
Approximation Algorithms for Time-Window
TSP and Prize Collecting TSP Problems

Jie Gao1, Su Jia1, Joseph S. B. Mitchell1, and Lu Zhao1

Stony Brook University, Stony Brook, NY 11794, USA.
{jie.gao, su.jia, joseph.mitchell, lu.zhao}@stonybrook.edu.

Abstract. We give new approximation algorithms for robot routing
problems that are variants of the classical traveling salesperson prob-
lem (TSP). We are to find a path for a robot, moving at speed at most
s, to visit a set V = {v1, . . . , vn} of sites, each having an associated time
window of availability, [ri, di], between a release time ri and a deadline
di. In the time-window prize collecting problem (TWPC), the objective is
to maximize the number of sites visited within their time windows. In the
time-window TSP problem (TWTSP), the objective is to minimize the
length of a path that visits all of the sites V within their respective time
windows, if it is possible to do so within the speed bound s. For sites on
a line, we give approximation algorithms for TWPC and TWTSP that
produce paths that visit sites vi at times within the relaxed time win-
dows [ri− εLi, di + εLi], for fixed ε > 0, where Li = di− ri; the running

time is O((nLmax)
O(log Lmax

log(1+ε)
)
), where Lmax = maxi Li. For TWPC, the

computed path visits at least k∗ (the cardinality of an optimal solution
to TWPC) sites; for TWTSP, the computed path is of length at most
λ∗ (the length of an optimal TWTSP solution). For general instances of
sites in a metric space, we give approximation algorithms that apply to
instances with certain special structure of the time windows (that they
are “dyadic” or that they are “elementary”), giving paths whose lengths
are within a bounded factor of the optimal length, λ∗(s), for the given
speed s, while relaxing the speed to be a factor greater than s; for ar-
bitrary time windows, we give an O(logn)-approximation for TWTSP,
assuming unbounded speed (s =∞).

1 Introduction

Advances in mobile robotics and autonomous vehicles have given rise to a variety
of new applications and research challenges. As the hardware and control sys-
tems have matured, a number of new strategic planning problems have emerged
as robots and autonomous vehicles become deployed in our living spaces, ur-
ban areas, and roadways. Our work is motivated by the scheduling and motion
planning problem when the tasks that need to be done are associated with both
locations and with time windows. For example, an autonomous vehicle may be
tasked with performing package pickup/delivery operations, each with a physical
location and a window of time during which the pickup/delivery is expected to

take place. Our goal, then, is to find an efficient path to pick up or deliver all of
the packages (or as many as possible), subject to the given time windows.

The classical travelling salesperson problem (TSP) seeks a shortest path or
cycle to visit a set V = {v1, . . . , vn} of n sites in a metric space (e.g., the
Euclidean plane); the challenge is to determine the order in which to visit the
sites. In this paper we study two variants of the TSP. In each variant, we assume
that there is a single mobile robot, which can move at a maximum speed s. The
robot is initially located (at time t = 0) at location v0; the location v0 might
be given, as a fixed depot, or might be flexible, allowing us to determine the
best choice for v0. The input to our problems includes, for each site vi ∈ V , a
specified time window, [ri, di], with release time ri and deadline di, during which
the site vi is to be visited. (A further generalization of our problems includes a
processing time associated with each site vi, indicating the amount of time that
must be spent at vi; we assume here that processing times are zero.)

In the time-window prize collecting problem (TWPC), the objective is to
determine a path P for the robot that maximizes the number of sites (or, more
generally, the sum of “prizes” associated with sites) visited within their time
windows; we let k∗ denote the number of sites visited by an optimal TWPC
path, P ∗.

In the time-window TSP problem (TWTSP), the objective is to determine a
path P of minimum length that visits all of the sites V within their respective
time windows, if it is possible to do so within the speed bound s; we let λ∗ denote
the length of an optimal TWTSP path P ∗.

Related Work. Both the TWPC and TWTSP problems are NP-hard, in gen-
eral, since they generalize the classic TSP. The TSP has been studied extensively
(see, e.g., [11]), and polynomial-time approximation schemes are known for geo-
metric instances (see, e.g., [2, 12, 13]). In 1D (i.e., for points on a line), the TSP
is trivial. However, the TWTSP and TWPC problems are known to be strongly
NP-complete even in 1D [15]. Bockenhauer et al. [7] showed that there is no
polytime constant-factor approximation algorithm for TWTSP in metric spaces,
unless P = NP.

Approximation algorithms for the time window prize collecting (TWPC)
problem have been studied. Bar-Yehuda et al. [5] gave an O(log n)-approximation
algorithm for n sites on a line. For general metric spaces, Bansal et al. [4] gave an
an O(log2 n)-approximation algorithm in general and an O(log n)-approximation
for the special case with release times ri = 0. Chekuri et al. [8] gave an algo-
rithm with approximation O(poly(log Lmax

Lmin
)), where Lmax and Lmin are the

maximum and minimum lengths of the time windows. The online version was
recently studied by Azar et al. [3]. The special case of the TWPC problem in
which all release times are zero (ri = 0) and all deadlines are the same (di = d,
for all i) is known as the orienteering problem; the objective is to visit as many
sites as possible with a path of length at most d/s. Approximation algorithms
are known for orienteering, including polynomial-time approximation schemes
for geometric instances (see, e.g., [1, 6, 9, 14]).

The TWTSP has also been studied in the operations research literature, us-
ing integer programming and branch-and-bound techniques; see [10] for a survey.
These algorithms are not reviewed here, as our emphasis is on provable approx-
imation algorithms that are polynomial-time (or potentially quasipolynomial-
time).

Preliminaries. The input set of n sites V = {v1, . . . , vn} lie in a metric space;
we let δ(vi, vj) denote the distance between vi and vj . We assume that time
windows [ri, di] associated with the sites vi have release times ri and deadlines
di, with ri, di ∈ [0, T] for time horizon T . We let Li = di − ri denote the length
of the time window associated with site vi, and we let Lmax = maxi Li be the
length of the largest time window.

A time window [ri, di] is dyadic if Li = 2m, for some integer m ≥ 0, and ri
is an integer multiple of Li. We say that an input is a dyadic instance if all time
windows are dyadic. We say that an input is an elementary instance if (1) each
time window is either of unit length (i.e., di = ri + 1) or is of full length, with
[ri, di] = [0, T], for integer T ; and (2) for each integer j ∈ [0, T − 1], there exists
at least one site having time window [j, j + 1].

Our Contributions. We provide a collection of new results for the TWPC and
TWTSP, including:

1. For points V on a line (i.e., 1D), we provide dual approximation algorithms,

running in time O((nLmax)O(log Lmax
log(1+ε)

)) for both the TWPC and TWTSP
problem for any fixed speed bound s. In other words, we find a path that
performs as well as the optimal, but that allows each site vi to be visited in
the relaxed time window [ri − εLi, di + εLi], where Li = di − ri.
Our method also provides an approximation for TWPC in 1D when only
relaxation of the deadline is allowed, computing a path to visit ≥ k∗ sites,
allowing each site to be visited in the time window [ri, (1 + ε) · di]. This
improves the results by Bansal et al. (in [4]), which found in polynomial time
a path to visit Ω(k∗

log 1/ε) sites with the same relaxation on time windows.

2. As a byproduct of our method, we give new approximation algorithms for
the Monotone TSP with Neighborhoods (TSPN) and Monotone Orienteer-
ing with Neighborhoods problem in 2D for arbitrary regions (arbitrary size,
overlapping and fatness).

3. For TWTSP with finite speed s in a metric space, we present an (α, β) dual
approximation algorithm, using speed ≤ α ·s and travel distance ≤ β ·λ∗(s),
where λ∗(s) is the length of an optimal path subject to speed bound s,
α, β = O(1) for an elementary instance, and α, β = O(logLmax) for a dyadic
instance. For s = ∞, we give an O(log n)-approximation for arbitrary time
windows.

While the TWPC problem is well studied (for over 20 years), the best known
factor for TWPC in 1D is still O(logLmax) or O(log n) (as it is in metric spaces),
if we strictly insist on visiting points in their time windows. Little attention has
been given to dual approximations. Dual approximation schemes are natural
approaches to addressing hard optimization problems. Further, relaxation of

time windows is realistic, since the release times and deadlines often have some
flexibility. Our results show that if we are allowed to relax the time windows
even by a little bit, we can obtain much better approximation. Our results also
reveal that the time window variants of TSP in 1D are significantly different
from the problems in higher dimensions or in metric spaces.

