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Abstract—With the rapid development of cities, heterogeneous urban cyber-physical systems are designed to improve citizens’
experience, e.g., navigation and delivery service. However, the integration of services is not designed for disruptive events, an oversight
that has rippling effects on service quality. For example, urban transportation systems consist of multiple transport modes that have
complementary characteristics of capacities, speeds, and costs, facilitating smooth passenger transfers by planned schedules. Such
integration may experience significantly increased delays during disruptions. Current solutions rely on a substitute service to transport
passengers from and to affected areas using ad-hoc schedules and static routes, which are inefficient and do not utilize mobility
patterns of mobile systems, e.g., dynamic passenger demand. To coordinate heterogeneous transportation systems under disruptions,
we design a service to automatically select and integrate part of three systems (subway, bus, and taxi) using systems’ mobility patterns,
e.g., predicted supply and demand. The service is presented in a normal version, eRoute, considering both subway and bus, and in a
version taking taxis into account, called enhanced eRoute. We implement and evaluate eRoute with datasets including subway, bus
and taxi, and a fare collection system. The data-driven evaluation results show that eRoute improves the ratio of served passengers
per time interval by up to 11.5 times and reduces the average traveling time by up to 82.1% compared with existing solutions.
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1 INTRODUCTION

With rapid urbanization, a large number of urban mobile
systems, e.g., smart card networks, ride-sharing systems,
and safety surveillance systems, have been developed and
incorporated into modern cities to improve the efficiency of
urban service operations and citizen experiences. However,
various disruptive events can interrupt the normal opera-
tion of the integrated urban systems and introduce unex-
pected service quality degradation. In this work, we take
urban transportation systems as an example to investigate
how to manage mobility across heterogeneous urban cyber-
physical systems under disruptive events.

An urban transportation system typically consists of
multiple systems, e.g., subway, bus, and taxi. These systems
have complementary characteristics to meet the different
needs of passengers. Specifically, the subway serves as the
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backbone of the urban transportation network, providing
high-speed, high-capacity transport services across major
areas; the bus is slower and cheaper, but it spreads over
the entire city with a large number of different lines and
stations; the taxi provides flexible pick-up and drop-off
locations, also allowing flexible routes to adapt to traffic
conditions.

In an integrated transportation system, heterogeneous
transport modes are designed to connect by closely-located
stations and synchronized schedules to facilitate passenger
transfer activities under normal operations. However, un-
der various disruptive events, that can cause stations or
vehicles to shut down for an unpredictable period, e.g., a
power failure or a signal error, the integrated heterogeneous
transportation systems become disconnected and inefficient,
resulting in a surge of stranded passengers and cascading
delays in affected areas. Therefore, it is a very challenging
problem to deal with such disruptive events in heteroge-
neous transportation systems.

There are very limited solutions to serve stranded pas-
sengers in the current transportation systems. Existing prac-
tices typically provide substitute services using backup ve-
hicles, e.g., dispatching empty shuttles to the closed sub-
way stations [2], [3]. A few recent works have proposed
solutions for subway system disruptions, including robust
train schedules [4], timetable adjustment [5], taxi recovery
services [6], and simple integration between bus and sub-
way systems [7]. However, these works employ localized
solutions with static routes or fixed schedules, without
dynamic coordination of multiple transport modes.
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Fig. 1: Transportation system performances under disrup-
tions

To achieve sufficient resilience under disruptive events,
it is critical to optimally control and coordinate all transport
modes according to real-time and predicted demand with
a global view. In this paper, we design a receding hori-
zon control based dynamic integration framework called
eRoute, which dynamically selects heterogeneous urban
transportation systems, e.g., taxis, buses, and trains, and
coordinates them to match passenger mobility patterns un-
der specific disruptions. To conduct efficient management,
eRoute considers several mobility-related factors, e.g., loca-
tions of disruptions, real-time information (e.g., location and
occupancy status) from vehicles, the number of accumulated
passengers, and the model of future passengers’ mobility.
The information of these factors is extracted from multi-
source data of mobile devices and passengers, provided
by existing sensing infrastructures, e.g., smartcard reader
systems, and GPS devices in vehicles.

The eRoute framework features a two-level selection and
coordination algorithm of heterogeneous transportation sys-
tems for disruptions, considering multiple factors, including
both disruption factors, e.g., locations, scale, and urgency of
disruptions, and transportation system factors, e.g., avail-
ability, cost, and efficiency of each transportation system.
At the first level, parts of the subway and bus systems are
selected, and then dynamically coordinated to help stranded
passengers by city authorities. We formulate an optimal
control problem that aims at maximizing the number of
served passengers and minimizing the cost regarding extra
traveling time and the number of extra vehicles. If the
subway-bus integrated network cannot provide sufficient
transport capacity to move stranded passengers, the second
level is to engage the taxi companies and actively dispatch
nearby available taxis to bridge impacted stations and sur-
rounding bus and subway lines. Although taxis provide
more flexible services in spatiotemporal dimensions than
the bus and subway, they can be costly and also introduce
local congestion, so it is used as the second-level solution.

The contributions of this work are listed as follows.

• To our knowledge, we conduct the first study on how
to address disruptions in urban mobile systems based on
real-time multi-source mobility data. We take the disrup-
tions to urban transportation systems as an example, but
our design can be generalized to a broader range of urban
mobile systems.

• We design a service framework called eRoute, which dy-
namically selects and coordinates heterogeneous mobile
systems according to the characteristics of the disruptive
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Fig. 2: eRoute framework

events and the mobile systems. To handle disruptions in
the context of urban transportation systems, we formu-
late a dynamic subway-bus-taxi selection and integration
problem for the disconnected transportation network un-
der disruptions as an integral multicommodity max-flow
problem with uncertain edge capacity. We prove the NP-
hardness of this problem. We also design a two-level coor-
dination algorithm to serve stranded passengers. The first
level of coordination is to dynamically integrate subway
and bus that are directly controlled by city authorities; and
the second level coordination is to engage taxi companies
to dispatch available taxis if stranded passengers are not
fully served by the other two transportation systems.

• To determine the solution of the subway-bus integration
problem in the first level of the coordination algorithm,
we design a hierarchical Receding Horizon Control frame-
work to adapt our solutions according to both current and
estimated future passenger demand. At the high end of
the hierarchy, we maximize satisfied passenger demand
by obtaining rerouting and reallocation decisions for the
overloaded transportation systems, meanwhile, at the low
end of the hierarchy, we choose one of the optimal solu-
tions obtained at the high end that also minimizes the cost
of rerouting and reallocation. In the second level of the
coordination algorithm, we formulate a taxi assignment
problem as an integer linear programming problem and
obtain the assignment solution by solving an approxima-
tion problem.

• We implement and evaluate eRoute with our datasets
that consist of a bus system with 13,000 buses, a subway
system with 123 stations, and an automatic fare collection
system with a total of 16,840 mobile and static readers
capturing 228,000 subway and bus passengers per hour
from the same city Shenzhen. Compared to existing ap-
proaches with real-time data-driven features, our solution
improves the ratio of served passengers per time interval
by up to 11.5 times and reduces the average traveling time
by up to 82.1%.

2 MOTIVATION

2.1 Service Disruptions
Service disruptions of public transportation systems have
significant impacts on passengers. They not only introduce
travel delays, but also reshape mobility patterns, generating
high operation costs due to longer travel distance, local
congestion, and the resulting opportunity losses [2].

To fully understand various types of disruptions that
occur in cities, [1] provides a taxonomy of disruptions in
subway and bus systems. To summarize, there are multiple
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causes of transportation system failure, e.g., signal prob-
lems, weather disasters, power failures, construction, and
mechanical failures, etc. These causes can result in reduced
train or vehicle speed, service cancellation, and delay. Some
of these disruptions affecting a small number of passengers
can be handled within a single transportation service. For
example, when a bus has a mechanical failure, another
bus can be rescheduled to replace it. However, some other
disruptions, e.g. shutdown of a subway station, can affect
many passengers and require cooperated responses from
multiple transport modes. This paper aims to address this
type of significant disruption.

We investigate an incident that occurred in Shenzhen, a
metropolitan in China with our datasets. A signal problem
caused long delays for all trains of a major subway line
during the day. Both speed and frequency of trains along
this line were significantly reduced due to safety concerns.
No bus shuttles were used to address this incident.

We use the smart card reader dataset from the city to
analyze the service quality of the subway on a day with-
out disruption and a day with disruption. There are two
measurement metrics, i.e., the ratio of served passengers
per time interval and the average traveling time. Since the
disruptive event happened on a weekday in the dataset, a
weekday without disruptions in the same week is chosen as
the regular day. Here, the ratio of served passengers per time
interval represents the ratio between the number of actually
served passengers during a time interval and the number of
accumulated passengers who need service during the time
interval, which is obtained by historical data assuming a
stable daily passenger demand. In Figure 1a, two curves
show the ratio of served passengers per time interval (RSPI)
on a regular day and a day with the disruption. We observe
that the RSPI during peak-hours (6 am ∼ 9 am and 5 pm
∼ 8 pm) with the disruption is 35% less than that on a
regular day. Meanwhile, as shown in Figure 1b, the average
traveling time of passengers with the disruption is 31%
higher than that on a regular day. The average traveling time
increased from 18 minutes to 40 minutes in the morning
rush hours. These figures indicate that existing solutions do
not effectively handle such disruptions.

