in turn builds on the well-
known Bergman’s minimal model [12]. The model equations
are given below:

Ġ(t) =− p1 ·G(t)− p2 · I(t) + p3 + p4
m(t)

tGVG
(1)

Ċ(t) =
G(t)− C(t)

tG,int
(2)

ġ(t) =AG ·DG(t)− g(t)

tmax,G
(3)

ṁ(t) =
g(t)−m(t)

tmax,G
(4)

İ(t) =− ke · I(t) +
ka
VI
x(t) (5)

ẋ(t) =− ka · x(t) + u(t) (6)

where G(t) is the BG concentration (mmol/L); C(t) is the
subcutaneous glucose concentration; m(t) (mmol/min) is the
rate of BG appearance; g(t) (mmol/min) is the glucose in the
gut compartment; DG(t) (mmol/min) is the CHO input (i.e,
the disturbance); u(t) (mU/min) is the insulin input (i.e.,
the control input); x(t) (mU) is the insulin mass in the
subcutaneous compartment; and I(t) is the plasma insulin
concentration (mU/L). VG and VI (L) are the glucose and
insulin distribution volumes, known parameters that depend
on the body weight. tG = 30 min and tG,int = 8 min
are, respectively, the delays for BG appearance in the blood
and for glucose transport from blood to the subcutaneous
compartment.

Parameters p1, . . . , p4, ka, ke are typically estimated from
patient data. In our case, they are estimated from open-loop
trajectories of the virtual patient model of Section II-A.

C. Moving Horizon Estimation

Consider a dynamical system described by the equations

x+ = f(x, u, d) (7)
y = h(x) + v (8)

where x ∈ Rn is the state of the system; x+ denotes x at the
next sample time; y ∈ Rm is the (noisy) measurement; u is a
known system input; d ∈ Rg is the process disturbance; and
v is the measurement noise. In our case, f is the AP model
of (1)-(6), y is the CGM value, h returns the subcutaneous
glucose variable C (2), u is the insulin input, and d is the
meal disturbance. In the MHE context, d, v, and the initial
system state, x0, are unknown.

MHE [13] seeks to estimate the trajectory of states x using
only a finite set of measurements y by solving an optimiza-
tion problem that minimizes the error between measured
outputs and model-predicted outputs. In estimating the state
trajectory, MHE also estimates the sequence of unknown

disturbances that yield the best fit between measurements
and model predictions. This allows us to detect meals and
estimate their size.

In the following, we will use the notation xi,...,i+j to de-
note the indexed sequence xi, . . . , xi+j . Analogous notation
applies to all variables. We will use Greek letters χ, ν, δ for
the MHE variables in order to distinguish them from the
system variables x, v, d.

The MHE problem solved at time t, also called the t-th
MHE (instance), seeks to find the sequence of states χt−N...t
and sequence of disturbances δt−N...t−1 that minimize the
following cost function:

CtMHE(χt−N , δt−N,...,t−1) = µ · ‖χt−N − x̂t−N‖2+
N∑
k=1

‖νt−k‖2

qt−k
(9)

subject to

νt−k = yt−k − h(χt−k), k = N, . . . , 0 (10)
χt−k+1 = f(χt−k, ut−k, δt−k), k = N, . . . , 1 (11)

where N is the MHE window size; δt−k is the estimated
disturbance at time t − k; (10) defines the measurement
discrepancy νt−k at time t− k as the difference between
the measured output yt−k and predicted output h(χt−k); and
(11) states that the MHE state variable χ evolves according
to the system dynamics f (1)-(6), where ut−k is the (known)
insulin input.

The first summand of the cost function CtMHE given in (9)
is the so-called arrival cost, which penalizes the discrepancy
between the MHE state at the start of the window, χt−N ,
and the optimal estimate of the state at time t − N , x̂t−N ,
obtained by the t − N -th MHE. This term is designed to
summarize the information about the past, out-of-window,
measurements y0,...,t−N+1. µ ∈ R+ is a weighting factor.
The second summand of (9) accounts for the discrepancy
between measured and predicted outputs. qt−k ∈ R+ is a
weighting factor, which is typically chosen to reflect the
variance (known or estimated) of the measurement noise v
at time t− k.

