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System deployments of IoT systems have drawn research attention, because it is very challenging to meet

both physical and cyber constraints in real systems. In this paper, we consider the problem of deploying

wireless camera networks inside a complex indoor setting for surveillance applications. We formulate the

problem of the minimum connected guarding network whose objective is to place a minimum number of

cameras satisfying both visual coverage of the domain and wireless network connectivity. We prove that

finding the minimum connected guarding network is NP-hard in both the geometric and discrete settings. We

also give a 2-approximation algorithm to the geometric minimum guarding network problem. Motivated by

the connection of this problem with the watchman tour problem and the art gallery problem, we developed

two algorithms to calculate the locations of camera deployment. By deploying a prototype testbed, we verify

the feasibility of the system design. Using simulations on 20 real floor plans, we demonstrate that our solutions

reduce the number of cameras by up to 28%, and reduce the number of relay nodes by up to 47%.
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1 INTRODUCTION
With the recent advancement of pervasive computing, wireless networks, and optical sensing,

wireless camera networks are deployed for a wide range of applications [31]. In many existing

systems for security monitoring and home health-care, camera network deployments heavily rely

on existing infrastructure. Typically, a node is plugged into the wall and directly connects to a

local network access point. However, such support is unavailable in many scenarios like first

responder [38] and military applications, where the networks need to be deployed quickly with
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little existing infrastructure. For example, soldiers need to deploy a camera network to monitor

suspicious activities in a building during military operations. These applications impose a unique

set of cyber and physical requirements on the deployment: 1) Full visibility coverage: every point

inside the building needs to be monitored; 2) Reliable wireless connectivity: all the camera nodes

need to be self-organized to form a connected ad-hoc network, so that pictures or videos recorded

can be transferred to a base station for real time monitoring when no wireless infrastructure support

is available; 3) Low deployment cost: the minimum number of devices is desirable for the low

deployment cost and short deployment time. These constraints, together with the complex building

structure, make the camera network deployment problem very challenging.

In order to address these challenges, it is essential to employ optical sensing and wireless commu-

nication models together. Therefore, we define the Minimum Connected Guarding Network Problem,

which combines the visibility sensing model and wireless communication models into an optimiza-

tion framework. In the visibility model, each camera’s sensing range is only restricted by the line

of sight. This is a generalization of the cone model [61] of a camera. In the wireless communication

model, wireless nodes are connected when they are within each others’ communication range r .
Based on these two models, the problem looks for the minimum number of cameras that can guard

a floor, while ensuring their mutual wireless connectivity.

This problem includes the integration of isotropic sensing and wireless networking, which

indicates the unique cyber-physical nature of the deployment. Previous researchers have proposed

many camera deployment algorithms [15][46][60][2][23][34][54] to maximize the visual coverage

of the network, but little attention was given to ensure the wireless connectivity, which is essential

for data communication. Although related sensor network coverage research [28][30] provides

valuable insights to network connection, the widely used short range circular sensing model does

not apply for optical cameras. Our goal is to fill this missing gap and achieve full visibility coverage

and wireless connectivity with the minimal number of necessary devices.

The solution to the minimum connected guarding network problem depends on the communi-

cation range between the wireless nodes. Take one extreme, say the communication range of the

sensor nodes is large enough such that any two of them can directly communicate with each other.

Then this problem boils down to the classical Art Gallery Problem (AGP), which aims at finding

a minimum number of point guards such that any point in the building is within direct line of

sight of at least one guard. The art gallery problem is a well known NP-hard problem, and it has

been extensively studied for approximation solutions [45]. Take the other extreme, say that the

communication range is very small compared to the scale of the building; we need to place the

wireless nodes continuously along paths to keep them connected. Thus the problem converges to

one of finding a connected geometric network such that any point is visible to at least one point of

the network. It is not hard to show that such a network of the minimum length must be a tree. The

problem of finding a minimum guarding tree for a polygon has not been given much attention in

the past. A problem similar to ours is the watchman route problem [10], i.e., finding a route of the

minimum length that guards an entire polygon. It is known that the watchman route problem is

NP-hard for the general polygon with holes [13]. However, nothing is known about the problem if

nodes are not connected as a path but a tree. Recently, alternative proofs about the NP-hardness

and the approximation algorithm for the minimum guarding tree problem was provided in [16].