2.2 eRoute Framework

To address one or multiple simultaneous disruptive events
to urban transportation systems, we design a service frame-
work called eRoute, which is a system that can be used by
transportation authorities during disruptive events. Figure
2 shows an overview of eRoute. Our main goal is to bal-
ance the supply and demand by dynamically integrating
multiple urban mobile systems, e.g., subway, bus, taxi, and
bike-sharing systems, etc. In this paper, we focus on three
specific systems, namely subway, bus, and taxi. Given these
systems, disruptive events usually change the topology of

Collection period
2014/03/03∼2014/03/09
2014/02/19∼2014/02/20

Data size 10.4 GB
Record number 17,568,574

Format
[Device ID, Smartcard ID, Time,

Metro station or Bus line]
Bus boarding & Subway swiped-in/out

TABLE 1: Dataset of Smartcard Reader

transportation networks, resulting in dramatically reduced
supply at certain locations, and our solution is to automat-
ically integrate heterogeneous mobile systems to increase
supply for meeting passenger demand.

Typically, the supply of subway, bus, and taxi systems is
organized in lines: (i) each subway or bus line has a fixed
number of allocated vehicles; (ii) each subway or bus line
has a route in which a few bus stops or subway stations are
organized in a specific order; (iii) each subway or bus line
has a schedule according to which the vehicles leave and
arrive at certain bus stops or subway stations; (iv) one taxi
is regarded as a line with flexible paths and pick-up time
between stations and bus lines. With these features, the key
idea of eRoute is to conduct the following three functions to
deal with disruptive events:

• Quantitative Reallocating. Many disruptive events lead
to failures of vehicles and a decrease of supply. Given
the limited number of available vehicles for providing
transport service, reallocating buses or trains among lines
and assigning taxis to bridge influenced nodes and bus
lines are critical to increasing supply with small overhead.

• Spatial Rerouting. This is an active traffic control strategy
that presents alternate routes for buses, trains, and taxis.
Rerouting is normally used when the regular route is
severely affected by congestion and incidents. Here the
purpose of rerouting is to re-balance supply with practi-
cal constraints across different regions under disruptive
events. The alternate route information is disseminated to
drivers using control channels in real-time.

• Temporal Rescheduling. Disruptive events directly af-
fect the schedules of some transportation lines. eRoute
reschedules the supply in other nearby lines and other
transportation modes, increasing the current supply to the
region to reinforce the service.

Different from existing works on transportation plan-
ning, eRoute is driven by real-time multi-source data, which
has rich spatiotemporal information about passenger mo-
bility patterns, and the supply and demand in transporta-
tion systems. Existing infrastructure in urban transportation
systems already offers various data to the transportation
center over the network in real-time. The smart card reader
system records the events of every smartcard and then
uploads them to the database at the transportation center.
The format of the dataset is shown in Table 1. We extract
past, current, and future passenger demand along every
origin-destination (OD) pair from the dataset. The supply of
every transport mode is obtained from GPS and occupancy
datasets collected from every vehicle. For example, the GPS
device in every bus reports the longitude, latitude, speed,
and plate number of the bus, and the name of the bus line.

Under disruptions, the transportation network topology,
and passenger demand change dynamically, so eRoute em-
ploys a two-level receding horizon control-based coordina-
tion framework to adapt control decisions based on both
current and future passenger demand. In each iteration
of the receding horizon control framework, eRoute first
determines the first level coordination of subway and bus
systems. Then in the second level coordination, if stranded
passengers cannot be fully satisfied by the updated subway-
bus integrated network, eRoute engages taxi companies to
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Fig. 3: Demonstration of the subway-bus integrated network
after a disruptive event
dispatch nearby available taxis to bridge stations and bus
lines. Our framework selects part of urban transportation
systems according to the features of disruptions and urban
transportation systems.

3 INTEGRATION OF SUBWAY AND BUS

Both the subway system and bus system are the main
components of the public transportation system, and they
are complementary to each other. Either of them has a
high potential to offload passengers from the other. In this
section, we first study how to integrate subway and bus dy-
namically. Our design explores this potential to interconnect
buses and subways dynamically to serve passengers under
disruptive events. In this section, we formulate the one-
iteration optimization problem of handling disruptions by
controlling the subway-bus integrated network, including
rerouting existing bus lines and reallocating extra buses and
trains. Our goal is to provide alternative paths for stranded
passengers that can meet a) dynamic passenger demand as
much as we can with b) minimized cost including detour
time due to rerouting and the number of extra vehicles
needed. We show that our formulation is an integral multi-
commodity maximum flow problem under dynamic edge
capacity, and it is NP-hard.

3.1 Model Subway-Bus Integrated Network
Disruptions change the topology of urban transportation
networks, and the transport capacity and cost between
two stations. For example, if a subway or bus line cannot
transport passengers between two stations of its route due
to weather disasters or train mechanical failure, the corre-
sponding edges in the transportation network should be
removed. If a bus line is rerouted due to icy road conditions
on its route, the capacity decreases and the cost increases for
the corresponding edges.

Given a specific disruptive event, only part of subway
and bus systems of the entire city are selected for integration
to serve stranded passengers based on the features of dis-
ruptions, e.g., scale, urgency and location, and transporta-
tion system factors, e.g., availability, cost, and efficiency.
For instance, if a disruptive event happens in a suburban
area and there is no subway line nearby, only nearby bus
lines are selected to transport stranded passengers. The large
scale of influenced regions and a large number of stranded
passengers mean that more subway lines and bus lines
around the locations where disruptions happen should be
selected.

We use Ns and N b to represent the numbers of selected
subway lines and bus lines. We define the subway-bus

integrated network after disruptions as G = (V,E), where
V = V s ∪ V b. Every vertex in V s denotes a subway station
and every vertex in V b represents a bus stop. Here we call
either a subway station or bus stop as a node in the subway-
bus integrated network. For any two vertices vi, vj ∈ V , if
they are visited by the same subway or bus line consec-
utively, we add one directed edge, e(vi, vj) from vi to vj .
There are two attributes of every directed edge ek: capacity
and cost denoted as w(ek) and p(ek). Figure 3 shows how to
define the subway-bus integrated network after a disruptive
event based on the subway-bus systems. In Figure 3a, the
subway connection between subway stations B and C breaks
due to a disruptive event, and there are two bus lines around
the two subway stations. Then the subway-bus integrated
network after the disruption, G, is constructed as shown in
Figure 3b.

Suppose there are l nodes whose services are impacted
due to disruptions and let D = {vd1 , vd2 , .., vdl

} be the
set of impacted nodes. For example, the services of four
subway stations are ceased because of power failure. Then
the four corresponding nodes of the ceased subway stations
are regarded as the affected nodes. Passengers at these
impacted nodes need to find alternative ways to reach their
destinations. We define the origin-destination (OD) pair
as (si, ti), representing that there are passengers traveling
from vsi to vti . We use the number of stranded passengers
to reflect the magnitude of disruptions and let Ci denote
the passenger demand of one OD pair (si, ti) during one
time slot, e.g., 20 mins. The OD pairs and corresponding
demand indicate passenger mobility patterns, which are
learned from historical data sets.

3.2 Subway-Bus Integration Problem Statement

Definition 1 (Dynamic integration problem (DIP)). Given
the remaining subway-bus integrated network after disruptions,
the problem is how to reroute existing N b bus lines, reallocate
extra Nb buses and Ns trains, and reschedule them to maximize
the number of passengers that the new subway-bus integrated
network can carry under practical constraints, i.e., the detour time
of a bus line is upper bounded, and the number of trains that can
be deployed along a subway line is bounded.

Xr ∈ {0, 1}Nb×l is the decision matrix for rerouting,
where Xr

k,i = 1 if k-th bus line is rerouted to i-th impacted
transportation node. Xb ∈ {0, 1}Nb×Nb

is the decision
matrix for reallocating extra Nb buses, where Xb

h,k = 1 if
h-th extra bus is reallocated to k-th bus line, otherwise, it is
0. Xs ∈ {0, 1}Ns×Ns

is the decision matrix for reallocating
extra Ns trains, where Xs

h,k= 1 if h-th extra train is reallo-
cated to k-th subway line.

For every OD pair, we define a passenger flow from
a source node si to a sink node ti in the network G: an
si − ti flow is a function f : E → R+ that assigns a real
number to each edge. Intuitively, f(e) ≥ 0 is the amount
of flow carried on the edge e, which represents the number
of passengers transported along the edge e. There are two
constraints: (1) capacity constraint: ∀e ∈ E, f(e) ≤ w(e); (2)
flow reservation on transit node: for each node v except s
and t, we have

∑
e into vf(e) =

∑
e leaving vf(e).