For the TWTSP problem in a metric space, one may ask whether it is possible
to apply the known method for TWPC. The difficulty is as follows. Recall the
strategy in [4, 5]: first, classify the vertices into g = O(log n) or O(log2 n) groups
according to their time windows, such that the time windows in each group are
roughly the same. Then, note that when all time windows are the same, the
TWPC problem is just the ordinary prize collecting problem, so we can find a
constant-factor approximation for each group. Among these g solutions, choose
the one with the largest prize. A natural idea to apply to the TWTSP problem
is to find a constant-factor approximation for each group and then to paste them
together in an appropriate way. This strategy works for TWTSP with infinite
speeds but fails when the speed is bounded, since it does not give any guaranteed
bounds in speed, and consequently we may return a solution with speed much
higher than s. We explain briefly the techniques we use in this paper.

Overview of Our Approach. We view the 1D problem in space-time, in the
(t, x) plane, where t is the (horizontal) time coordinate and x is the (vertical)
spatial coordinate along the line containing the sites V . Then, the sites vi ∈ V
are points along the (vertical) x-axis, and the time windows [ri, di] are horizontal
line segments σi in the (t, x) plane. A path P corresponds to a slope-bounded
piecewise-linear function, P (t), with absolute value of slope at most s. Visit-
ing a site vi within its time window corresponds to the path P (t) visiting the
corresponding (horizontal) line segment σi.

To get our results for 1D problems, we first look at special cases called dyadic
instances when all time windows are dyadic. These dyadic intervals can be consid-
ered as intervals of a binary recursive partition. We can run dynamic program-
ming to find the best path. Then we introduce the h-dyadic instance, which,
intuitively can be solved by partitioning each dyadic interval at at most h places
called partition points. Our method consists of the following steps: (1) we give
an O((nLmax)O(h))-time algorithm for h-dyadic instances; (2) we show how arbi-
trary time windows can be expanded to have endpoints among a set of h carefully
selected partition points placed within dyadic intervals, thereby transforming a
general instance into an h-dyadic instance. We solve h-dyadic instances using
a carefully designed dynamic programming algorithm, taking advantage of the
fact that dyadic intervals have a hierarchical structure. Within each subinterval
of a dyadic interval, the subproblems of our dynamic program keep track of the
x-extent (min-x and max-x) of a solution path.

Step (2) may appear to be straightforward, but there are two challenges
in assigning partition points. One is the tradeoff between the precision of our
relaxation and the number of partition points: if the partition points are too
dense, then we end up with a high running time; if the partition points are too
sparse, then the relaxation of time windows is too coarse. The other difficulty is

that the partitions for dyadic intervals are not independent; they are correlated,
in the sense that the partition of any dyadic interval must inherit all the partition
points from its parent.

For the dual approximation for TWTSP in metric spaces on elementary in-
stances, we first group the sites so that the weight of the minimum spanning tree
(MST) of V restricted to each group is O(logL)λ∗(s). Then, we solve a matching
problem on a bipartite graph whose “red” nodes correspond to sites having unit-
length time windows and whose “blue” nodes correspond to the groups, allowing
us to assign the groups to red nodes in a balanced manner, thereby avoiding the
need for the speed to be increased by more than a particular bound.

2 TWTSP and TWPC on a Line

We start with the case when the nodes are on a line (or on a curve). We first look
at the special case when the robot may travel with infinite speed. For this case,
the problem of visiting all sites within their time windows is always feasible. The
goal therefore is to minimize the travel distance. We show a dual algorithm for
this instance as below.

Theorem 1. Given an instance for 1D TWTSP problem when the speed bound
s for the robot is ∞, let Lmax be the maximum length of the input segments.

Then for any ε > 0, in O(nO(log Lmax
log(1+ε)

) logLmax) time we can find a path P , such
that

1. the length of P is at most OPT , the optimum of the problem,
2. each segment σi is visited in time window [ri − εLi, di + εLi], where Li =

di − ri.
To prove this theorem we first look at special cases called dyadic instances

when all time windows are dyadic. That is, when the length of each time window
is a power of two, and the release time is a nonnegative integer multiple of its
length. For a dyadic interval I, let IL and IR be its the left and right child interval
respectively, when we cut the interval I at its midpoint. In Subsection 2.1 we
first give a polytime algorithm for dyadic instances using dynamic programing.

In Subsection 2.2 we generalize the above algorithm to an O(nO(h) logLmax)
time algorithm for h-dyadic instances, which is defined below. Consider a dyadic
interval I = [a, b] of the t-axis, and let S(I) be the segments fully contained in
the slab I × [−∞,∞] and stabbed by the midline of this slab, i.e. {(a+ b)/2} ×
[−∞,∞]. We call an instance h-dyadic, if we can partition each dyadic interval
I at interger values (called the partition points) into at most h pieces so that
(1) for each segment s in S(I), the two endpoints project to partition points on
the t axis; and (2) for every dyadic interval I = [a, b], every partition point for
I is also a partition point for the children intervals of I, i.e. [a, 12 (a + b)] and
[12 (a+ b), b], but not vice-versa.

Last we show that for any ε > 0, we can transform any instance I to an
O(logLmax

log(1+ε))-dyadic instance I ′, such that each time window is stretched by at

most (1 + ε) times (Subsection 2.3), which completes the proof.

After we have a good understanding of the case when the robot can travel
with infinite speed, we now handle the general case when the robot speed is
bounded by s.

Theorem 2. Given an instance for 1D TWPC problem with bounded velocity s,
let Lmax be the maximum length of the input segments, and assume the shortest

time window has length ≥ 1. Then for any ε > 0, in O((nLmax)O(log Lmax
log(1+ε)

)) time
we can find a path P , such that

1. the number of segments that P visits is at least OPT ,
2. each segment σi is visited in [ri − εLi, di + εLi], where Li = di − ri.

Similar result holds for 1D TWTSP with finite speed.

2.1 Infinite Speed (s = ∞) for Dyadic Instance

Lemma 1. For dyadic instances, the 1D TWTSP problem with infinite speed
(s =∞) can be solved in poly(n) time.

Proof. The main idea is to use dynamic programming. For that, we now in-
troduce the subproblems. Let |P | be the length of a path P . Given a dyadic
interval I = [a, b], we use P ∗ = OPT (I; θ), where θ = (xN , xS , xb, xe), to denote
the optimum of the following subproblem:

Minimize |P |, s.t.

1. P visits all segments that are fully contained in I;
2. the points with maximum and minimum x-coordinate that P visits in I are
xN and xS respectively;

3. P starts and ends in xb and xe respectively.

If there is no feasible solution to the problem of OPT (I; θ), then we take its
value to be −∞. This happens when the parameters in θ are contradictory to
each other. For example, xN < xS , or xb > xN or xe < xS , we do not enumerate
them here.

Now define P ∗|IL and P ∗|IR as the restriction of P on the two children
intervals IL, IR (that is, I is partitioned in the middle and the left one is IL and
the right one is IR). By an exchange argument, P ∗|IL is in fact the optimal of
OPT (IL; θ∗L), where θ∗L is the parameter induced by P ∗L: θ∗L=(xN,L, xS,L, xb,L,
xe,L), where xN,L/xS,L is the max/min x-coordinates position that P ∗ visits in
IL and xb,L/xe,L is the starting point/ending point of P ∗ in IL. Specifically, if
there is another path P ′ on IL having parameter θ∗L whose length is shorter than
P ∗|IL , then the concatenation P ′ ∪ P ∗|IR should be shorter than P ∗. That is a
contradiction. Similarly, we know P ∗|IR = OPT (IR; θ∗R).

Given θ, θL, θR, where θL = (xN,L, xS,L, xb,L, xe,L), and θR = (xN,R, xS,R,
xb,R, xe,R), we say θL, θR are compatible with θ, if max{xN,L, xN,R} = xN ,
min{xS,L, xS,R} = xS , and xe,L = xb,R. Hence, we have the following recur-
rence: OPT (I; θ) = min{OPT (IL; θL) + OPT (IR; θR): θL, θR are compatible
with θ}.