In this paper, we initiate the study of the deployment of cameras that satisfies both visual coverage

and wireless connectivity. We first show that the problem of finding the minimum guarding network

is NP-hard when the wireless communication range is a constant r . We also show that under one

extreme of this setting, when the communication range r → 0, the problem is still NP-hard to solve.

This is called the minimum geometric guarding network problem. We then give a 2-approximation
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algorithm to the minimum geometric guarding network by using the watchman tour algorithm in

a simple polygon.

In terms of algorithm development for practical implementations, we consider two possible

deployment settings. In the first setting, we focus on the first responder applications in which

in-field dynamic deployment must be done quickly. We employ the watchman tour based solution,

termed the Connected Visibility region Tracking (CVT), which allows the first responders to drop

sensors along the (shortest) watchman routes. This can minimize the total traveling distance of the

first responder during the deployment process. In the second setting, we assume that the network

designer has plenty of time to deploy the network. We design the Connected Visibility region

Planning (CVP) algorithm, which first identifies a set of guarding regions as potential deployment

areas. The Minimum Steiner Tree-based algorithm is used to deploy relay points to ensure wireless

connectivity. This algorithm is computationally intensive but produces near-optimal deployment

results in practice.

When the wireless communication range is not long enough, additional wireless camera nodes

are needed to ensure network connectivity. We firstly design a Minimum Spanning Tree with

Neighbors (MSTN) based algorithm to optimize the locations of the cameras in order to reduce the

communication distances between camera nodes. Then we apply two algorithms to deploy wireless

relay nodes. The first algorithm we use, termed Uniform, is to deploy wireless devices uniformly

along with wireless links [31]. This algorithm ensures that the number of wireless nodes is at most

4 times the optimum [8][37]. The second algorithm, termed the Steiner tree with minimum number

of Steiner points (Steiner) algorithm [37][9], searches for more effective locations (Steiner points)

for wireless nodes such that more than two components of the network can be connected. This

algorithm improves the approximation ratio to 3.

We evaluated the proposed deployment algorithms in real scenarios. We built a wireless camera

network testbed to validate the effectiveness and accuracy of our algorithms. Each node of this

testbed consisted of four off-the-shelf components: a Beagle Board development board, aWi-Fi radio

adapter, a webcam, and a battery cape. We deployed these camera nodes according to locations

generated from the CVP and the CVT algorithm in our campus buildings. Real deployments

over time can achieve above 99% wireless connectivity and adequate visibility coverage (our

prototype cameras were not panoramic). Compared with the widely used 3-coloring and the

random deployment algorithms, our deployments had significantly better wireless communication

connectivity. By incorporating wireless transmission power models, we demonstrate that our

algorithms reduce the energy consumption rate by up to 30%. Moreover, in simulations on 20 real

floor plans, with different communication ranges, we show that our deployment algorithms yield

more efficient results, by reducing camera numbers by up to 25%, and significantly reducing the

number of wireless cameras under different communication range assumptions.

2 PROBLEM ANALYSIS AND APPROXIMATION ALGORITHM
In this section, we formulate the wireless camera deployment problem and prove its NP-hardness.

We assume that the indoor deployment area is modeled by a polygon P . A camera node is a wireless

node with a visual sensing range defined by line of sight, and a wireless communication range defined
as a disk of radius r . We would like to place a minimum number of cameras inside P such that the

following two conditions are met:

• All nodes collectively guard the entire polygon P in the sense that any point inside of P has a

direct line of sight to at least one camera;

• The nodes form a connected network using wireless communication.
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This problem is called the Minimum Connected Guarding Network problem. Clearly, if the input

polygon is convex, then the camera deployment problem is trivial, because placing one camera at

any location inside the polygon can ensure full coverage (and it is trivially a connected network).