Let Si be the number of passengers that the network
G can carry for an OD pair (si, ti), subjected to the link
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Fig. 4: Integrated network
after rerouting (G′)

Fig. 5: Integrated network
after adding virtual source
and sink nodes (G′′)

capacity constraint and Si is called the supply for (si, ti).
When the passenger demand of an OD pair (si, ti) is less
or equal to Si, the network G can fully transport all the
passengers without delay. Under disruptive events, there
could be multiple OD pairs that need to be addressed
simultaneously, and the supplies for these OD pairs are
usually significantly insufficient, so our goal is to maximize
the supplies J =

∑
i Si.

Then we have the following realistic constraints for DIP:
(i) Detour Constraint: if Xr

k,i = 1, f(k, i) ≤ α, where f(k, i)
is the function of extra detour time due to rerouting kth
bus line to vi, and α is the upper bound threshold of such
detour time. It ensures that the increase of traveling time
for regular bus passengers is not too high. We will discuss
how to calculate f(k, i) later. (ii) Allocation Constraint:
Xb1Nb ⪯ 1Nb

and Xs1Ns ⪯ 1Ns
, since every extra bus

or train should be reallocated to at most one line, where 1Nb

is a column vector of all 1s and the length of this vector is
Nb. (iii) Schedule Constraint: (Xs)T 1Ns

⪯ β, where β is a
length Ns column vector and Ns is the number of subway
lines considered in our problem. Let βk denote the number
of extra trains which can be reallocated to kth subway line
for 1 ≤ k ≤ Ns. We define this constraint, since there
exists limitation of the number of trains operated along
the same route for safety. (iv) Supply Constraint: To keep
high utilization of our limited resource, we constrain that
∀(si, ti), Si ≤ Ci, which specifies that the supply of one OD
pair is less than or equal to its demand.

3.3 Subway-Bus Integration Problem Analysis

There are some similarities and differences between our
problem and the classical max flow problem: we use the
source-sink pair to describe every OD pair in G. Considering
the integrated network G, simultaneously moving passen-
gers for every OD pair means finding feasible integral flows
in G. Intuitively, the objective of DIP is maximizing the sum
of the size of every source-sink pair’s flow. However, com-
pared to the classical integral multicommodity max-flow
problem, DIP has the following differences. (i) Dynamic
graph topology: in DIP, the network topology is dynamic
because the rerouting decision Xr affects the edges in the
network. For example, when one bus line is rerouted to pass
a subway station di between two previously consecutive bus
stops, two new edges are added to connect the bus line with
the subway station, and the edge between these two previ-
ously consecutive bus stops is removed. (ii) Dynamic edge
capacity: due to the reallocation of extra buses and trains,
the capacity of some subway and bus lines would increase
dynamically. Therefore, the capacity of corresponding edges

in G also dynamically changes based on the reallocation
decision, Xs and Xb. (iii) Constrained capacity of flow: due
to the supply constraint stated previously: the supply of one
OD pair is no more than the demand, the flow size of every
source-sink pair should be no more than the corresponding
demand.

To address dynamic graph topology and constrained
capacity, we transform DIP to an Integral Multicommodity
Max-Flow problem (IMCMF) under dynamic edge capacity
by the following steps. The first step is to remove the
dynamic graph topology by rerouting nearby bus lines to
all the impacted nodes, if such rerouting decisions do not
conflict with the detour cost constraint. Figure 4 shows an
example of the integrated network after applying the first
step to network G (Figure 3b). The second step is to add cor-
responding virtual source and sink nodes, and virtual edges
to connect them with the impacted nodes. The capacity of a
virtual edge represents the amount of passengers traveling
between the corresponding origin-destination pair. Figure
5 shows the integrated network after applying the second
step to the network G′. By the second step, two virtual sink
nodes (B′′ and C ′′), two virtual source nodes (B′ and C ′),
and the virtual edges are added to G′. The capacity of edge
(B′, B) and (C,C ′′) is equal to the passenger demand from
B to C , and that of edge (B,B′′) and (C ′, C) is equal to
the passenger demand from C to B. In G′′, the B − C and
C − B flow are transformed to the B′ − C ′′ and C ′ − B′′

flow. Due to space limitation, the detail of these two steps is
introduced in [1]. After the above two steps, DIP is changed
to find the IMCMF with dynamic edge capacity in a subway-
bus integrated network graph G′′.

3.4 IMCMF under dynamic edge capacity

Let X ∈ NM×N
0 denote the decision variable of the IMCMF,

where M and N are the numbers of source-sink pairs and
edges in G′′ separately. Xi,j represents the size of ith source-
sink pair’s flow along jth edge in G′′. Then the objective
is: max

∑M
i=1

∑N
j=1 Xi,jRi,j , where R ∈ {0, 1}M×N is

the relation matrix for calculating the size of flow of every
source-sink pair. Ri,j = 1 if jth edge connects with the
source node of ith pair. According to Step 2 in the previous
section, only one edge is calculated for every OD pair,∑N

j=1 Ri,j = 1 and Si =
∑N

j=1 Xi,jRi,j .
We define Rse ∈ {0, 1}Ns×N to represent the rela-

tion between subway lines and edges. Rse
j,k = 1, if kth

edge is created due to jth subway line, otherwise, it is 0.
Rbe ∈ {0, 1}Nb×N denotes the relation between bus lines
and edges. Rbe

j,k = 1, if kth edge is created due to jth bus
line, otherwise, it is 0.

Let ws(ej) and wb(ej) denote the capacity increase of
edge ej due to reallocating extra trains and buses respec-
tively. We have the following equations:

ws(ej) =
Ns∑
i=1

Ns∑
k=1

I(Xs
i,k)× Cs ×Rse

k,j , 1 ≤ j ≤ N (1)

wb(ej) =
Nb∑
i=1

Nb∑
k=1

I(Xb
i,k)× Cb ×Rbe

k,j , 1 ≤ j ≤ N (2)

where the indicator function I(Xs
i,k) = 1 if and only if

Xs
i,k > 0, otherwise, it is 0. Cs and Cb are the capacities
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of one train and bus respectively. Considering the edge
capacity constraint, we have the constraint:

M∑
i=1

Xi,j ≤ w(ej) + ws(ej) + wb(ej), 1 ≤ j ≤ N (3)

where w(ej) is the original capacity of edge ej . We formulate
the flow conservation on transit nodes: the amount of a
flow entering an intermediate node is the same that exits
the node. Therefore, for i-th source-sink pair and k-th node
satisfies

N∑
j=1

Xi,jR
ne
k,j = 0, 1 ≤ i ≤ M, 1 ≤ k ≤ L (4)

where Rne ∈ {−1, 0, 1}L×N describes the node-edge rela-
tion. L is the number of regular nodes in G′′. Rne

k,j = 1 if
jth edge points to kth node and it is -1 if jth edge emits
from kth node. Otherwise, it is 0. The IMCMF problem we
consider is:

max
M∑
i=1

Si =
M∑
i=1

N∑
j=1

Xi,jRi,j

s.t. Si ≤ Ci, Xb1Nb ⪯ 1Nb
, Xs1Ns ⪯ 1Ns

,

(Xs)T 1Ns
⪯ β, (1), (2), (3), (4)

(5)

Theorem 1. The DIP is NP-hard.
Proof. Compared with maximum integral multi-commodity
flow, our problem has dynamic edge capacity and the edge
capacity is also one decision variable. In DIP, let Nb =
Ns = 0, then the maximum integral multi-commodity flow
problem is one special case of DIP. [8] shows that maximum
integral multi-commodity flow is NP-hard. Hence, DIP is
NP-hard.

Based on the literature [9] [8], the integral maximum
multi-commodity flow problem is Max SNP-hard even in
several particular cases. This result implies that there exists
no polynomial-time approximation scheme unless P=NP.
[9] proves that IMMF is not only strongly NP-hard but
finding an approximate solution within a fixed performance
ratio for it is still one NP-hard problem. [10] shows that
it is NP-hard to approximate within m

1
2−ϵ, where m is

the number of edges. Although there exist several works
providing one approximation algorithm or linear time algo-
rithm, they require that the graph is one tree [8]. Meanwhile,
our problem is still different from the existing dynamic
graph problem, where edge capacity changes with time, but
it is not one decision variable [11].

Although the DIP is hard to solve in nature, we argue
that the disruptions in urban transportation systems usually
only affect small numbers of stations and the subway lines
and bus lines around them. Therefore, the input size of the
DIP is not large. Based on our linear integer programming
(LIP) formulation of the problem, existing solvers can solve
them relatively quickly. In our evaluation, the optimal so-
lution to the problem can be obtained within one minute,
which is fast enough for transportation system control in
reality.

4 DESIGN OF RHC BASED SUBWAY-BUS INTE-
GRATION ALGORITHM

The transportation control center receives real-time stream-
ing data including smart card records, vehicles’ GPS lo-
cations, and occupancy status periodically. These real-time

data streams are then processed to predict the spatiotempo-
ral patterns of passenger demand. Based on the prediction,
the control center utilizes a receding horizon control (RHC)
algorithm to calculate a control solution periodically in real-
time, to match predicted passenger demands.