Therefore, if we know OPT (J ; θ) for each Level(k) interval J and all θ,
then we are able to compute OPT (I; θ′) for all Level(k+ 1) interval and all θ′ in
O(n12Lmax logLmax) time. Specifically, for a fixed θ, we find the minimum value
over O(n4) ·O(n4) = O(n8) choices of θL and θR. Since there are O(n4) different
θ, it takes O(n12) to find OPT (I; θ) for all θ. Since there are O(logLmax) rows
in our lookup table, each row with O(Lmax) dyadic intervals, the total running
time for computing all subproblems is O(n12Lmax logLmax). Now by rescaling
the t-axis Lmax can be viewed as linear in n. So the running time is O(n13 log n).

2.2 Infinite Speed (s = ∞) for h-dyadic Instance

To generalize the dynamic programming idea used in the dyadic instance, we
consider the notion of an h-dyadic instance by capturing the intuition that the
solution for a larger interval can be solved by using solutions for h subintervals.
To do that, we first explain the definitions of h-dyadic instances.

Given an interval [a, b], let π: a = t0 ≤ t1 ≤ ... ≤ tk−1 ≤ tk = b be a partition
of [a, b] into k ≤ h subintervals, we call such a partition an h-partition, and
each ti is called a partition point. Now we define the Inheriting Property. Given
a collection of dyadic intervals each associated with a h-partition, π(I) for the
dyadic interval I, we say this family of partitions has the inheriting property, if
for any two sibling dyadic intervals I1, I2 (i.e., whose union/parent I is also a
dyadic interval), the union of the partitioning points of π(I1), π(I2) is a superset
of the partitioning points of π(I).

An instance for TWTSP is called h-dyadic, if we can associate an h-partition
π(I) to each dyadic interval I, such that this family of partitions has the inher-
iting property, and for each input segment σi in the instance, both endpoints of
σi are partition points of π(W (σi)), where W (I) as the minimal dyadic interval
containing I.

Now we modify the dynamic programming for dyadic instances to h-dyadic
instances. We need the following subproblem definition (See Figure 2.2).

Definition 1. (Subproblem for h-dyadic instance) Let I be an instance to 1D
TWTSP problem with infinite speed bound. Let π be an h-partition of I =
[a, b], with partition points {ti}. Define OPT (I;π; θ), where θ = (x1N ,..., xhN ;
x1S,...,xhS ;xb, xe), as the optimum of the following problem:

Minimize |P |, s.t.

1. P visits all segments that are fully contained in I;
2. the maximum and minimum x-coordinates that P visits in [tj−1, tj] are xjS

and xjN respectively, denoted as the vertical range [xjS , x
j
N];

3. P starts and ends in xb and xe respectively.

Let ti ≤ tj , define V [ti, tj] as the set of segments whose projection to the
t-axis is exactly [ti, tj]. Here is a crucial observation (refer to Fig 2.2): given
a dyadic interval I = [a, b], associated with an h-partition π : t0 = a ≤ t1 ≤
... ≤ th = b. Then, path P visits all the segments in V [ti, tj] if and only if

x

ta = t0 b = t8t4t3 t5 t6 t7

x1N

x1S

x

xb

xe

t1 t2

Fig. 1. Illustration
of OPT (I;π; θ). The
red dashed segments
are the max/min
x-coordinates P vis-
its in each interval
[ti−1, ti]. The points
x1N , x1S , xb, xe are
highlighted.

the maximum x-coordinates that P visits in the interval [ti, tj] is “higher” than
the “highest” in V [ti, tj], and minimum x-coordinates that P visits in [ti, tj] is
“lower” than the “lowest” segment in V [ti, tj].

Theorem 3. The 1D TWTSP with s =∞ for h-dyadic instances can be solved
in O(nO(h) logLmax) time.

Proof. The dynamic programming algorithm differs from the dyadic case in two
ways. First, we have a more complicated parameter θ, which now encodes the
vertical ranges in every subinterval, hence having O(h) length. Second, we have
a slightly different recursive structure: in addition to the requirement that θL, θR
be compatible with θ, we also require that all non-dyadic segments in I be visited.

Let π, πL, πR be the h-partitions associated with dyadic intervals I, IL, IR
respectively, where I is the parent of IL, IR. Given a segment σ parallel to
t-axis, let x(σ) be its x-coordinate. We have the following recursive relation:

OPT (I;π; θ) = min
θL,θR

{OPT (IL;πL; θL) +OPT (IR;πR; θR)},

for any j ≤ h,

xjN = max{xiN : tj−1 ≤ tLi−1 ≤ tLi ≤ tj or tj−1 ≤ tRi−1 ≤ tRi ≤ tj},

xjS = min{xiS : tj−1 ≤ tLi−1 ≤ tLi ≤ tj or tj−1 ≤ tRi−1 ≤ tRi ≤ tj},
and for any pair i, j ≤ h,

max{xiN,L, ...xhN,L, x1N,R, ..., xjN,R} ≥ max{x(σ) : σ ∈ V [ti, tj]},

min{xiS,L, ...xhS,L, x1S,R, ..., xjS,R} ≤ min{x(σ) : σ ∈ V [ti, tj]}.
There are four constraints in the relation above. The first two say that if the

max/minimum x-coordinates that P visits in [ti, tj] is x, then P visits x in at
least one subinterval of πL or πR contained in [ti, tj]. The last two constraints are
saying that P must visit all segments in S(I). Indeed, for each i, j, the segments
in V [ti, tj] are all visited by P if and only if the union of vertical ranges of P in
[ti, tj] fully contains the vertical range of V [ti, tj], i.e. [S,N] ⊂ ∪i≤k≤j [xkS , xkN],
where S = min{x(s) : s ∈ V [ti, tj]}, N = max{x(s) : s ∈ V [ti, tj]}.

Since there are O(nO(h) logLmax) entries in the lookup table, the proof is
complete.

ti ti+1

x

t

xi
N

xi
S

tj

Fig. 2. Illustration of
Theorem 3. Segments
in V [ti, tj] are all vis-
ited by P if and only
if the union of verti-
cal ranges of P in [ti, tj]
fully contains the ver-
tical range of V [ti, tj],
For example, all seg-
ments in V [ti, tj] (col-
ored blue) are all vis-
ited by P .

2.3 Infinite Speed (s = ∞) for General Case and Generalizations

For a general instance, how do we approximate a general instance using an h-
dyadic instance? Our idea is as follows: associate a partition to each dyadic
interval, and then stretch the endpoints of each segment σ to some partition
points of π(W (σ)), where W (σ) is the minimal dyadic interval containing σ.

But how to find these partitions? The challenge is as follows: on one hand,
we want the partition points to be sparse, so that we have fewer entries in our
dynamic programming table and hence having a small running time; on the
other hand, we want them to be dense, so that we can stretch each segment
by a factor of at most 1 + ε. Moreover, we wish this family of partitions to
have a nice structure – the “inheriting property” – so that we can use dynamic
programming. Below we define this partition formally.

Given an integer interval I = [a, b], let l = b − a and c = 1
2 (a + b). We say

a partition π is a symmetric two-sided logarithmic ε-dense partition (in short
ε-dense partition) of I if (1) all partition points are integers, (2) this partition
is symmetric with respect to the midpoint c, (3) for any integer q ≤ log1+ε l, the
subinterval [(1 + ε)q + a, (1 + ε)q+1 + a] contains at least one partition point,
unless it contains no integers at all.

The following shows that such a family of partitions exists. The proof is
omitted in this version.

Lemma 2. (ε-dense Partition with Inheriting Property) Let Lmax > 0 be a
power of 2. We can assign a partition π(I) to each dyadic interval I ⊆ [0, Lmax],
such that

1. {π(I): dyadic I ⊆ [0, Lmax]} is a family of partitions with the inheriting
property,

2. each π(I) has at most O(logLmax

log(1+ε)) partition points,

3. π(I) is ε-dense for each dyadic interval I ⊆ [0, Lmax].

Finally, we show our dual approximation for 1D TWTSP with infinite speed.

Proof (Theorem 1). First we construct a family of ε-dense partition Π. Then,
transform our instance into an h-dyadic instance I ′, where h = O(logLmax

log(1+ε)), by

stretching each segment σi so that both its endpoints are the partition points of
π(W (σi)). Find the optimal solution P for I ′ using the dynamic programming.
Clearly |P | ≤ OPT . Note that we have stretched each segment by at most 1 + ε
times, so P visits each segment σi in time interval [ri − εLi, di + εLi], and the
proof is complete.