Note that the cost function depends only on the first
state of the MHE window because the subsequent states
χt−N+1,...,t are automatically determined by the determinis-
tic dynamics f .

III. METHOD

A. Committed MHE

Let us denote the t-th MHE decision variables by
χtt−N,...,t, δ

t
t−N,...,t−1, and νtt−N,...,t, where the superscript

index indicates the corresponding MHE instance.
In MHE-based state estimation, the decision variable χtt

is selected as the estimated state at time t. One could be
tempted to apply the same strategy for disturbance esti-
mation, and select the most recently estimated disturbance
value, δt+1

t , as the final disturbance estimate at time t.
We denote the latter with ∆t. This strategy, however, is
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Fig. 1. Illustration of Committed MHE (CMHE), with MHE window size N and commitment level V . At each step t, CMHE computes the final
disturbance estimate at time t− V , ∆t−V , by aggregating the V estimates at time t− V , δt−V

t−V +1, . . . , δ
t−V
t , of the last V MHE instances.

not adequate because it does not have look-ahead, i.e., it
ignores the delay in glucose appearance due to digestion and
transport from the blood to the subcutaneous compartment
where measurements are taken. Then, one could follow the
opposite strategy, and wait for the t+N -th MHE in order to
set ∆t to the estimate with the longest look-ahead, δt+Nt .
This choice is not ideal either, as δt+Nt lies at the start
of the t + N -th MHE prediction window, and thus ignores
information about the BG trajectory and disturbances before
time t; i.e., it does not account for history. This might
raise false alarms, when MHE wrongly detects a meal on
observing a BG increase at time t, which is instead caused
by a meal happened before t. Most importantly, this strategy
prevents timely MDE, because there is an estimation delay of
N minutes, which is normally hours. In summary, MHE does
not provide a clear mechanism to select a value for ∆t out
of the N disturbances at time t, δt+1

t , . . . , δt+Nt , respectively
estimated by the t+ 1, . . . , t+N -th MHE.

Another way to view this problem is by commitment. Both
the above strategies commit to only one disturbance estimate
at each timestep, and that will be the final decision for ∆t.
To solve this problem, we propose a novel method called
Committed Moving Horizon Estimation (CMHE). Our idea,
shown in Fig. 1, is to commit not just to one disturbance
but to multiple disturbances, in this way balancing between
look-ahead and history. In addition to the MHE window size
N , CMHE uses another parameter called commitment level
and denoted by V , such that V ≤ N . The commitment
level describes both how many disturbance estimates CHME
commits to and the delay for computing the final estimation
decision. At time t, CMHE performs the following two
steps. First, it executes the t-th MHE instance, producing
a sequence of estimates for times t−N, . . . , t− 1, shown in
the last row of Fig. 1. Second, it returns the final estimate for
time t−V , ∆t−V , by combining the disturbances estimated
for the same time point by the t − V + 1, . . . , t-th MHE
instances, δt−V+1

t−V , . . . , δtt−V , i.e., V estimates in total. The
second step is illustrated by the yellow column of Fig. 1.

We introduce a time-based aggregation strategy, by which
∆t−V is derived as a weighted average of the V MHE
estimates as follows:

∆t−V =

(∑t
i=t−V+1W (i)b · δit−V

)
∑t
i=t−V+1W (i)b

, (12)

where b ∈ R≥0 is a parameter that determines the impor-

tance of the weights. Note that committing only to the last
estimated disturbance, i.e., setting ∆t−1 = δtt−1, is a special
case of CMHE with estimation window N and commitment
level V = 1. The weights W (i) are defined in such a way to
prioritize estimations having a good balance between history
(i.e., number of past measurements) and look-ahead (i.e.,
number of future measurements). For i = t−V +1, . . . , t, the
length of history is N+t−V −i, and the length of look-ahead
is i+V −t−1. Define the absolute deviation between history
and look-ahead lengths as ε(i) = |N+2(t−i−V )+1|. Note
that the maximum deviation for all i = t − V + 1, . . . , t is
N − 1 when i = t−V + 1, i.e., when the look-ahead length
is 0 and the history length is the highest (which happens
in the earliest MHE instance, see Fig. 1); and the minimum
deviation is 0 when the two lengths are equal.2 To achieve
such balance, W (i) should grow as ε(i) decreases, and thus,
we define W (i) by the following linear equation:

W (i) = N − ε(i),

which assigns a maximum weight of N when ε(i) is mini-
mum, and a a minimum weight of 1 when ε(i) is maximum.