To obtain optimal bus/train line rerouting and extra
bus/train reallocation decisions, we consider two main
objectives: 1) maximize the passenger transport for the
overload transportation systems under disruptive events; 2)
minimize the rerouting and reallocation cost while achiev-
ing the maximum passenger transport. When disruptive
events happen, the eRoute system should adapt the solu-
tions to both current and possible future demand. Hence,
we design a hierarchical RHC algorithm. The high-level
problem is based on our problem formulation in Section 3,
which suggests the passenger flows and their paths (rerout-
ing decisions), and the reallocation of buses and trains.
The low-level problem is to minimize the rerouting cost
and reallocation cost regarding extra detour time and the
number of additional buses or trains reallocated.
4.1 Variables, constraints and objective functions
We assume that the optimization time horizon is T , indexed
by t = 1, ..., T . We first reformulate the variables in the
optimization time horizon. Let w(ek, t) be the capacity of
ek during the time slot t. Ci(t) represents the passengers
demand of ith source-sink pair (si, ti) during time slot t,
which can be predicted based on the historical dataset and
real-time sensor information. We define Xi,j(t) ∈ NM×N

0 as
the decision variable of the integral multicommodity max-
flow during time slot t. Meanwhile, Xb(t) ∈ {0, 1}Nb×Nb

and Xs(t) ∈ {0, 1}Ns×Ns

represent the reallocation decision
of extra buses and trains during time slot t.

Modeling Circulating Bus Supply: The routing and
allocation in subway-bus networks have to meet spatiotem-
poral constraints, due to operating schedules and road
conditions. For example, a bus may become available for
reallocation after transporting all passengers at its final stop
in a finite optimization horizon. We define W b ∈ NNb

+ , one
column vector to denote the number of time slots needed to
complete one end-to-end trip of all bus lines. For instance,
W b

i is the number of time slots needed to finish one trip
of ith bus line. Let U b(t) ∈ NNb

+ be one column vector to
represent the number of time slot needed to finish current
bus line trip at the beginning of time slot t. We note that
U b(t) may change over time due to congestion and road
conditions. More importantly, it is directly affected by the
rerouting decision. For instance, it costs 4 time slots to
finish one trip of the first bus line, and the first extra bus
reallocated to the first bus line at time slot 1. So at the time
slot 2, we have the following values: U b

1(2) = 3. Then the
relation between U b

i (t) and U b
i (t− 1) is:

U b
i (t) = max{0,max{

Nb∑
j=1

Xb
i,j(t−1)W b

i , U
b
i (t−1)}−1} (6)

where t ≥ 2 and U b
i (1) = 0 for 1 ≤ i ≤ Nb. Based on U b(t),

γb(t) ∈ {0, 1}Nb is one vector column to describe whether
every extra bus can be reallocated during time slot t. It is
clear that if U b

i (t) > 0, ith extra bus is still operating for one
existing bus line and it cannot be reallocated, otherwise, it
can be reallocated. We have the following equation:

γb
i (t) = I1(U

b
i (t)) (7)
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where I1(U
b
i (t)) is an indicator function, and it is equal

to 1 if U b
i (t) = 0, otherwise, it is 0. Then for ith bus, during

time slot t, it cannot be reallocated to more than γb
i (t) bus

lines:
Xb(t)1Nb ⪯ γb(t) (8)

We remark that it’s possible that
∑Nb

j=1 X
b
i,j(t) = 0,

however, ith bus also contributes to one existing bus line,
because of operating for one existing bus line. Hence, we
define Ob(t) ∈ {0, 1}Nb×Nb

to denote which bus line
that every extra bus contributes to during the time slot t.
Ob

i,j(t) = 1 if ith bus is operated for jth bus line during
time slot t, otherwise, it is 0. Then, we have the following
relation:

Ob
i·(t) = Ob

i·(t− 1)I2(U
b
i (t)) +Xb

i·(t) (9)
where Ob

i· is the ith row of Ob(t) and I2(U
b
i (t)) is also one

indicator function. I2(U b
i (t)) = 1 if U b

i (t) > 0, otherwise, it
is 0. Finally, we describe the capacity increase of ej during
time slot t due to Nb extra buses:

wb(ej , t) =
Nb∑
i=1

Nb∑
k=1

I(Ob
i,k(t))× Cb ×Rbe

k,j (10)

where Cb is the capacity that one extra can provide. The
circulating supply model and constraint of subway trains
are similar to that of buses.

Modeling Circulating Train Supply: The model for
circulating train supply mirrors the one for ”circulating
bus supply”. There is only a symbol (s instead of b) that
is replaced and everything else carries through. To avoid
redundancy, we only show the equations for this model as
follows and the notations have a similar definition to that in
the model of circulating bus supply.

Us
i (t) = max{0,max{

Ns∑
j=1

Xs
i,j(t− 1)W s

i , U
s
i (t− 1)} − 1}

(11)
γs
i (t) = I1(U

s
i (t)) (12)

Xs(t)1Ns ⪯ γs(t) (13)
Os

i·(t) = Os
i·(t− 1)I2(U

s
i (t)) +Xs

i·(t) (14)

ws(ej , t) =
Ns∑
i=1

Ns∑
k=1

I(Os
i,k(t))× Cs ×Rse

k,j (15)

M∑
i

Xi,j(t) ≤ w(ej , t) + ws(ej , t) + wb(ej , t), (16)

N∑
j=1

Xi,j(t)R
ne
k,j = 0, 1 ≤ i ≤ M, 1 ≤ k ≤ L. (17)

4.2 A Hierarchical RHC Algorithm

Our goal of the high level RHC problem formulation is to
seek the dynamic rerouting and reallocation decision based
on predicted passenger demand.

This formulation is based on the problem transformation
in the previous section:

max
X(t),Xb(t),Xs(t)

T∑
t=1

M∑
i=1

N∑
j=1

Xi,j(t)Ri,j (18)

s.t.
N∑
j=1

Xi,j(t)Ri,j ≤ Ci(t), (X
s)T 1Ns

⪯ β, (6) ∼ (17)

Algorithm 1: RHC algorithm for real-time subway
and bus system control

Input: Time horizon T minutes, period of updating
solution t1 minutes; number of time slots to finish one
bus or subway line trip W b,W s; train and bus capacity
Cs, Cb; geometrical information of transportation
nodes; historical and real-time data of smart card
events; real-time vehicle trajectory data; parameter θ.

Output: Control decision: Xr , Xs, Xb

while At the beginning of every t1 minutes do
Update the number of available buses, Nb and trains,
Ns; update the passenger demand of every OD pair;
update prediction of Ci(t) for the time horizon T ;
update the edge capacity during the time horizon T ,
w(ej , t); update the parameter β
Solve the max-flow problem (18) to get the optimal
solution set {X̂(t), X̂s(t), X̂b(t)} of problem (18)
Solve the min-cost problem (19) to get the control
decision with the minimum cost.
Send the control decisions according to solution: X ,
Xs, Xb.

end while
return Control decision

After solving the above problem, we obtain the maxi-
mum demand that the system can support, which is equal to
the amount of the supply that the system needs to provide.

In general, the problem (18) has multiple optimal solu-
tions, i.e., different flow and reallocation assignments can
achieve the same supply in the integrated network. Assume
the optimal solutions of (18) is a set {X̂(t), X̂s(t), X̂b(t)}.
They provide the maximum value of supply. Therefore,
we introduce the low-level problem which is formulated
to choose the optimal flow and reallocation assignments
with the minimum cost. At this level, the goal is rerouting
existing bus lines and reallocating the extra vehicle supplies
along different lines with minimal cost. We minimize the
cost to satisfy the supply achieved in (18), which consists of
the rerouting cost and the number of extra buses or trains.

Rerouting cost: it is defined as: Jr =∑N
j=1 I(

∑M
i=1 Xi,j(t))p(ej), where p(ej) is the cost of

traveling along edge ej .
Cost of reallocation: it is defined as the number

of extra buses and trains used, denoted by: Jn =∑Nb

k=1

∑Nb

j=1 X
b
i,j(t) +

∑Ns

k=1

∑Ns

j=1 X
s
i,j(t).

We define a weight parameter θ when summing up
the costs related to both objectives. The formulation of
minimizing cost is shown as follows:

min
X(t),Xb(t),Xs(t)∈{X̂(t),X̂b(t),X̂s(t)}

J =
T∑

t=1

(Jr + θJn) (19)

4.3 RHC Framework Implementation
We adopt a basic linear regression technique to predict
passenger demand of different OD pairs based on historical
and real-time datasets. We define the time horizon as T
minutes and the length of every time slot is t1 minutes.
The previous proposed RHC based problem formulation
is embedded in one iteration of our RHC algorithm, and
we update the control decision every time slot, t1 minutes.
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The pseudo-code of the RHC algorithm is shown as Alg. 1.
For simplicity, we assume that the two-level RHCs have the
same timescale.

This RHC algorithm is triggered when one or multiple
disruptive events occur in the transportation systems, which
cause subway stations or bus stops to close. This algorithm
periodically makes control decisions every t1 minute until
the transportation system recovers from the disruption. At
the beginning of every t1 minute, it updates the locations
and occupancy status of all the available extra buses and
trains and predicts passenger demand of every OD pair
till the future T time horizon. Then it solves the problem
(18) to the optimal solution set to transport the maximum
number of passengers, solves the problem (19) to obtain the
rerouting decision of existing bus lines, extra bus and train
assignments that minimizes the control cost.