2.4 Bounded Speed (s < ∞)

The generalization of the above algorithm to a finite speed scenario is non-trivial.
First the problem may not admit a feasible solution if the robot speed is too
slow. Therefore we look at the prize-collecting problem (TWPC). Second, it is
possible that we need to sacrifice some immediate interest in order to obtain more
long-term interest. So the solution structure might completely change when the
speed cap is placed. We will overcome this by carefully defining subproblems and
encoding more parameters in our dynamic programming.

Without loss of generality, we consider rectilinear paths, travelling at most
distance 1 in unit time. For simplicity, we assume the prize placed at each point
is one, though the proof can be easily generalized to the case where arbitrary
prize are allowed at each point.

Let S be a set of segments parallel to the t-axis, and I = [a, b] be any integer
interval. Let S(I) be the set of segments whose projection on the t-axis is fully
inside I. Given path P , let yN and yS denote the maximum and minimum
coordinates among the segments P visits in S([a, b]), define B(P, a, b) as the
rectangle [a, b] × [yS , yN]. For an axis-parallel rectangle/box B in the plane,
denote the upper/lower boundary as ∂N (B) and ∂S(B) respectively. Given a
t-monotone path P , let P (τ) denote the x-coordinate of P at time τ .

Definition 2. Given a dyadic interval I = [a, b], numbers τ−N , τ
+
N , τ

−
S , τ

+
S and

τb, τe, define OPT (I; θ), where θ = (yN , yS ;xN , xS ;xb, xe; τb, τe, τ
−
N , τ

+
N , τ

−
S , τ

+
S),

as the optimal solution to the following problem.
Maximize number of segments in S(I) visited by P , s.t.

1. the maximum and minimum x-coordinates that P visits in I are xN and xS
respectively,

2. among the segments in S(I) that P visits, the maximum and minimum x-
coordinates are yN and yS respectively,

3. P starts/stops at location xb and xe respectively,
4. τb = min{τ ∈ [a, b] : P (τ) ∈ [yS , yN]}, τe = max{τ ∈ [a, b] : P (τ) ∈

[yS , yN]},
5. P arrives at yN at time τ−N and moves to xN , and comes back to yN at time

τ+N ; it also arrives at yS at time τ−S and moves to xS, and comes back to yS
at time τ+S , and finally arrives at xe.

To understand this, consider a path as a (monotone) rope, we hit 8 nails
into the wall to fix the rope. The coordinates of the 8 nails are: (a, xb), (τb, xb),
(τ−N , yN), (τ+N , yN), (τ−N , yS), (τ+S , yS), (τe, xe), (b, xe). You are allowed to change
the shape of the rope, as long as the nails are fixed, and the maximum and

minimum x-coordinate visited are xN , xS . Among all such ropes, find the one
hitting maximum number of segments in S(I). See Fig 3.

x

t

xN

xS
τ−N τ+N τ−S τ+S

B(P, a, b)

τe

a = τb

yN

yS

bc

Fig. 3. Illustration of the
subproblem OPT (I; θ).
The big green box is
B = B(P, a, b).

Now we perform the dynamic programming. Compared with the one in the
last section, we have more parameters for finding OPT (I; θ). We need the maxi-
mum and minimum x-coordinate that P visits in I, as well as the coordinates of
the highest and lowest segment in S(I) that P visits, whose position are denoted
by yN and yS , and the time that P leaves/enters I × [yS , yN].

Define B := B(P, a, b), BL := B(P, a, c), BR := B(P, c, b). The following
lemma says that a “reasonable” path P crosses the boundary of each of these
boxes for O(1) times. With space constraints we omit the proofs in this version.

Lemma 3. (Polynomial Boundary Complexity of P ∗) Let P ∗ = OPT (S([a, b]);
θ), and τb, τe be defined as in Definition 2. Then, P ∗ leaves/enters each of ∂NBL,
∂SBL, ∂NBR, ∂SBR at most once between τb, τe.

Corollary 1. (Foundation of DP) If P ∗ = OPT (S([a, b]); θ), then there exists
parameters θL and θR, such that P ∗|[a,c] = OPT (S([a, c]); θL) and P ∗|[c,b] =
OPT (S([c, b]); θR).

Lemma 4. The 1D TWPC problem with dyadic time windows can be solved in
poly(n,Lmax) time.

As in the case of TWTSP, this dynamic programming can be generalized to
h-dyadic instances, and leads to the algorithm in Theorem 2.

2.5 Generalization

This section we discuss generalization of the results to several other scenarios.
TWTSP/TWPC for m-robots. The result for TWTSP and TWPC with
infinite/finite speed can be easily generalized when m-robots are used, with

running time O((nLmax)O(m log Lmax
log(1+ε)

)).

Monotone TSPN. Our results can be used to show new results for traveling
salesman problem with neighborhood when the path needs to be monotone.
Given a set of regions {Qi}i=1,...,n in the plane, we wish to find a horizontally
monotone TSPN path which minimizes the vertical distance travelled. Suppose
that the width of any region at least 1, and let Lmax be the largest width. Then

for any ε > 0, in O(nO(log Lmax
log(1+ε)

) logLmax) time we can find a path P , whose
vertical distance travelled is at most λ∗, and δ(P,Qi) ≤ ε · width(Qi) for each
Qi. Note that this theorem holds for regions with arbitrary overlapping, shape,
and size.
Improvement of Bansal et al.’s approximation ([4]) As a byproduct, we

also improve Bansal et al.’s approximation ([4]) in 1D, but inO((nLmax)O(log Lmax
log(1+ε)

))
time. They gave the following bi-criteria approximation for the TWPC problem
in general metric space: in poly(n) time find a path that visits O(1

log 1
ε

k∗) points

in [ri, (1 + ε)di].

Theorem 4. For the 1D TWPC problem, in O((nLmax)O(log Lmax
log(1+ε)

)) time, we
can find a path P which visits at least k∗ segments in [ri, (1 + ε)di].

To prove this theorem, we need 2 lemmas.

Lemma 5. Given path P and point v on it, let tP (v) be the time that P visits
v. Suppose tP (v) ∈ [1

1+εr(v), (1 + ε)d(v)] for each v visited by P for some ε < 1.
Then, by slowing down P by (1 + ε), we obtain a path P ′ such that tP ′(v) ∈
[r(v), (1 + 3ε)d(v)] for each v visited by P .

Proof. Since tP ′(v) = (1 + ε)tP (v), we know tP ′(v) ∈ [r(v), (1 + ε)2d(v)]. Since
ε < 1, we have (1 + ε)2 ≤ 1 + 3ε.

Lemma 6. For any ε > 0, there exists a family of partitions Π = {π(I): interval
I ⊆ [0, L] is dyadic} with the inheriting property, such that

1. for any dyadic I, and any integer q with [(1 + ε)q, (1 + ε)q+1] ∩ I 6= ∅, there
is a partition point of π(I) in the interval [(1 + ε)q, (1 + ε)q+1], and

2. each π(I) has O(logL
log(1+ε)) partition points.

Proof. Consider the sequence Z = {p(1 + ε)qq : q = 1, 2, ..p logL
log(1+ε)q}. For each

dyadic interval I = [a, b], let π(I) = {a, b} ∪ Z. Clearly this family of partitions
satisfies the inheriting property. By definition, it satisfies condition (1). To ver-
ify (2), we note that Z has O(logL

log(1+ε)) partition points, hence the number of

partition points in π(I) is at most O(logL
log(1+ε)) + 2 = O(logL

log(1+ε)).

Proof of Theorem 4. For each si, with time window [ri, di], stretch its left
endpoint leftwards to the nearest partition point of π(W (si)), and stretch its
right endpoint rightwards to the nearest partition point of π(W (si)). Let the new
segment be s′i, with time window [r′i, d

′
i]. Then, r′i ≥ 1

1+εri and d′i ≤ (1 + ε)di.

Since the new instance is O(logLmax

log(1+ε))-dyadic, we can find an optimal solution

P ∗ in O((nLmax)O(log Lmax
log(1+ε)

)) time. We complete the proof by slowing down P ∗

by a factor of (1 + ε).