In CMHE with window size N and commitment level
V , at time t, all the timeslots before t − V are already
committed, i.e., the final disturbance values ∆i for i < t−V
are already determined. To encourage agreement with these
previous estimates, we thus introduce a term in the cost
function penalizing the discrepancy between δtt−N,...,t−V−1

and ∆t−N,...,t−V−1. Therefore, the CHME cost function is
defined as:

Ct(χt−N , δt−N,...,t−1) = CtMHE(χt−N , δt−N,...,t−1)+

η ·
N∑

k=V+1

‖δtt−k −∆t−k‖2 (13)

where η > 0 is a weighting factor determining the impor-
tance of agreeing with the final disturbance estimates.

In summary, the t-th MHE instance in our CMHE ap-
proach is defined as following problem:

min
χt−N,...,t,

δtt−N,...,t−1

Ct(χt−N , δt−N,...,t−1)
(14)

subject to (10) and (11).

2It is easy to see that there exists an i for which ε(i) = 0 only if
V ≥ (N + 1)/2. Otherwise, all estimations have indeed strictly more
history than lookahead, in which case the minimal ε(i) is obtained for the
latest MHE instance. See also Fig. 1.



B. Estimating realistic meal profiles

We further extend the MHE instance (14) to capture
realistic meal profiles, assuming that the CHO intake rate
during a meal is constant. This leads to a representation
of the meal disturbance as a square-wave shape impulse.
Another sensible assumption is that, in an estimation window
of size N , no more than m < N meals can occur. Under
these assumptions, we can formulate the MHE optimization
problem as a Mixed-integer Quadratic Programming (MIQP)
as follows.

min
χt−N,...,t,A1,...,m

ϕ1
t−N,...,t−1,...,ϕ

m
t−N,...,t−1

Ct(χt−N , δt−N,...,t−1)
(15)

subject to, for k = N, . . . , 1 and i = 1, . . . ,m:

νt−k = yt−k − h(χt−k) (16)
χt−k+1 = f(χt−k, ut−k, δ

t
t−k) (17)

ϕit−k ∈ {0, 1} (18)
m∑
i=1

ϕit−k ≤ 1 (19)

λit−k = I(ϕit−k+1 − ϕit−k = 1), k = N, . . . , 2 (20)
N∑
k=2

λit−k ≤ 1 (21)

δtt−k =

m∑
i=1

Ai · ϕit−k (22)

where ϕit−k = 1 if the i-th meal is ongoing at time t− k,
0 if not; and Ai is the ingested CHO amount per minute
of the i-th meal. (16) and (17) are the MHE constraints
on measurement discrepancy and time evolution of χ. (19)
indicates that multiple meals cannot exist at the same time.
In (20), we define λit−k as a Boolean variable indicating
whether or not meal i starts at time t − k + 1 (I is the
indicator function). Equation (21) states that each meal can
start at most once. The last constraint, (22), states that, for
any meal i, the meal disturbance at time t− k equals to the
corresponding ingestion rate Ai if meal i is happening at time
t−k. Note that the superscript i in ϕi and λi represents the
i-th potential meal, while superscript t in the cost function
Ct and variable δt represents the time of the MHE instance.

MIQP is, in general, computationally demanding, and
thus, for implementing the method on resource-constrained
devices, one could substitute it with a more efficient, albeit
sub-optimal solution method. We remark, however, that
computational constraints are not the focus of our work. Nev-
ertheless, given the rapid improvement in modern embedded
and mobile devices, we expect our algorithm to perform
efficiently also on such hardware platform.

C. Online detection algorithm

We designed an online detection algorithm, Algorithm 1,
for extracting meal onset, duration, and total CHO amount
out of the estimations of meal disturbances produced by
CMHE. The state of the algorithm is characterized by the
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Fig. 2. One of the random meal profiles and corresponding CGM
measurements used in our experiments.

variables onset, keeping the start time of the most recently
detected meal, and inMeal, which is true when the beginning
of a meal has been detected, but not yet its ending, i.e., the
current time is within the meal duration.