5 HETEROGENEOUS TRANSPORTATION MODES
INTEGRATION

Although rerouted bus lines and reallocated buses and
trains can transport stranded passengers, there may still
be some passengers that cannot be picked up under the
subway-bus integrated network since (i) there are not
enough bus lines around the impacted nodes and (ii) there
exists competition between regular bus passengers and
stranded passengers due to limited transport capacity.

Hence, if the subway-bus integrated network after
rerouting and reallocation cannot satisfy all stranded pas-
sengers, taxi companies are engaged to dispatch nearby
available taxis for increasing transportation system capacity.
The reason for integrating heterogeneous transportation
modes with priority, (i.e., subway and bus systems have
the priority, and taxis have the second priority) is that both
subway and bus are public transportation modes that can
be controlled by urban transportation authority, whereas
taxis belong to private companies. Meanwhile, taxi service
is costly and also introduces local congestion.

5.1 Model taxi dispatch decisions
According to the factors of both disruptions and urban
transportation systems, we select the available taxis which
are close to locations where disruption happens, or close to
the previously selected subway and bus lines for dispatch-
ing. Engaging taxi service takes advantage of its flexibility to
reduce passenger congestion in impacted nodes where there
is not enough subway and bus system supply. Taxis are used
to connect impacted nodes and bus lines (node-line pairs) to
transport as many passengers as possible, meaning taxis are
dispatched to node-line pairs.

Given passenger demand in the impacted nodes and
the subway-bus integrated network with extra virtual bus
edges, we define the node-line pairs which need to be served
by extra taxis as follows. Given one impacted node, we
first decide whether this node needs the taxi service. In
the subway-bus integrated network with virtual bus edges,
we calculate the pickup and drop-off capacity provided
by the bus network and then compare such capacity with
leaving and arriving passenger demand in the node. If
pickup capacity or drop-off capacity is smaller than leaving
or arriving passenger demand, this node is selected to be

served by taxis. For one impacted node selected in the
previous step, we determine a group of bus lines that are
linked to the node by taxis. These bus lines are selected
if the bus line can be reached from the node within one
time slot, and the line does not pass by the node after
adding virtual bus edges. It is noted that node-line pairs
are selected according to passenger demand and subway-
bus integrated network transport capacity. Due to dynamic
passenger demand and bus network supply, the group of
selected node-line pairs changes over time.

We assume that there are total L node-line pairs, mean-
ing there are L dispatch options for one taxi at one time
slot. Suppose there are Nt taxis available for dispatching,
which are selected based on their locations and occupancy
status. At the beginning of each time slot, the transportation
control center collects the real-time locations and occupancy
status of taxis. Only the unoccupied taxis that are able to
reach the impacted stations or bus lines within a time slot
are recruited for taxi dispatch. We use Nt to represent the
number of these taxis. Let Xt(t) ∈ {0, 1}Nt×L be the deci-
sion matrix for dispatching Nt taxis, where if Xt

i,j(t) = 1,
i-th taxi is dispatched to j-th node-line pair, otherwise, it is
0. The capacity of one node-line pair, ej , is determined by
taxi dispatch decisions, w(ej) =

∑Nt

i=1 X
t
i,j(t). We assume

that the trip of one node-line pair can be finished within
one time slot according to how we select these node-line
pairs. We ensure that one taxi can be dispatched to at most
one node-line pair during each time slot, defined as:

L∑
j=1

Xt
i,j(t) ≤ 1, 1 ≤ t ≤ T, 1 ≤ i ≤ Nt (20)

5.2 Taxi dispatch with pre-computed solutions

In this subsection, we discuss how to dispatch taxis
with the pre-computed rerouting and reallocation solutions.
We first define the updated transportation network, given
rerouting and reallocation decisions. Then we model taxi
mobility patterns during our optimization horizon and dis-
cuss the constraints and objectives of taxi dispatch.

Updating integrated transportation network with
rerouting and reallocation decisions. The integrated trans-
portation network varies with time due to dynamic rerout-
ing and reallocation decisions. We describe how to generate
the transportation network G1(t) if applying rerouting and
reallocation decisions to the previous remaining network.
First, for any virtual bus edge ej in the remaining trans-
portation network that is generated by the problem trans-
formation in Section 3.3, if there exists no flow through ej
and its virtual pair edge at time slot t, both two virtual bus
edges will be deleted. Then the edge capacity of any edge
ej is equal to w(ej , t) + ws(ej , t) + wb(ej , t). Recall that if
one bus line is rerouted to one impacted node, there are two
virtual edges added, which are called the virtual pair edge
of each other.

Let X̄(t) ∈ NM×N̄
0 be the integer multicommodity max-

imum flow in G1(t) with dynamic taxi dispatch decisions
Xt(t), where N̄ is the number of edges in G1(t).

Model taxi mobility pattern: Given the origin and
destination of L virtual taxi edges, we use OP ∈ RL×2

and DP ∈ RL×2 to denote the GPS position of the ori-
gin and destination of each virtual edge, respectively. Let
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Pi(t) ∈ R1×2 be the estimated GPS information of i-
th taxi’s location by the end of time slot t. Then if i-th
taxi is dispatched at time slot t, its end position Pi(t) is
Xt

i,·DP ∈ R1×2. If there is no dispatch decision for i-th
taxi, the taxi will drive on the road to find the next taxi
passengers. We assume that the ending position for taxi i by
the end of time slot t is related to the ending position at the
end of slot t− 1. The relation between Pi(t) and Pi(t− 1) is
formulated as:

Pi(t) = f(Pi(t− 1)), f : R1×2 → R1×2

where the function f represents the data-driven taxi passen-
ger mobility pattern. For example, this pattern is described
by a matrix, where each element denotes the probability that
a taxi drops off a passenger in a road segment at the end
of slot t + 1 when the trace starts from the position at the
beginning of slot t. This pattern can be learned from the
historical passenger trip data by some methods, e.g., [12],
[13], and it approximately describes the passenger mobility
pattern in the real-world [12].

To summarize, the ending position of i-th taxi by the end
of time slot t is defined as:

Pi(t) =
(
1−

L∑
j=1

Xt
i,j(t)

)
f(Pi(t− 1))+

( L∑
j=1

Xt
i,j(t)

)
Xt

i,·DP

(21)
Given the decision Xt

i,·, if
∑L

j=1 X
t
i,j = 1, i-th taxi is sent

to a target location Xt
i,·OP at the beginning of time slot

t− 1 from position Pi(t− 1), the approximated idle driving
distance is:
di(t) = ||Xt

i,·OP −Pi(t−1)||1, i ∈ [1, , Nt], t ∈ [1, T ] (22)
Here, to estimate the driving distance without knowing
the exact path between two locations, we use the Manhat-
tan norm or one norm between two geometry positions,
which has already been used to model the trip distance in
metropolitans like Beijing and Seoul [13], [14], [15], [16].

Constraints: Due to limited traveling speed and time,
the traveling distance within one time interval should be
bounded. For example, if the destination of virtual taxi edge
ej1 is far away from the origin of another virtual taxi edge
ej2 , one taxi cannot reach the origin node of ej2 within one
time slot. It means a taxi should not be dispatched to ej1
and ej2 at two consecutive time slots. The upper bound for
taxi i is denoted by γi ∈ R and any di(t) should satisfy:

L∑
j=1

Xt
i,j(t)di(t) ≤ γi (23)

Considering the flow conservation on transit nodes, we
define:

N̄∑
j=1

X̄i,j(t)R̂
ne
k,j = 0, 1 ≤ i ≤ M, 1 ≤ k ≤ L. (24)

The edge capacity constraint of flow during every time
slot 1 ≤ t ≤ T is defined as:

M∑
i

X̄i,j(t) ≤ w̄(ej , t) + w̄t(ej , t), 1 ≤ j ≤ N̄ . (25)

where w̄t(ej , t) = Ct ×
∑Nt

i=1 X
t
i,j(t) and Ct is the capacity

of each taxi.
Objectives: Our goal is to seek dynamic taxi dispatch,

meanwhile, considering the number of stranded passengers
that we can serve, the number of taxi passengers that may
be missed, and the taxi dispatch cost regarded as idle

driving distance. The first one is the primary objective of taxi
dispatch to pick up the stranded passengers. Since dispatch-
ing taxis to pick up impacted subway or bus passengers
may miss some taxi passengers, we consider reducing the
number of missed taxi passengers as the second objective.
Traveling from position Pi(t− 1) to Xt

i,·OP for service will
introduce cost since taxi drives on the road without serving
any passengers. Hence, we want to minimize this kind of
idle driving distance while dispatching taxis.

Number of passengers that can be served. According
to our decision variables X̄(t) and Xt(t), the number of
stranded passengers that can be served by the subway-
bus-taxi integrated network is

∑T
t=1

∑M
i=1

∑N
j=1 X̄i,j(t)R̄i,j ,

where R̄ ∈ {0, 1}M×N̄ is the relation matrix for calculating
the flow size of each source-sink pair. R̄i,j = 1 if j-th edge
is associated with the source of i-th pair, otherwise, it is 0.