3 General Metric Space

Given an instance of time window TSP problem in a metric space with metric
δ(·, ·). Let smin be the smallest speed s such that there exists a feasible solution.
For a given speed bound s ≥ smin, let λ∗(s) be the minimum possible travel
distance. For s ≥ smin, an algorithm is an (α, β) dual approximation if the robot
moves with speed ≤ αs, and travels a total distance ≤ βλ∗(s). The key result
for our dual-approximation is the following theorem for dyadic time windows.

Theorem 5. Under the assumption above, if s ≥ smin, then there is an algo-
rithm with (O(logL), O(logL)) dual approximation for the TWTSP problem for
dyadic instance, with running time O(nLmax log n+ n1.5Lmax).

When s =∞, we can have the following stronger result.

Theorem 6. For s =∞ and arbitrary time windows, there is a polytime O(log n)-
approximation for the TWTSP problem in a metric space.

We do not have space to present the proofs for the above cases. But we will
present the results and proofs for the most important special case which leads
to the results in the general case.

3.1 Proof for an Elementary Case

We begin with a special case called an elementary instance: All release times are
integers; Each time window is either unit-length or [0, L], for some fixed integer
L; For each i ≤ L, there is at least one node with time window [i− 1, i].

Theorem 7. For TWTSP problem in general metric space and s ≥ smin, there
is a poly(n) time (O(1), O(1)) dual approximation for an elementary instance.

We call the nodes with unit time window “red nodes”, and those with time
window [0, L] “black nodes”. By losing a constant factor in speed, we can assume
the path takes the following form (See Fig 4): it starts from a red node with time
window [0, 1], say Red1, then visits some black nodes (the black cycle in Fig 4),
then returns to Red1, and visits all other red nodes with time window [0, 1] (the
red cycle in Fig 4), and then goes to a red node with time window [1, 2], say
Red2, and repeat. Hence, among all the nodes with time window [i, i+ 1], there
is a “representative” red node which is attached with two cycles each of length
at most s, one black and one red, denoted by CycleB(Redi) and CycleR(Redi)
respectively.

We first find an MST of the sites and cut the tree into subtrees called “blocks”
T = {T1,...,Tk}, such that (1) all blocks have size between C1s and C2s except
at most one block (called the “exceptional block”) whose size is less than C1s,
and (2) every vertex is contained in at most two blocks. For each i ≤ L, pick
an arbitrary red node with time window [i− 1, i] as Redi, build an unweighted
bipartite graph H on the chosen red nodes {Redi}1≤i≤L and subtrees {Tj}: add
an edge (Redi, Tj) if δ(Tj , Redi) ≤ s.

[2,3]

[3,4]

[0,1]

[1,2]

Fig. 4. (a) Left: Each black and red cycle is of length at most s. The distance between
Redi and Redi+1 is at most s. (b) Right: A perfect ∆-matching, ∆ = 3.

Find a perfect ∆-matching M in H. Here a ∆-matching is a subgraph such
that each red node has at most ∆ edges in the matching and each subtree has
exactly one edge in the matching. See Fig 4(b). If (Redi, Tj) ∈ M , then we say
block Tj is “assigned” to red node Redi.

For each i ≤ L, start from Redi, traverse all the blocks assigned to it, then
return to Redi, then visit all other red nodes with time window [i − 1, i] along
an O(1)-approximate TSP tour on them, and finally add the edge between Redi
and Redi+1.

The proof that the above algorithm achieves what we want comes from the
following four lemmas. The proofs of some of them are omitted.

Lemma 7. (Generalized Hall’s Marriage Theorem) In a bipartite graph G =
(VR ∪ VB , E), if for any subset X of VB, the neighboring vertices set ΓG(X)
satisfies |ΓG(X)| ≥ 1

∆ |X|, then there exists a perfect ∆-matching.

Lemma 8. Given a weighted undirected graph G = (V,E), let T1, ...Tm be some
node-disjoint subtrees of MST (G). Let V ′ = ∪1≤i≤mV (Ti) and G′ be the restric-
tion of G on V ′. Then MST (G′) ≥∑

i |Ti|.

Lemma 9. Let A = {T1,...Tk} ⊆ T , and V (A) be the union of nodes in the
blocks in A, i.e. V (A) = ∪i∈AV (Ti). Then the black cycles associated with the
red nodes in Γ (A) together cover V (A), i.e. V (A) ⊆ ∪r∈Γ (A)BlackCycle(r).

Lemma 10. Suppose s ≥ smin, then for any set of blocks A = {T1,...Tk} ⊆ T ,
we have |Γ (A)| ≥ µ|A|, where µ = C1

αst(C2+3) .

Proof. Define V (A) = ∪Ti∈AV (Ti), where V (Ti) are the sites in Ti. The idea is
to use MST (V (A) ∪ Γ (A)) as an intermediate quantity to derive an inequality
of |A| and |Γ (A)|.

Assume that for any red node r ∈ Γ (A), there is another red node r′ ∈ Γ (A),
s.t. δ(r, r′) ≤ (C2 + 2)s. We will show how to remove this assumption later.

First we derive an upper bound for MST (V (A) ∪ Γ (A)). Since s ≥ smin,
there is a path P visiting all vertices in their time windows. We will use P to
construct a spanning tree for V (A) ∪ Γ (A). By adding |Γ (A)| − 1 edges, each

with length ≤ s, we can connect all the black cycles of the red nodes in Γ (A).
From Lemma 9, we know that this subgraph visits all nodes in V (A) ∪ Γ (A).
Hence,

MST ((V (A)) ∪ Γ (A)) ≤ |Γ (A)|s+ (|Γ (A)| − 1) · (C2 + 2)s

≤ ((C2 + 3) · |Γ (A)| − 1)s.

On the other hand,

MST ((V (A)) ∪ Γ (A)) ≥ 1

αst
MST (V (A))

≥ 1

αst

|A|∑
i=1

|Ti| ≥
C1 · s
αst
|A|.

The second last inequality is due to Lemma 8. It follows that

|Γ (A)|
|A| ≥ µ =

C1

αst(C2 + 3)
.

Next we remove the assumption that for any set of red nodes r ∈ Γ (A),
there is another red node r′ ∈ Γ (A), s.t. δ(r, r′) ≤ (C2 + 2)s. Build the following
auxiliary graph G′: its nodes are all red nodes in Γ (A), for each pair of nodes
in G′, say u, v, add an edge (u, v) if δ(u, v) ≤ 2C2s. Then, these red nodes are
classified into several connected components, say {Ci}i. For each i, we have
ri ≥ µai, where ri = |Ci| and ai = |Γ (Ci)|. It follows that |Γ (A)| ≥ µ

∑
i ai.

Since the size of Tj is at most C2s, for every Tj ∈ A, there is at most one Ci s.t.
δ(Ci, Tj) ≤ s. Clearly, each Tj ∈ A intersects at least one Ci, thus

∑
i ai = |A|.

The proof is complete by combing this with |Γ (A)| ≥ µ∑i ai.

Now we are ready to prove Theorem 7.
Proof of Theorem 7. Fix constants C1, C2. Since s ≥ smin, by lemma 10,

there exists a perfect ∆-matching in H, where ∆ = αst(C2+3)
C1

. Since (i) each red
node is assigned with at most ∆ blocks, (ii) each block is no larger than C2s,
and (iii) the distance between a block and the red node it is assigned to is at
most s, it follows that the total distance we travel in each unit length interval is
at most O(∆)s = O(1)s. Since the the blocks are edge-disjoint subtrees of the
MST, the total distance travelled is at most O(1)λ∗(s).

4 Conclusion and Future Work

In this paper we presented new results for time window TSP and prize-collecting
problems. There are still rooms to improve or obtain good approximation ratios
in the general case, or present new inapproximation results for these problems.
We hope that these results will be useful in guiding scheduling of autonomous
vehicles in practice.

References

1. E. M. Arkin, J. S. Mitchell, and G. Narasimhan. Resource-constrained geomet-
ric network optimization. In Proceedings of the fourteenth annual symposium on
Computational geometry, pages 307–316. ACM, 1998.

2. S. Arora. Polynomial time approximation schemes for euclidean TSP and other
geometric problems. In Foundations of Computer Science, 1996. Proceedings., 37th
Annual Symposium on, pages 2–11. IEEE, 1996.