Therefore, we will focus on the setting when P is non-convex.

2.1 Hardness Proof

Fig. 1. Given an instance of the minimum geometric
rectilinear Steiner tree (left), we turn it to an instance
in which each point is replaced by a T-junction obsta-
cle (shown to the right).

v

C C′

P(C′)

P(C)

y

v′

Fig. 2. CutC dominatesC ′ since P(C ′) contains P(C)
– any tour that visits P(C)must also visitC ′ and guard
P(C ′). C is also an essential cut.

Theorem 1. Finding the minimum connected guarding network in a general polygon P is NP-hard.

Proof. We use a reduction from the standard art gallery problem. Given an arbitrary art gallery

instance with an input polygon P , we scale the polygon P down such that it is within a disk of

radius r . The optimal solution for the art gallery problem does not change. But the cameras in

any guarding solution form a connected network. Thus if we have a solution for the minimum

connected guarding network, it is the optimal solution for the art gallery problem, which is known

to be NP-hard. □

Notice that the proof above depends on the communication range being a fixed constant. When

the communication range is much smaller than the size of the deployment domain, i.e., r → 0, the

connected guarding network becomes a geometric graph that guards the polygon P . We would like

to find such a geometric network with minimum total length. We call this problem the minimum
geometric guarding network problem.

The major difference between geometric guarding network and connected guarding network is

whether or not the guarding points are deployed continuously along the graph. In a geometric

guarding network, the guarding points are deployed very closely to their immediate neighbors,

and the resulting network is a geometric graph that any point on this graph is a guarding point.

On the other hand, in a connected guarding network, each vertex represents a guarding point, and

the edges represent the communication links between different vertices. In what follows, we prove

the NP-hardness of the minimum geometric guarding network problem.

Theorem 2. Finding the minimum geometric guarding network in a general polygon with holes is
NP-hard.

Proof. We use reduction from the minimum geometric rectilinear Steiner tree problem in the

plane. Given n points on a unit lattice called sites, we would like to find a tree T connecting the n
sites with minimum total length. The tree may use other non-site lattice points as vertices and all

edges of the tree must be either horizontal or vertical. This is illustrated in Figure 1. Given such

an instance, we construct an instance for the guarding problem. We first enlarge lattice edges to

narrow corridors. Each lattice grid becomes a ‘hole’ of the polygon. In particular, a site vertex will
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map to a small ‘T-junction’ gadget hole such that one must visit the junction point in order to

guard it. The T-junction hole is small enough to fit inside the corridor. See Figure 1 for the sizes of

the corridor and the T-junction hole.

Now we can verify that for a positive integerm, there exists a rectilinear steiner tree of length at

mostm if and only if there exists a minimum geometric guarding network of length at mostm + 3ϵ .
Take a very small ϵ , say 0.1. This shows that the minimum geometric guarding network problem is

NP-hard even for a rectilinear polygon with holes. □

Given the hardness results, we then move on to find approximation algorithms and practical

solutions with good performance.

2.2 Approximation Algorithm for the Minimum Geometric Guarding Network
Problem

In this section we first show some useful properties of the minimum geometric guarding network.

Then we present a 2-approximate solution for this problem in simple polygons. This algorithm also

constitutes a building block for the algorithm applied in general case when r , 0.

We represent the input polygon P by a sequence of vertices v1,v2, · · · ,vn , with n ≥ 4. For

i = 1, 2, ...,n − 1, ei = (vi ,vi+1) represents the edge of the polygon connecting node vi and vi+1.
For ease of presentation, we also impose a direction upon each edge such that the interior of the

polygon lies to the left of the edge, or equivalently, the boundary of P is directed counterclockwise.

Without loss of generality, we also assume that the vertices of P are in general positions, i.e., no

three vertices are collinear.