Number of missed taxi passengers. Jtp(t) is the number
of missed taxi passengers at time slot t. Let Ct(t) how many
passengers one taxi serves during a time slot t that can be
learned from the historical dataset. Then it is defined as
Jtp(t) = Ct(t)

∑Nt

i=1

∑L
j=1 X

t
i,j(t).

Idle driving distance. According to the definition of
di(t), we formulate the total idle driving distance due to taxi
dispatch at time slot t as: Jt(t) =

∑Nt

i=1

∑L
j=1 X

t
i,j(t)di(t).

In our design, we aim to co-optimize the above three
objectives. The first two objectives are conflicting. For exam-
ple, to serve more stranded passengers, more taxis should be
recruited, thus reducing the taxi supply for taxi passengers.
The enhanced eRoute balances these two objectives by using
a weight parameter, i.e., δ1 to determine how much effort
to spend on assisting the stranded passengers. The last
objective is a common cost for taxi dispatch, and we use the
second parameter, i.e., δ2 to balance it with the other two
objectives. To summarize, we formulate the taxi dispatch
problem as:

max
X̄(t),Xt(t)

T∑
t=1

M∑
i=1

N̄∑
j=1

X̄i,j(t)R̄i,j + δ1

T∑
t=1

Jtp(t) + δ2

T∑
t=1

Jt(t)

(26)

s.t.
N̄∑
j=1

X̄i,j(t)R̄i,j ≤ C̄i(t), (20) ∼ (25)

By solving this problem, the taxi dispatch decisions for
Nt vacant taxis during the future T time slots is gener-
ated. Problem (26) is a mixed integer linear programming
problem, which is not efficient to be solved regarding the
problem size, i.e., the number of decision variables. We can
relax the problem by replacing constraint Xt

i,j(t) ∈ {0, 1}
with 0 ≤ Xt

i,j(t) ≤ 1. With such approximation, the relaxed
form of Problem (26) is a linear programming problem. Ac-

Fig. 6: Passengers demand density over the city (the lighter
the icon, the higher the demand density)



10

Algorithm 2: RHC based coordination algorithm of
heterogeneous transportation systems

Input: Time horizon T minutes, period of updating control
solution t1 minutes; taxi capacity Ct; geometrical
information of taxis; parameter δ1, δ2

Output: Control decision: Xt

1: while At the beginning of every update period t1
minutes do

2: Run Algorithm 1 to determine decisions of subway
and bus.

3: if some passengers are not served by the
transportation system with rerouting and reallocation
then

4: Generate dynamic integration network G1 with
previously calculated decisions.

5: Update the locations and status of taxis.
6: Solve the problem (26) to determine taxi dispatch

decisions Xt using network G1.
7: else
8: No control decisions for nearby sparse taxis.
9: end if

10: end while
11: return Control decision of subway, bus, and taxi

cording to the optimal solution X̂t(t) of the relaxed form of
Problem (26), we set Xt

i,j(t) = 1 if j = argmaxj′{X̂t
i,j′(t)},

otherwise, it is 0.

5.3 RHC based coordination algorithm of heteroge-
neous transportation systems

The pseudo-code of the RHC based coordination algorithm
is shown in Algorithm 2. The algorithm consists of two
levels for computing the control decisions at the beginning
of each time slot. In the first level, we obtain the decisions of
integrating subway and bus systems by applying Algorithm
1 on the integrated network and then update the integrated
transportation network after applying the decisions. If not
all passengers can be served by the updated integrated
transportation network, in the second level, we solve the
problem (26) to determine the dispatch decisions of nearby
sparse taxis. After these two levels, the control decisions of
heterogeneous transportation systems are obtained.

This two-level integration algorithm dynamically selects
whether the taxi system is engaged to serve passengers
based on the first-level decisions of subway and bus systems
and the predicted number of stranded passengers. Part of
subway and bus systems are chosen for integration ac-
cording to factors of disruption, (e.g., location), and mobile
systems (e.g., availability).

6 EVALUATION

6.1 Methodology

To evaluate eRoute in a real-world scenario, we use the
dataset described in Table 1 to conduct a data-driven analy-
sis. We can see that a smartcard record contains the location,
time, and transport mode that one passenger swipes the
smart card. Based on this dataset, we can extract the origin
and destination of a trip for each passenger. Figure 6 shows

the passenger demand density of the subway and bus
system over one city. Then we can predict the passenger
demand of each OD pair using linear regression.

Given a day without disruptions and a day with dis-
ruptions, we count the passenger demand for each OD
pair during each time slot. Then we compute the pas-
senger demand difference for the two days of the same
time slot and OD pair and plot the CDF figure in Figure
7. We show the demand difference between each of four
normal operation days and a day with disruptions. It is
observed that the passenger demand changes little after the
disruptive event. The reason is that the influenced subway
line connects the central business area and the residential
areas of the city. Although the subway line reduced the
speed of trains under the disruptive event, the affected
commuters still had to select this subway line due to the
limited low-cost alternative transportation options. Based
on this observation, in the evaluation, it is reasonable to infer
the passenger demand on a day with disruptions using the
collected passenger mobility data on normal operation days.
The other disruptions that are not collected in the dataset,
such as train crashes, may decrease the passenger demand
on the corresponding transportation systems. However, the
daily commuters usually have fixed origins, destinations,
and departure time of their trips, which do not change after
disruptions. They may travel with different transportation
modes due to disruptions. It still makes sense to estimate
how many passengers want to travel starting from or ending
at an affected region of a city during each time slot after dis-
ruptions by the collected data of passengers during normal
operation days. eRoute can use the estimation to integrate
heterogeneous transportation modes, such as buses, taxis,
and trains for serving affected passengers.

We also use a dataset of GPS traces of all buses along 800
different bus lines in the same city. Every bus has networked
GPS that can upload real-time location information every
30 seconds. One record in this dataset contains a plate
number, a bus line number, a timestamp in seconds, GPS
Coordinates, and a real-time speed. Based on this dataset,
we can estimate the schedules of every bus line and the
trip time during the day. We can also estimate the real-
time passenger demand and available capacity of one bus
by combining smartcard reader data and bus GPS data, as
all buses use the smartcard system. The locations of subway
stations and bus stops are obtained from an online digital
map service provider. The typical capacity of a city bus is 60
passengers. We assume 25 extra buses can be reallocated.

This dataset contains one disruptive event: a signal prob-
lem starting from 7 am to the end of the day that causes
significant delays on all trains of a subway line. Both the
train speed and the frequency of trains were reduced due to
safety concerns. No bus shuttles had been used to address
this incident in reality based on an analysis of our data.

To show the effectiveness of eRoute, we compare it with
the following existing solutions to handle disruptions. (i)
Periodic control with extra vehicles: this method discretizes
the time of a day into multiple time slots and the length of a
time slot is 20 minutes. Periodic control with extra vehicles
updates the assignment of extra vehicles and rerouting deci-
sions of existing bus lines at the beginning of each time slot.
The objective of this method is to serve the current stranded
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passengers. (ii) Periodic control without extra vehicles: the
timeline is discretized into multiple 20-minute time slots.
This solution only reroutes the existing bus lines to help
the stranded passengers. It updates the rerouting decisions
at the beginning of each time slot. When calculating the
rerouting decisions, the objective is to serve the current
stranded passengers. (iii) Static: compared with eRoute, this
method determines how to reroute the same existing bus
lines and reallocate the same number of extra vehicles at the
beginning of the disruptions. The rerouting and reallocating
decisions do not change until the disruption is addressed.
(iv) Shuttle: the transportation center utilizes the dedicated
vehicles running along the influenced subway line to pro-
vide substitute services. The number of dedicated vehicles
is equal to the number of extra vehicles used in eRoute.
(v) Shuttle+Taxi: Besides the dedicated vehicles, a group
of taxis (a hundred taxis) is also used to run along the
influenced subway line and the capacity of each taxi is four.
(vi) Nearest: for every influenced subway station, only ten
geographically close bus lines are considered for rerouting
and reallocation. This method also updates the decisions
once per time slot. (vii) Enhanced eRoute: the transportation
center reroutes bus lines and reallocates extra trains based
on eRoute. If the influenced passengers are not fully served,
some extra vacant taxis are dispatched based on Alg. 2.

The performance metrics considered include: (i) the ratio
of served passengers per time interval (RSPI): the number
of passengers served during a time interval / (the number
of accumulated unserved passengers at the beginning of
the time interval + the number of new passengers during
the time interval); (ii) average traveling time; (iii) response
time: time to serve fixed percentage of passengers. In the
experiment, for our eRoute, the length of every time slot is

20 minutes and then the time horizon is 6 time slots. In the
evaluation, the optimal solution of rerouting, rescheduling,
and reallocation can be obtained within two minutes using
the Gurobi solver on a PC with an Intel i5 CPU and 8GB
memory. All the vehicles start to execute the decisions after
obtaining the decisions of dispatch.

6.2 Results
Prediction error. In eRoute, we use one linear model to
predict the passenger demand of different OD pairs during
each time slot, then use them to run our RHC algorithm. We
evaluate the accuracy of our prediction method by using
one-day data as the testing set and five-day data as the
training set. Figure 8 and 9 show the CDF of prediction error
and prediction error ratio respectively. Here, we have 72 OD
pairs. 80.0% passenger demand of one OD pair during a
time slot is no more than 30 and 50.0% of that is fewer than
10 passengers. The prediction error of nearly 90% of OD
pairs is less than ten passengers, which demonstrates that
a simple linear model can predict passenger demand fairly
accurately. In Figure 9, the prediction error ratio of some
OD pairs is large since the actual passenger demand is very
small (<5) resulting in a large prediction error ratio.