3. Y. Azar and A. Vardi. TSP with time windows and service time. arXiv preprint
arXiv:1501.06158, 2015.

4. N. Bansal, A. Blum, S. Chawla, and A. Meyerson. Approximation algorithms
for deadline-TSP and vehicle routing with time-windows. In Proceedings of the
Thirty-sixth Annual ACM Symposium on Theory of Computing, STOC ’04, pages
166–174, 2004.

5. R. Bar-Yehuda, G. Even, and S. M. Shahar. On approximating a geometric prize-
collecting traveling salesman problem with time windows. Journal of Algorithms,
55(1):76–92, 2005.

6. A. Blum, S. Chawla, D. R. Karger, T. Lane, A. Meyerson, and M. Minkoff. Approx-
imation algorithms for orienteering and discounted-reward TSP. SIAM Journal on
Computing, 37(2):653–670, 2007.

7. H.-J. Bockenhauer, J. Hromkovic, J. Kneis, and J. Kupke. The parameterized
approximability of TSP with deadlines. Theory of Computing Systems, 41(3):431–
444, 2007.

8. C. Chekuri, N. Korula, and M. Pál. Improved algorithms for orienteering and
related problems. ACM Transactions on Algorithms (TALG), 8(3):23, 2012.

9. K. Chen and S. Har-Peled. The orienteering problem in the plane revisited. In
Proceedings of the twenty-second annual symposium on Computational geometry,
pages 247–254. ACM, 2006.

10. M. Desrochers, J. K. Lenstra, M. W. Savelsbergh, and F. Soumis. Vehicle routing
with time windows: optimization and approximation. Vehicle routing: Methods and
studies, 16:65–84, 1988.

11. G. Gutin and A. P. Punnen. The Traveling Salesman Problem and Its Variations.
Springer, 2007.

12. J. S. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A sim-
ple polynomial-time approximation scheme for geometric TSP, k-MST, and related
problems. SIAM Journal on Computing, 28(4):1298–1309, 1999.

13. J. S. B. Mitchell. Encyclopedia of Algorithms, chapter Approximation Schemes for
Geometric Network Optimization Problems, pages 1–6. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2015.

14. V. Nagarajan and R. Ravi. Approximation algorithms for distance constrained
vehicle routing problems. Networks, 59(2):209–214, 2012.

15. J. N. Tsitsiklis. Special cases of traveling salesman and repairman problems with
time windows. Networks, 22(3):263–282, 1992.

5 Appendix

5.1 Experiments

We have implemented our algorithm for the TWTSP in Euclidean spaces, as-
suming dyadic time windows. We report briefly on some selected experiments.

First, we tested the running time of the algorithm on random instances. We
generated n sites with integer coordinates uniformly distributed in [0, 1000] ×
[0, 1000]. We assigned each site to have a time window that is randomly cho-
sen from dyadic intervals based on maximum time interval length Lmax ∈
{22, 23, . . . , 27}. The running times are shown in Table 1. We see that, for
fixed Lmax, the running times (in seconds) grow roughly linearly in n, for
n ∈ {214, 215, . . . , 220}. This is consistent with our theoretical time bound of
O(nLmax log n+ n1.5Lmax).

shown below.

Theorem 8. The running time of our algorithm for dyadic instance in the plane
is O(nLmax log n+ n1.5Lmax).

Proof. For a point set in the plane, an MST can be found in O(n log n) time by
using Delaunay triangulation, hence the time for finding MST on all O(Lmax)
groups is O(nLmax log n). Note that the fastest algorithm for maximum bipartite
matching is O(V 0.5E), where V,E are the number of nodes and edges. Since we
have O(n) nodes and O(nLmax) edges in the bipartite graph we constructed,
the time for finding a maximum matching is O(n1.5 · Lmax), and the proof is
complete.

Since the O(V 0.5E)-time algorithm bipartite matching algorithm is very com-
plicated, in our implementation, however, we find maximum bipartite matching
by reformulating it to a max-flow problem.

Next, we ran tests to compare how well our algorithm performs in terms of
its approximation ratio. We compared to two heuristics:

(1) For each site vi, with dyadic time window [ri, di], we assign vi to a random
integer Xi ∈ [ri, di − 1]. This results in each site vi being assigned to a
cluster, associated with the integer Xi. We then compute for each cluster
j ∈ [1, Lmax − 1] an approximate TSP path through the sites associated
with cluster j, and concatenate these paths in order, by j.

(2) For each site vi, with dyadic time window [ri, di], we assign vi to the integer
j ∈ [ri, di − 1] that minimizes the distance between vi and the set of sites
whose time window equals [j, j+1]. This results in each site vi being assigned
to a cluster, associated with an interval [j, j + 1]. We then compute for
each cluster j ∈ [1, Lmax − 1] an approximate TSP path through the sites
associated with cluster j, and concatenate these paths in order, by j.

In both of these two algorithms, we used the well known factor-2 MST-traversal
algorithm for finding approximate TSP path. Table 2 shows the result of running

our algorithm and the two heuristics on an instance (from the TSP Library)
whose sites are a set of 4463 cities in Canada. For this experiment, we set Lmax =
7. We show the total length of the path computed, the ratio of the length to
the optimal length (λ∗(s) = 1290.032, which was given in the library), and the
maximum speed utilized by the solutions.

We see that our algorithm yielded a shorter path than did Heuristic (1), using
only slightly higher speed. While Heuristic (2) achieved a shorter length than
our algorithm, it did so at a cost of using a much greater speed; this heuristic
does poorly at controlling the speed, since it does not assign points to clusters
in a “balanced” manner, as does our algorithm; in fact, it can end up having
arbitrarily large speeds.

Table 1. Running Time Test (in seconds)

log2 Lmax

2 3 4 5 6 7

log2 n

14 1.585 1.659 2.038 2.561 3.667 5.960
15 3.226 3.503 4.098 5.183 7.113 11.149
16 6.859 8.010 8.711 10.912 14.798 22.850
17 14.298 15.853 18.036 22.018 30.136 49.199
18 36.903 39.510 46.926 59.194 84.631 125.104
19 61.954 67.883 78.914 99.073 135.869 276.448
20 124.860 144.1080 169.673 216.227 312.26 968.360

Table 2. Approximation Ratio and Maximum Speed (λ∗(s) = 1290.032)

length ratio with d∗(s) max speed

Algorithm
Our Algorithm 7472.677 5.791 273.322
Heuristic 1 17959.672 13.922 211.029
Heuristic 2 4060.160 3.147 724.704

5.2 Proof of Lemma 3

Lemma 3 (Polynomial Boundary Complexity of P ∗) Let P ∗ = OPT (S([a, b]);
θ), B = B(P ∗, a, b), BL = B(P ∗, a, c) and BR = B(P ∗, c, b). Let τb, τe be defined
as in Definition 2. Then, P ∗ leaves/enters each of ∂NBL, ∂SBL, ∂NBR, ∂SBR
at most once in [τb, τe].

Proof. We only prove the following statement, since other parts are similar: P ∗

leaves/enters ∂NBL at most once in τb, τe. (Recall that τb = min {τ ∈ [a, b]:
P (τ) ∈ [yS , yN]}, and τe = max {τ ∈ [a, b]: P (τ) ∈ [yS , yN]}.) Let I = [a, b].
Suppose a path P leaves BL more than once in τb,L, τe,L (see the blue path in

Figure 5). Let Qi be the components of P BL, i.e. portions P outside BL. Let
Qk be the highest portion. By definition of BL, each Qi visits no segment in
S(IL). Since any segment that Qi visits in V [a, b] must also be visited by Qk,
we can remove Qi and touch no less segments.

xN,L

yN

x

t

BL

BR

ca b

x

yN,L

yS,L
yS,R

yN,R

τb,L τe,L

xN

yS

Q1

Q2

Fig. 5. Illustration of the “polynomial boundary complexity” lemma. The two light
green boxes are BL = [a, c]× [yS,L, yN,L] and BR = [c, b]× [yS,R, yN,R], while the dark
green one is B. Let P ∗ = OPT (I; θ). Suppose between [τb, τe], the left path P ∗|L has
2 pieces outside BL, denoted by Q1, Q2. In this case, we can remove Q1 without losing
any prize in S(I). Indeed, one the one hand, by definition of BL, Qi’s do not touch
any segment in S(IL), so flattening Q1 will not reduce the number of segments P ∗

touches in S(IL). On the other hand, since any segment in V [a, b] that Q1 touches is
also touched by Q2, so flattening Q1 does not reduce the number of segments in V [a, b]
that P ∗.