When inMeal is false, the algorithm detects the onset of
a meal if: 1) the current CMHE estimate ∆t is above a
threshold ∆̄ (see line 4); and 2) the sequence of CMHE
estimates is non-decreasing for at least 80% of the last w
estimates. Variable num inc maintains the number of points
in the window t − w, . . . , t where the sequence is non-
decreasing (line 5). When both conditions hold, the meal
onset is set to t−w and inMeal is updated to true. These two
conditions are designed to reduce false alarms: the threshold
in 1) allows to filter out noise in the estimation signal; 2)
ensures that the amount of ingested CHO is actually rising.

Detection of meal offset works in an analogous way. When
inMeal is true, if ∆t is below ∆̄ and the sequence of CMHE
estimates is non-increasing for at least 80% of the last w
estimates, then we mark the current time as the end of the
meal and output the corresponding onset, duration and size
(i.e., total amount of CHO between onset and offset).

Parameter ∆̄ can be tuned to achieve different trade-offs
between false alarms and detection rate. In our experiments,
we set w to 5 min.

Our meal detection algorithm receives CMHE estimates
with a period of one minute. When the measurement period
is longer, as for CGM measurements that have a period
of five minutes, we interpolate the missing intermediate
measurements.

IV. RESULTS

This section presents an evaluation of the performance of
our CMHE-based meal detection and estimation method. We
evaluate the method using 10 repetitions of a 3-day experi-
ment, 30 days in total, with randomly generated meal pro-
files. Our experiments use the CGM measurements described
in Section II-A and two types of random meals (large meals
and small snacks). See the top half of Table I for details
of the random meal profiles and Fig 2 for a meal profile
realization and corresponding CGM trajectory. We performed
the experiments using MATLAB and YALMIP [15].



Algorithm 1: Online meal detection from CMHE meal
disturbance estimates

input : threshold ∆̄ ∈ R,
meal rise/fall window w ∈ N+,
stream of CMHE estimates ∆

output: stream of meal onset times, durations, and sizes
1 inMeal← false; onset← 0; t← w + 1;
2 while true do

/* Collect estimated meals at times
t− w − 1 to t from stream ∆ */

3 ∆t−w−1, . . . ,∆t ← collect(∆, t− w − 1, t);
4 if ¬inMeal ∧∆t > ∆̄ then
5 num inc ←

∑t
i=t−w I(∆i −∆i−1 ≥ 0);

6 if num inc ≥ 0.8 · w then
/* Meal start detected */

7 onset ← t− w; inMeal ← true
8 end
9 end

10 if inMeal ∧∆t ≤ ∆̄ then
11 num dec ←

∑t
i=t−w I(∆i −∆i−1 ≤ 0);

12 if num dec ≥ 0.8 · w then
/* Meal end detected */

13 duration← t− onset; size←
∑t
i=onset ∆i;

14 yield (onset,duration, size);
15 inMeal← false;
16 end
17 end
18 t← t+ 1;
19 end

We compare our time-based weighted CMHE described in
(12) using b = 1/2, N = 180 and V = 40, with a method
that does not combine multiple estimations and that at time
t, commits only to the t−V -th estimate, i.e., ∆t−V := δtt−V .
That is, the latter method corresponds to using MHE alone
and not CMHE.

In Fig. 3, we show the receiver operating characteristic
(ROC) of the two methods. The ROC curves present the
detection rate versus the false alarm rate per day under
varying detection thresholds ∆̄ (see Algorithm 1). For each
detection method, we report two ROC curves, one for the
detection of the large meals only, and one for both large
meals and snacks. When the large meals are the only targets,
the detector can apply a higher threshold ∆̄ to reduce
the false alarms without an attempt to detect snacks with
small CHO amount. We observe that CMHE considerably
outperforms the simple MHE strategy.