Comparison of solutions. Figure 10 plots the ratio of
served passengers per time interval of eight solutions over
the day. The performance of eRoute decreases from 6 am
to 9 am and then it increases with reduced passenger
demand, but it still significantly outperforms the other
solutions. Compared to the widely used Static solution,
eRoute achieves up to 2.82 times higher RSPI during rush
hours. This is because that eRoute benefits from our RHC by
considering the passenger demand in the future several time
slots. Even compared to the solution, i.e., periodic control
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with extra vehicles, eRoute achieves 64.1% higher RSPI
during 19:00-19:59. In the off-peak hours, e.g., 12:00-15:59,
with the decrease of passenger demand, eRoute can serve
all the passengers. Enhanced eRoute can serve nearly all
congested passengers except several peak hours, i.e., 7:00-
8:59 and 18:00-19:59 compared with eRoute.

There are also several observations: the first one is
updating the control decisions dynamically can improve
the performance. Comparing static solution, eRoute and
periodic control with extra vehicles, although all of the
three solutions reallocate the same number of extra buses,
the static solution has the lowest RSPI than the other two
solutions do during most time of the day, such as only 50.0%
of periodic control with extra vehicles and 20.1% of eRoute
during 10:00-10:59. The second observation is that rerouting
the existing bus lines can provide part of the substitute
supply, but more extra buses are needed. The third one is
that the transport capacity between influenced nodes and
existing bus networks limits the total number of served pas-
sengers by comparing the performance of enhanced eRoute
and eRoute. The last one is when comparing the perfor-
mance of the nearest bus lines solution and eRoute, more
bus lines that are considered in the subway-bus integrated
network would provide more alternative paths and higher
supply. However, sometimes, more bus lines would increase
the traveling time due to multi-hop transfer. Therefore, in
eRoute, we only consider the bus lines that are around the
influenced subway line.

Figure 11 plots the average passenger traveling time of
seven solutions over time. The traveling time of a passenger
includes the waiting time for the transport service and the
actual traveling time. From this Figure 11, we can see that
the average traveling time of eRoute increases from 7:00 to
9:00 because the surge of passenger demand results in the
growth of waiting time at the influenced stations. eRoute
still outperforms all the other solutions. For example, com-
pared to periodic control with extra vehicles, the passenger
traveling time with eRoute is still 20.8% less at 9 am. We see
the traveling time of all solutions except eRoute decrease
at the end of the day, and this is because many passengers
arriving at the influenced station after 19:00 do not receive
any transport service due to the limited supply, so it only
counts their waiting time. The traveling time by enhanced
eRoute is stable over the day since most passengers can
catch up vehicles without long waiting time when there is
enough transport capacity. Here we did not plot the curve of
the Nearest solution since its average traveling time is much
higher than the others.

Response Time. Once disruptions occur, eRoute and
enhanced eRoute reroute nearby buses and taxis to pick

up passengers stranded at the influenced subway stations,
which has a very short response time. Other solutions like
Shuttle or Shuttle+Taxi need to dispatch extra buses from
the distant terminals, which usually takes a long time to
reach the influenced stations. Figure 12 shows how long
each solution takes to pick up a certain percentage of
passengers during the first two-hours after disruptions. We
can see that it takes eRoute 88 minutes and Shuttle around
100 minutes to move 40% of the passengers, which suggests
eRoute has nearly 12.0% faster response time to move 40%
of all the passengers.

Number of extra vehicles. We also evaluate the perfor-
mances of eRoute with a different number of total available
buses. As shown in Figure 13, the more vehicles we use,
the higher RSPI we can achieve. When the number of total
available extra buses is 25, the RSPI can reach 100% during
off-peak hours. When 50 buses are used, the RSPI is almost
100% in the whole day.

Time Horizon. Figure 14 plots the performance of eR-
oute with different prediction time horizon: 2, 6 and 8 time
slots. The observation is that during off-peak hours, the
percentage of served passengers of 8 time slots horizon
outperforms that of 2 and 6 time slots horizon with average
gains of 36.2% and 12.3% respectively. The reason for this
observation is that a shorter time horizon means that only
the demand in the very recent future is considered, which
misses opportunities to achieve better control. During the
other hours of the day, the percentage of served passengers
with time horizon 6 and 8 is similar.

Control Update Period. Figure 15 plots the performance
of eRoute with different control update periods: 20, 40 and
60 minutes. The prediction time horizon is set to be 120
minutes. We can see that shorter control update period
can increase the performance of eRoute, as it allows more
frequent control decisions for passenger demand changes:
when the time slot length is 20 minutes, it improves the
performance by up to 2.4 and 2.7 times compared with time
slot lengths of 40 and 60 minutes respectively at 8:00.

Detour constraint. Figure 16 plots the performance of
eRoute with different detour constraints: 2, 4, and 6 min-
utes. The observation is that a higher detour constraint can
increase the ratio of served passengers, since it allows more
bus lines to be detoured to influenced nodes, and then
provides a higher supply for delivering passengers.

Performance of enhanced eRoute with different param-
eters. Figure 17 shows the performance of enhanced eRoute
with the different settings of δ1 and δ2. The two parameters
are negative since we want to minimize the idle driving
distance and the number of influenced passengers. The main
observation is that the performance of enhanced eRoute
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Fig. 21: eRoute under a Bus Disruption

degrades with the decrease of δ1 and δ2. When putting
more weight on minimizing the cost of taxis, the number of
taxis that are assigned to serve stranded passengers drops
in order to affect fewer taxi passengers, or some taxis can
only be assigned to the nearby stations or bus lines to
reduce the idle driving distance. Therefore, the performance
of enhanced eRoute decreases when the two parameters
become small.

Cost of enhanced eRoute. We use the number of influ-
enced taxi passengers and the extra idle driving distance of
taxis to measure the cost of enhanced eRoute. The results
are shown in Figure 18. We can observe that only fewer
than 40 taxi passengers are influenced by the enhanced
eRoute during each time slot, and the number of influenced
taxi passengers is high during the morning, afternoon, and
evening rush hours. The other observation is that enhanced
eRoute does not introduce much extra idle driving distance
for taxis, i.e., always less than six kilometers per hour.

Overhead of eRoute. The average number of transfers is
used to measure the overhead of eRoute and enhanced eR-
oute. Since passengers are delivered by rerouted bus lines,
which cannot connect origin and destination directly and
increases the number of transfers they make. Figure 19 plots
the average number of transfers by eRoute and enhanced
eRoute during the day. We can see that passengers need to
transfer more than twice to reach their destinations during
most time of one day by eRoute. Specifically, during rush
hours, more transfers are needed due to higher passenger
demand making passengers find the longer alternative path
to their destinations. Since taxis provide extra capacity to
transport passengers between an influenced station and a
bus line passing a station, a fewer number of transfers is
required if using enhanced eRoute.

Performance of eRoute with perfect prediction of
passenger demand. Since there exist errors for predicting
the future passenger demand as shown in Figures 8 and

9, we show the performance difference of eRoute with
predicted passenger demand and eRoute with actual pas-
senger demand (called eRoute+oracle) in Figure 20. The
main observation is that compared with eRoute+oracle, the
performance of eRoute decreases by 3.3% on average over
the time intervals. We conclude that although the prediction
model introduces the error as shown in Figures 8 and
9, eRoute serves the similar number of passengers with
eRoute+oracle does.

Disruption to bus systems. To demonstrate the flexibil-
ity of our design, we conduct another simulation to evaluate
the performance of eRoute under a disruptive failure of the
bus system. Here we simulate the transportation network
when the bus service is shut down at a few stops in one
region of the city due to accidents, and then we apply
eRoute to transport stranded bus passengers. The simulated
disruption to the bus system influences six stations and 48
bus lines from 6:00 to 23:00. Only the passengers boarding
or getting off the bus in one of six bus stops are regarded
as being affected. There are around 1630 bus passengers
boarding or getting off the bus in one of six bus stops during
each 20-minute time slot on average. Existing methods [17],
[18] are implemented to estimate the destinations of bus
passengers. For the smartcard data that is not in a daily
trip chain, the kernel density estimation is used to compute
the probability of the destinations.

Figure 21 shows the RSPI of six solutions that are used
to handle a disruptive event to bus systems. We can observe
that compared with periodic control with extra vehicles, the
ratio of served passengers per time interval of eRoute in-
creases by up to 54.9%. The reason for this performance im-
provement is that eRoute is able to predictively reschedule
and reroute nearby bus lines, where periodic control with
extra vehicles only reactively adjusts routing and scheduling
decisions. It is also observed that more transport capacity is
needed to fully serve the stranded passengers during rush
hours by comparing eRoute and enhanced eRoute. With
more available transportation resources, eRoute will achieve
the best performances than the other baselines, because it
plans extra vehicles and routes for the dynamic passenger
demand after a bus disruption.