5.3 Proof of Lemma 4

Lemma 4. The 1D TWPC problem with dyadic time windows can be solved in
poly(n,Lmax) time.

Proof. Let us start by showing a simple example where the dynamic program-
ming for TWTSP no longer holds for TWPC. Consider the 1D TWTSP prob-
lem with s = ∞ for a dyadic instance, we will use the notation OPT (I; θ) as
in the last section for now. Recall that if P ∗ = OPT (I; θ) for some dyadic
interval I, where θ encodes the highest/lowest positions visited by P , then

xN,L = xb

xS,L

x

tca b

106 segments

x1

x2

x

Fig. 6. a simple example
where the dynamic pro-
gramming for TWTSP no
longer holds for TWPC. The
dashed slanted line is the op-
timal solution.

P ∗|IL = OPT (I; θ∗L) where θ∗L is the parameter induced by P ∗|IL . But for the
finite speed TWPC problem this is not the case.

Consider the example in Fig 6. Suppose there are a million and one segments
in our instance. Suppose |xb−x2| is such that if we move towards x2 immediately,
we can touch those segments just in time. Thus, any optimum path P ∗ should
ignore the segment at location x1, otherwise it will not have enough time to
travel to x2. Note that P ∗|IL is not OPT (IL; θ∗L), where θ∗L is the parameter it
induces on IL, since P ∗|IL collects 0 prize while OPT (I; θ∗L) is 1.

The proof is similar to the one for TWTSP. Given a dyadic interval I = [a, b],
we define OPT (I, θ) as in Definition 3. Given θ, θL, θR, where

θ = (yN , yS ;xN , xS ;xb, xe; τb, τe, τ
−
N , τ

+
N , τ

−
S , τ

+
S),

θL = (yN,L, yS,L;xN,L, xS,L;xb,L, xe,L; τb,L, τe,L, τ
−
N,L, τ

+
N,L, τ

−
S,L, τ

+
S,L),

θR = (yN,R, yS,R;xN,R, xS,R;xb,R, xe,R; τb,R, τe,R, τ
−
N,R, τ

+
N,R, τ

−
S,R, τ

+
S,R),

we say θL, θR are compatible with θ, if there exists a path P with parameter θ,
such that P |IL and P |IR have parameter θL and θR respectively. Clearly, given
θL, θR, θ, it takes constant time to check their compatibility. Define

g(a, b;xN , xS) = #{s ∈ V [a, b] : x(s) ∈ [xS , xN]}.

We claim that P ∗|IL = OPT (IL; θL), where θL is the parameter induced by
PL. The similar also holds for P ∗|IR .

We prove the claim above by the following swapping argument. Given a path
P , let AL(P), AR(P), Amid(P) be the number of segments it visits in S(IL) and
S(IR), V [a, b] respectively. Then, the number of segments in S(I) that it visits
equals AL(P) + AR(P) + Amid(P). So if P ′:= OPT (IL;π(IL); θL) visits more
segments in S(IL) than P ∗|IL , then P ′ ∪ P ∗|IR visits more segments in S(I)
than P ∗. Note that Amid(P), AL(P) and AR(P) are completely determined by
θL and θR, and P ∗|IL , P ′ share the same parameter θL, so P ′ ∪ P ∗|IR is also
feasible, contradiction. Hence, we have the following recursive relation:

OPT (I; θ) = max{OPT (IL; θL)+OPT (IR; θR)+g(a, b;xN , xS) : θL, θR compatiblewith θ}.

Clearly there are O(n24) combinations of parameters (θL, θR), and for each
combination, it takes polynomial time to check whether it is compatible with θ

and compute g(a, b;xN , xS). Clearly, there are O(n12) different parameters for
each dyadic I, and O(Lmax) dyadic intervals in each row in the lookup table.
Since there are O(logLmax) rows in the lookup table, the proof is complete.

5.4 Proof of Theorem 2

Theorem 2 Given an instance for 1D TWPC problem with bounded velocity s,
let Lmax be the maximum length of the input segments, and assume the shortest

time window has length ≥ 1. Then for any ε > 0, in O((nLmax)O(log Lmax
log(1+ε)

)) time
we can find a path P , such that

1. the number of segments that P visits is at least k∗,
2. each segment si is visited in [ri − εLi, di + εLi], where Li = di − ri.

Definition 3. Given a dyadic interval I = [a, b], and an h-partition π = {ti}
on it. Also given the following sequences, each of length h:

XN = {xiN}1≤i≤h,

XS = {xiS}1≤i≤h,
Xb = {xib}1≤i≤h,
Xe = {xie}1≤i≤h,

T−N = {τ−,iN }1≤i≤h,

T+
N = {τ+,iN }1≤i≤h,

T−S = {τ−,iS }1≤i≤h,

T+
S = {τ+,iS }1≤i≤h,
Tb = {τ ib}1≤i≤h,
Te = {τ ie}1≤i≤h.

Define OPT (I; θ) where θ = (yN , yS ;Xb, Xe; T
−
N , T

+
N , T

−
S , T

+
S ;Tb, Te) as the

optimal solution to the following problem:

Maximize number of segments in S(I) visited by P , s.t.

1. the max/minimum x-coordinates that P visits in [ti−1, ti] are xiN and xiS
respectively,

2. the x-coordinates of the highest/lowest segment in S(I) that P visits are yN
and yS respectively,

3. the initial and ending position in [ti−1, ti] of P are xib and xie respectively,
4. τ ib = min {τ ∈ [ti−1, ti]: P (τ) ∈ [yS , yN]}, τ ie = max {τ ∈ [ti−1, ti]: P (τ) ∈

[yS , yN]},

5. In each [τ ib , τ
i
e], P arrives at yN at time τ−,iN and moves to xiN , and comes

back to yN at time τ iN , it also arrives at yS at time τ−,iS and moves to xiS,

and comes back to yS at time τ+,iS , and finally arrives at xie.

As a subroutine, we first prove the following result.

Theorem 9. The 1D TWPC problem with h-dyadic time windows can be solved
in O((nLmax)O(h)) time.

Similar to the dyadic case, the proof relies on the fact that any reasonable
path has small boundary complexity. The following is a straightforward gener-
alization of Lemma 3.

Lemma 11. (Boundary Complexity of P ∗) Let P ∗ = OPT (S([a, b]); θ), B =
B(P ∗, a, b), BL = B(P ∗, a, c) and BR = B(P ∗, c, b). Let Tb, Te be defined as
in Definition 3. Then for each i ≤ h, P ∗ leaves/enters each of ∂NBL, ∂SBL,
∂NBR, ∂SBR at most once between τ ib , τ

i
e.

Proof of Theorem 9. Mimic the proof for dyadic case. Let I = [a, b] be
a dyadic interval with midpoint c. Define θ as in Definition 3. Given θ, θL, θR,
where

θ = (yN , yS ;Xb, Xe;T
−
N , T

+
N , T

−
S , T

+
S ;Tb, Te),

θL = (yN,L, yS,L;Xb,L, Xe,L;T−N,L, T
+
N,L, T

−
S,L, T

+
S,L;Tb,L, Te,L),

θR = (yN,R, yS,R;Xb,R, Xe,R;T−N,R, T
+
N,R, T

−
S,R, T

+
S,R;Tb,R, Te,R),

we say θL, θR are compatible with θ, if there exists a path P with parameter θ,
such that P |IL and P |IR have parameter θL and θR respectively.

The proof follows immediately from the following recursive relation, which
can be easily verified with a swapping argument similar in the dyadic case:

OPT (I;π; θ) = max
θL,θR

{OPT (IL;πL; θL) +OPT (IR;πR; θR) +
∑

1≤i≤c<j≤h

gij},

where
gij := g(tLi , t

R
j ; max

i≤l≤j−1
{xlN}, min

i≤l≤j−1
{xlS}),

and θL, θR are compatible with θ.

5.5 Proof of Theorem 2

Theorem 2. Given an instance for 1D TWPC problem, let Lmax be the max-
imum length of the input segments, and assume the shortest time window has

length ≥ 1. Then for any ε > 0, in O((nLmax)O(log Lmax
log(1+ε)

)) time we can find a
path P , such that

1. the number of segments that P visits is at least k∗,
2. each segment si is visited in [ri − εLi, di + εLi], where Li = di − ri.