The performance of the CMHE algorithm is a trade-off
between the detection rate and the daily false alarm rate.
Since the risks associated with hypoglycemia are higher
than those associated with hyperglycemia, false alarms of
meals and snacks should be considered a more critical event,
and their reduction should be an important target. For this
purporse, one can always choose another operating point with
a higher detection threshold ∆̄, decreasing the detection rate
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Fig. 3. ROC curve comparison between our CMHE method (red lines)
and a simple MHE strategy (blue), with different targeted meal types (main
meals only VS main meals and snacks). Triangles represent the optimal
operating points for CMHE [14].

TABLE I
CHARACTERISTICS AND CORRESPONDING MDE RESULTS FOR THE

RANDOMLY GENERATED MEALS. FOR EACH DAY OF SIMULATION, WE

CONSIDER THREE LARGE MEALS (BREAKFAST, LUNCH, DINNER) AND

THREE SMALL SNACKS. MEAL CHO AMOUNTS AND STARTING TIMES

ARE SAMPLED UNIFORMLY FROM THE REPORTED INTERVALS.

breakfast snack1 lunch snack2 dinner snack3
Probability
of
Occurrence

100% 50% 100% 50% 100% 50%

CHO
amount (g)

40-60 5-25 70-110 5-25 55-
75

5-15

Time of day
(h)

1:00-
5:00

5:00-
8:00

8:00-
12:00

12:00-
15:00

15:00-
19:00

19:00-
21:00

MDE performance
Onset Devi-
ation (min)

22.43 30.67 17.59 25.00 20.68 12.04

CHO Devi-
ation (g)

50.53 20.20 25.54 18.33 22.85 26.93

Detection
rate

100% 92.31% 100% 91.67% 100% 27.78%

in exchange for a reduction in false alarms.
We now discuss the performance of CMHE regarding the

estimation of both large meals and snacks. Results for each
kind of meal are reported on the bottom half of Table I. At the
optimal operating point (black triangle in the ROC curve of
Figure 3), overall we have 88.5% total detection rate, with an
average of 19.99 minutes meal onset deviation and 58.14%
CHO amount estimation accuracy. The estimation accuracy
tells how close our CHO estimation is to the actual CHO
intake of the meal, weighted by the CHO value of that meal.
In these settings, we have an average of 2.6 false alarms per
day, with 11.08g CHO each.

The reason why the algorithm cannot detect all of the
meals and estimate their amount accurately enough is rooted
in our complicated random meal profiles. Indeed, for each
day we have three CHO-rich meals (breakfast, lunch and
dinner) and at most three snacks with small CHO amounts.



In particular, the CHO amount of snacks can be orders of
magnitude smaller than that of a regular meal. In order to
detect these small snacks, we need to use low values of
the detection threshold ∆̄, and thus, the algorithm inevitably
incorrectly considers some small detection errors as snacks,
leading to an increased number of false alarms. What makes
detection even more difficult is the randomized onset times
of snacks and meals, which make it possible for them to
be very close or even overlapping. In these cases, it is very
difficult if not impossible to distinguish a snack from a meal.
Under such extreme conditions, however, we are still able to
detect 100% of the main meals, and 92.31%, 91.67% and
27.78% of the three snacks, respectively.

In reality, CHO-rich meals lead to much rapid and greater
BG increases than smaller meals and snacks, and thus, it is
much more dangerous for patients if larger meals are not
accurately estimated or even undetected. Therefore, accurate
estimation of large meals is of utmost importance for the
automation of insulin therapy in diabetes. While we have
shown that our algorithm is able to detect multiple types of
meals, our focus is on those with larger CHO amount.

At the optimal operating point (green triangle in the
ROC curve of Figure 3), we achieve 90% overall detection
rate and an average of 1.7 false alarms per day. For the
detection for three main meals (breakfast, lunch and dinner),
we achieve a 100% detection rate, an average of 19.76
minutes onset deviation and an average of 57.40% CHO
estimation accuracy. Most importantly, if we further consider
the detection for only lunch and dinner (the most prominent
meals), we reduce the onset deviation to 18.86 minutes, and
increase the CHO estimation accuracy to 70.50%.