7 DISCUSSION

Incorporating other factors: (i) The performance of eRoute
is impacted by passengers’ preference for different paths,
which limits the actual number of transported passengers.
For instance, some paths with long traveling time or a
large number of transfers are not selected by passengers.
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Therefore, integrating passengers’ preference models is a
future direction of this work. (ii) Traffic conditions may
increase or decrease vehicles’ speed, which further affect
the transportation capacity. In this study, traffic conditions
are related to not only regular vehicles, such as trucks and
private cars but also the rescheduled buses and taxis. This
work will integrate the traffic condition model in the future.
(iii) Modeling the change of passenger demand between any
two urban regions due to disruptions is essential to our
design. However, since disruptions rarely happen in the city,
some data-driven solutions [19], [20] to model passengers’
response to disruptions may not work. It is a future study
to incorporate the passenger demand change model because
of disruptions.

Limitations: The applicability of eRoute is limited by
the scale of disruptions and the number of transportation
resources. The main idea of eRoute is to use under-utilized
transportation resources to transport stranded passengers.
However, in preparation for the large-scale urban trans-
portation failure, city authorities need to have sufficient
resources, e.g., extra buses, taxis, and trains.

Generalization of eRoute: Although we take the dis-
ruptions to transportation systems as an example to design
eRoute in this work, the ideas and insights can also be
generated to a broader range of urban mobile systems that
encounter disruptions. First, complementary urban systems
can be coordinated dynamically when the operation of one
system is affected by disruptions. Second, according to the
characteristics of the given disruptions and urban mobile
systems, the dynamic selection of complementary systems
is useful for improving integration efficiency. Finally, due
to the features of different urban mobile systems, multi-
level coordination can reduce the cost, e.g., road conges-
tion around the location where disruptions happen, while
increasing the performance of integration.

8 RELATED WORK

Urban data-driven applications and analysis. There exist
some prior works, which either propose data-driven ap-
plications or formulate generic models to capture urban
phenomena by data analysis. The increasing availability
of urban sensors has encouraged a surge of work focus-
ing on design data-driven applications. Many novel ap-
plications are proposed to improve the efficiency of the
urban transportation system, e.g., balancing bike sharing
system [21],providing last-mile transit service to deliver
passengers [22], coordinating electric taxis for charging [23],
and helping taxi drivers find next passengers efficiently [24].
Based on the collected large-scale data, some works focus
on data-driven analysis to formulate generic models to
understand urban features, e.g., inferring various traffic
indicators [25], inferring human mobility patterns across the
city [26], investigating spatiotemporal segmentation infor-
mation of trips inside a metro system [27], calculating traffic
volume on road segments [28], path planning for instant
delivery [29] and inferring traffic cascading patterns [30].

Solution to handle disruptive events: They are clas-
sified into two directions [7]: pre-disruption preparedness
and post-disruption response. Pre-disruption preparedness
is to prepare certain measures before disruption happens.

An alternative direction is designing a robust schedule to
enhance potential recovery actions. [31], [32], [33] and [4]
consider robust train scheduling. [7] studies that metro
network resilience to disruptions can be enhanced by local-
ized integration between bus services and subway stations
to achieve the desired resilience to potential disruptions.
[34] focuses on how to determine optimal plans for pro-
tecting passengers’ railway transportation networks under
a limited budget. However, their design relies on manual
and local incremental adjustments on bus routes, and it
generates static and fixed routes. Differently, our solution
dynamically adjusts bus routes and based on passenger
demand. Post-disruption response focuses on coming up
with responsive measures for subway system disruptions
to alleviate consequences. [35] states that in the case of a
disruption, the first task is keeping the subway system run-
ning, including timetable adjustment [5], and re-scheduling
rolling stock and crew [36]. [37] and [3] introduce shuttle
bus services in the disrupted area intelligently which re-
quires extra shuttle buses rather than detouring existing
bus lines. [6] has taxis instead of buses as the recovery
service for on-board passengers in a public tram system. [38]
responds to serious disruptions by redesigning the lines in
a particular region around the disruption. [39] proposes an
integrated management solution to handle given disruption
by rescheduling trains and re-flowing passengers. However,
these studies do not consider dynamic data-driven integra-
tion among heterogeneous transportation systems.

9 CONCLUSIONS

In this work, we study how to address disruptions to urban
mobile systems using transportation systems as an example.
We design, implement, and evaluate eRoute for dynamic
transportation integration under disruptive events based
on real-world multi-source data from the city Shenzhen.
Our endeavors offer a few valuable insights for fellow
researchers to conduct similar investigations: (i) under dis-
ruptive events, the existing effort for transfers within pub-
lic transportation systems provides an opportunity to dy-
namically integrate them without requiring ad-hoc efforts,
e.g., extra bus lines; (ii) given spatial-temporal partitions
of public transportation systems and natures of disruptive
events, we can deliver stranded passengers with a hierarchi-
cal receding horizon control framework to reduce their af-
fected traveling time with minimal overheads; (iii) our work
only focuses on the technical frontier on the modeling and
resource allocation framework, and it is more challenging
to establish working policies that would make large-scale
deployment feasible to reduce impacts of disruptive events
and increase transportation resilience.
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[18] L. He and M. Trépanier, “Estimating the destination of unlinked
trips in transit smart card fare data”, Transportation Research Record,
vol. 2535, no. 1, pp. 97–104, 2015.

[19] T. Lin, A. Shalaby, and E. Miller, “Transit user behaviour in
response to subway service disruption”, 2016.

[20] A. M. Pnevmatikou, M. G. Karlaftis, and K. Kepaptsoglou, “Metro
service disruptions: how do people choose to travel?”, Transporta-
tion, vol. 42, no. 6, pp. 933–949, 2015.

[21] S. Wang, T. He, D. Zhang, Y. Liu, and S. H. Son, “Towards efficient
sharing: A usage balancing mechanism for bike sharing systems”,
in WWW 19. 2019, ACM.

[22] D. Zhang, J. Zhao, F. Zhang, R. Jiang, and T. He, “Feeder: Support-
ing last-mile transit with extreme-scale urban infrastructure data”,
in IPSN ’15, New York, NY, USA, 2015, pp. 226–237, ACM.

[23] Y. Yuan, D. Zhang, F. Miao, J. Chen, T. He, and S. Lin, “pˆ
2charging: Proactive partial charging for electric taxi systems”, in
2019 IEEE 39th International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2019, pp. 688–699.

[24] J. Yuan, Y. Zheng, X. Xie, and G. Sun, “T-drive: Enhancing driving
directions with taxi drivers’ intelligence”, IEEE Transactions on
Knowledge and Data Engineering, vol. 25, no. 1, Jan 2013.

[25] Z. Liu, Z. Li, K. Wu, and M. Li, “Urban traffic prediction from
mobility data using deep learning”, IEEE Network, vol. 32, no. 4,
pp. 40–46, July 2018.

[26] D. Zhang, J. Huang, Y. Li, F. Zhang, C. Xu, and T. He, “Ex-
ploring human mobility with multi-source data at extremely large
metropolitan scales”, in MobiCom ’14. 2014, ACM.

[27] F. Zhang, J. Zhao, C. Tian, C. Xu, X. Liu, and L. Rao, “Spatiotem-
poral segmentation of metro trips using smart card data”, IEEE
Transactions on Vehicular Technology, vol. 65, no. 3, March 2016.

[28] C. Meng, X. Yi, L. Su, J. Gao, and Y. Zheng, “City-wide traffic
volume inference with loop detector data and taxi trajectories”, in
SIGSPATIAL’17. 2017, ACM.

[29] Y. Zhang, Y. Liu, G. Li, Y. Ding, N. Chen, H. Zhang, T. He, and
D. Zhang, “Route prediction for instant delivery”, Proc. ACM
Interact. Mob. Wearable Ubiquitous Technol., Sept. 2019.

[30] Y. Liang, Z. Jiang, and Y. Zheng, “Inferring traffic cascading
patterns”, in SIGSPATIAL’17. 2017, ACM.

[31] P. J. Zwaneveld, L. G. Kroon, and S. P. Van Hoesel, “Routing
trains through a railway station based on a node packing model”,
European Journal of Operational Research, vol. 128, no. 1, 2001.

[32] P. J. Zwaneveld, L. G. Kroon, H. E. Romeijn, M. Salomon,
S. Dauzere-Peres, S. P. Van Hoesel, and H. W. Ambergen, “Routing
trains through railway stations: Model formulation and algo-
rithms”, Transportation science, vol. 30, no. 3, pp. 181–194, 1996.

[33] Y. Liu, C. Liu, N. J. Yuan, L. Duan, Y. Fu, H. Xiong, S. Xu,
and J. Wu, “Intelligent bus routing with heterogeneous human
mobility patterns”, Knowledge and Information Systems, 2017.

[34] S. Starita and M. Paola Scaparra, “Passenger railway network pro-
tection: a model with variable post-disruption demand service”,
Journal of the Operational Research Society, vol. 69, no. 4, 2018.

[35] L. Kroon and D. Huisman, “Algorithmic support for railway dis-
ruption management”, in Transitions Towards Sustainable Mobility,
pp. 193–210. Springer, 2011.
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