Proof. Very similar to TWTSP. First construct a family of ε-dense partition
Π. Then, transform our instance into an h-dyadic instance I ′, where h =
O(logLmax

log(1+ε)), by stretching each segment si so that both its endpoints are the

partition points of π(W (si)). Find an optimal solution P for I ′ in O(nO(h))
time. Clearly |P | ≥ λ. Note that we have stretched each segment by at most
1 + ε times, so P visits each segment si is visited in [ri − εLi, di + εLi].

5.6 Proof of Lemma 2

Lemma 2. Let Lmax > 0 be a power of 2. Then we can assign a partition π(I)
to each dyadic interval I ⊆ [0, Lmax], such that

1. Π = {π(I): dyadic I ⊆ [0, Lmax]} is a family of partitions with the inheriting
property,

2. each π(I) has at most O(logLmax

log(1+ε)) partition points,

3. π(I) is ε-dense for each dyadic I ⊆ [0, Lmax].

Proof. See Fig 7 and Fig 8. Recall that we say a dyadic interval I is on level
l, if its length is 2l. Let lmax := O(logLmax). We will construct this family of
partitions Π “dynamically”: at iteration l = 0, 1, ..., lmax, we construct π(J)
for every dyadic interval J on level l, and in order to maintain the inheriting
property, we also add some new partition points to π(I) for every offspring I of
J .

Let πl(I) be the partition associated with I after l iterations in our construc-
tion process, and Hl(I) be the number of partition points in πl(I). Note that if
l < level(I) then πl(I) = ∅, because we have not yet started constructing π(I).
Also note that for any fixed I, Hl(I) is a non-decreasing with respect to l.

We construct Π as follows: at iteration l, for an interval J on level l,
(1) copy the left half of πl(JL) to the leftmost quarter of J , and similarly the

right half of πl(JR), to the rightmost quarter of J . (see Figure 7.)
(2) add O(1

log(1+ε)) extra partition points to J in the middle, in order to

ensure the ε−dense property. In fact, let L be the length of I. Since log1+ε L -

log1+ε
L
2 = log 2

log(1+ε) , we know that the number of partition points added in the

middle is log 2
log(1+ε) = O(1

log(1+ε)). (see Figure 7)

(3) In order to maintain the inheriting property, we also add extra O(1
log(1+ε))

partition points to all offsprings of J , and maintain the symmetry of each parti-
tion by adding O(1

log(1+ε)) more partition points to each offspring, see Figure 8.

From the description of the construction, we know that for J on level l,

Hl(J) ≤ 1

2
Hl−1(JL) +

1

2
Hl−1(JR) +O(

1

log(1 + ε)
),

and for any I and l ≥ level(I),

Hl+1(I) ≤ Hl(I) +O(
1

log(1 + ε)
).

Then, for any J with level(J) = l ≤ lmax, we have

Hlmax(J) ≤ Hl(J) +O(
lmax − l

log(1 + ε)
).

In particular, when l = 0,

Hlmax(J) ≤ O(1) +O(
lmax

log(1 + ε)
) = O(

logLmax
log(1 + ε)

).

Add O(1
log(1+ε)

) new partition points

JL
JR

J

(left child of J)
(right child of J)

copy the partition points from its children

Fig. 7. Illustration of the dynamic construction of ε-dense partitions, stage 1. The red
partition points in J are directly copied from JL and JR. Then we add the green points
to J in order to make π(J) ε-dense.

JL JR

J

copy the green points from
J to its all children

JL,L JL,R JR,RJR,L

maintain symmetry

Fig. 8. Illustration of stage 3. in order to maintain the inheriting property, add the
green point back to all offsprings of J .

5.7 Proof of Theorem 6

Lemma 12. If all time windows are unit length, then there is constant factor
approximation for the TWTSP problem in metric space.

Proof. Consider the following algorithm: for integer t, let St be the points whose
time window contains t. Pick any two points at, bt in St for each t, and find an
O(1)-approximation Pt for the point-to-point TSP problem for St, starting at at
and ending in bt. Then concatenate the paths Pt’s by connecting bt with at+1.
Then the total distance is

∑
t δ(bt, at+1) +

∑
t |Pt|.

We claim that this value is most O(1) ·λ∗. Let P ∗ be an optimal solution, and
P ∗[t,t′] be its restriction on time window [t, t′]. Clearly, |Pt| ≤ O(1) · |P ∗[t−1,t+1]| for

each t, since P ∗[t−1,t+1] must visit all points in St. On the other hand, δ(bt, at+1) ≤
|P ∗[t−1,t+2]| since both bt and at+1 are visited by P ∗ in [t − 1, t + 2]. Therefore,∑
t δ(bt, at+1) +

∑
t |Pt| ≤

∑
tO(1) · |P ∗[t−1,t+1]| +

∑ |P ∗[t−1,t+2]| ≤ O(1)|P ∗| =

O(1) · λ.

5.8 Proof of Lemma 7

Lemma 7. In a bipartite graph G = (VR ∪ VB , E), if for any subset X of VB ,
the neighboring vertices set ΓG(X) satisfies |ΓG(X)| ≥ 1

∆ |X|, then there exists
a perfect ∆-matching.

Proof. Construct an auxiliary graph G′ as follows: create ∆ copies of each node
in VR and add dummy edges correspondingly1. Clearly, for any subset X of VB ,
|ΓG′(X)| = ∆ · |ΓG(X)|. Hence, |ΓG′(X)| ≥ ∆ · 1∆ · |ΓG(X)| = |ΓG(X)|. By Hall’s
marriage theorem, there exists a perfect matching M for VB in G′. Mapping M
back to a G by contracting all edges incident to the same red supernode in G′,
we obtain the desired perfect ∆-matching in G.

5.9 Proof of Lemma 8

Lemma 8. Given a weighted undirected graph G = (V,E), let T1, ...Tm be
some node-disjoint subtrees of MST (G). Let V ′ = ∪1≤i≤mV (Ti) and G′ be the
restriction of G on V ′. Then MST (G′) ≥∑

i |Ti|.

Proof. Without loss of generality, assume there is no tie in the edge lengths. We
will show that for any edge e in some Ti, e is also contained in MST (V ′). Argue
by contradiction. Suppose when we encounter e in Kruskal’s algorithm for G′,
we find that adding it to the cuurent forest will create a cycle. Then, there must
be a cycle C in F ∪ e, where F is our current forest. Since G′ is a subgraph of
G, we know that C is also a cycle of G. Therefore, we have found a cycle in G
whose largest edge is e. Clearly, this implies that e is not in MST (G). But e is
in some Ti, and hence in MST (G). Contradiction.

1 i.e. if (ri, bj) is an edge in G, then add edges (rki , bj) to G′ for k = 1, 2, ...∆, where
rki are the copies of ri.

5.10 Proof of Theorem 5

Theorem 5. Under the assumption above, if s ≥ smin, then there is an (O(logLmax),
O(logLmax)) dual approximation for the TWTSP problem for dyadic instance.

Proof. Let V j be set of all vertices with time window length 2j . For each j ≤
logLmax, consider V 1 ∪ V j , assign constant number of blocks to Redi’s using
algorithm in the last subsection. Then, each Redi is assigned with O(logLmax)
blocks in the end. So we can use O(logL) speed to traverse the blocks assigned to
eachRedi. On the other hand, the distance travelled isO(1)

∑
jMST (V 1∪V j) =

O(logL)λ∗(s).

5.11 Figures

> s

> s
radius = s

Fig. 9. The intuition of lemma 10. Consider this toy example: for each block in the
figure, there is only one red node r within distance s from it. Then, r is ”responsible”
for all the black nodes in these blocks, hence has to travel a large distance. But its
black cycle can only travel at most s. In other words, it does not have enough ”energy”
to fulfill its responsibility. So there should not be a feasible solution!

s

T1

T2

T3

T4

T5

Red1

Red1

T1

T2

T3

T4

T5

T6

Fig. 10. Illustration of the construction of H. The green circle centered at Red1 has
radius s. For any blue block intersecting this green circle, i.e. within distance s from
it, we add an edge between this block with the red node r1.