Typical detection results of a 3-day experiment are shown
in Fig. 4. On the top, we report the results obtained using
the optimal threshold for the detection of both main meals
and snacks (black triangle in Fig. 3). On the bottom, we use
a higher detection threshold corresponding to the optimal
operating point for the detection of main meals only (green
triangle in Fig. 3). In the former case, we observe that all
nine large meals are successfully detected in the 3 days of
simulation. Snacks are all detected as well, except for the
night snack on the first day, which is too close to dinner on
that day, and so the detector mistakes them as a single meal.
In the latter case, using a higher detection threshold ∆̄, we
miss the night snack on the second day, but most importantly,
the number of false alarms decreases dramatically, which
alleviates potential risks of hypoglycemia.

V. RELATED WORK

A number of existing meal detection algorithms are
based on examining the rate-of-change (RoC) of the CGM
signal; see e.g. [16]–[18]), where detection is performed
by comparing the first or second derivatives of the CGM
with pre-tuned detection thresholds. Model-based approaches
have also been proposed. In [19], meals are detected by
computing the difference between the CGM signal and the
no-meal prediction of a simple insulin/glucose model, and
comparing these differences with a set of post-meal glucose
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Fig. 4. Meal detection and estimation results of CMHE evaluated on 3-
day CGM trajectories for two different detection thresholds ∆̄. Top: results
using the optimal operating point for the detection of both main meals and
snacks (black triangle in Fig. 3). Bottom: results using a higher detection
threshold, corresponding to the optimal operating point for the detection of
main meals only (green triangle in Fig. 3).

shapes generated from the model. The work of [20] uses
a physiological model to generate test statistics that are
invariant to the model parameters and describe the likelihood
of meal occurrence in a given time window. All of the above
methods, however, only work as meal detectors; i.e., they can
detect the occurrence of a meal but they cannot estimate its
size (amount of CHO) in a reliable manner.

In [21], time series CGM measurements are converted to
a fuzzy qualitative representation whose variable, increase of
glucose trend index, is used for meal detection. Meal size is
also estimated using a fuzzy system when detection is acti-
vated. This method achieves good detection and estimation
performance, but it is evaluated only on a fixed meal profile
and large meals, unlike our work where we consider random
disturbance profiles including both meals and snacks.

In [22], a convolutional neural network is trained to predict
the food category and estimate food macronutrients using a
nutritional database, food images, and estimated serving size
provided by the patients. In contrast to this work, our CMHE
approach can provide meal estimates using only CGM data,
even though it could be extended to consider additional meal
information like food images.

A model-based approach similar to ours is presented
in [23], where the authors use an augmented minimal model
and an unscented Kalman filter to estimate meal distur-



bances. Meals are detected through three thresholds on,
respectively, the difference disturbance signal, the difference
CGM signal, and the cross-covariance between the CGM and
the difference disturbance signal. However, this work focuses
on assessing the detection rate rather than the accuracy of
CHO estimates and, unlike our method, does not provide a
guaranteed and adjustable detection delay.

VI. CONCLUSION

In this paper, we presented CMHE, a novel model-based
online method for meal detection and estimation for type 1
diabetes. CMHE is a new technique for state and disturbance
estimation that extends the well-established MHE method.
Instead of committing to only one estimate, CMHE aggre-
gates disturbances estimated at different MHE instances in
order to achieve a balance between disturbance estimates that
are aware of past system measurements and those aware of
their effect on future system measurements. Experimental
results demonstrate that our method can not only detect
multiple types of meals with detection rates close to 100%,
but it also estimates the CHO amount of meals with high
accuracy for larger meals such as lunch and dinner. As such,
our CMHE-based meal detection and estimation method has
the potential to replace troublesome manual CHO announce-
ments currently required for insulin therapy, and inform the
insulin controller to enable fully closed-loop T1DM therapy.
It should be noted, however, that although the in silico
experiments show promising performance, the system is still
clinically untested.

As future work, we plan to evaluate our method on the
UVA/Padova simulator, and eventually on real patient CGM
data. To evaluate the performance of our meal detection in
a patient cohort, the detection threshold ∆̄ can be optimally
personalized to each patient using open-loop glucose-insulin
time series collected from the patient.

We also plan to investigate strategies to further improve
performance, such as integration of signals from multiple
sensors (e.g., microphones and jaw-motion sensors to detect
chewing [24]), and mechanisms for the online correction
of past CHO estimates when higher-confidence estimates
become available.
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