A vertex v is a reflex vertex if the interior angle at v is greater than π . A vertex is called convex
otherwise. A chain of vertices betweenvi andvj is defined as all the vertices that will be encountered
if one scans from vi counterclockwise to vj . The visibility polygon of a point x inside P , denoted by

V (x), is defined as the set of points in P with direct line of sight from x . We call a set of pointsM
inside P a guard cover, if for any point p ∈ P , there is a point q ∈ M such that q sees p. We also say

that a guard cover is able to guard P .

Theorem 3. Given a polygon P , the minimum geometric guarding network is a tree of polygonal
curves.

Proof. For any geometric guarding networkG within P , we can find a finite size guard cover

M on G. In particular, we take each reflex vertex vi and extend its two adjacent edges, vi−1vi and
vivi+1, to form two cuts, ci− and ci+. We add intersections between each cut ci and the guarding

network G intoM . Clearly the number of guards is at most O(n2). Further, the set of pointsM is a

guard cover. Now take a minimum Steiner tree T upon the guardsM . Clearly T guards P . Also T is

no longer than the total length of G. This shows that the minimum geometric guarding network

must be a tree made of polygonal curves. □

The idea to get a 2-approximation solution to the minimum geometric guard network in a simple

polygon P is to make use of a watchman tour. A watchman tour is a closed cycle inside P that guards

P . That is, any point of P has direct line of sight to at least one point on the tour [11]. Although

finding the shortest watchman tour in a general polygon with holes is NP-hard [11], there is an

O(logn)-approximation algorithm for a rectilinear version with restricted visibility [40], and an

O(log2 n)-approximation algorithm for general polygons with or without holes. The watchman tour

problem for a simple polygon is solvable in polynomial time (for a tour with a fixed starting point

see [50, 53], and for the floating tour without a given starting point [51]). We show in the following

theorem that in a simple polygon, the optimal watchman tour is a 2-approximation solution to the

minimum geometric guarding network.
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Fig. 3. For a given polygon P with a starting point s , the watchman route is represented by the thick line, and
the cameras are represented by circular dots. The essential cuts and visibility cuts of P corresponding to s are
marked as a dashed lines. Notice that a guard v is added at the intersection of the watchman tour and one
visibility cut.

Theorem 4. Inside a simple polygon P , the optimal watchman tour is a 2-approximation to the
minimum geometric guarding network.

Proof. First any watchman tour is clearly a geometric guarding tree. We take the minimum

geometric guarding tree T , double all edges in the tree which then form a tour along the tree,

visiting each edge exactly twice, once in each direction. This resulting tour is a watchman tour. It

has length exactly twice the length of the minimum geometric guarding tree, which is no shorter

than the length of the optimal watchman tour. This proves the theorem. □

3 ALGORITHMS FOR MINIMUM CONNECTED GUARDING NETWORK
In this section we describe algorithms for finding a guarding network, when the communication

range of camera nodes is a fixed constant r > 0. Our aim is to provide practically interesting algo-

rithms for real system implementation, to be explained in the next section. We use two approaches

for two different scenarios. The first algorithm is used when there is limited deployment time and

the network needs to be set up quickly. For this case, our algorithm computes the minimum length

route for the deployer to travel and drop camera nodes along the route [38] without the need for

much detours. The second algorithm is used when the deployment time is more ample and the

deployer can install the cameras anywhere in the building. In this case our algorithm will further

optimize the locations of the wireless camera nodes so that they are more efficient in visibility

coverage and wireless connectivity.

3.1 Connected Visibility region Tracking
We firstly describe the Connected Visibility region Tracking (CVT) algorithm. The basic idea of

this algorithm is to find a minimum watchman tour and place cameras along the tour, such that the

same visibility coverage is kept. The first step of CVT is to compute the optimum watchman tour

for the input polygon. We adapt the algorithm by Chin et al. [13] and Tan et al. [50] with O(n4)
runtime to find the shortest watchman route for a simple polygon through a given point s within
the polygon. The basic idea is to find the ‘essential cuts’ in P that the watchman route must touch

to guard the whole polygon, and visit these cuts using a shortest tour.

Specifically, the concepts of a cut C , an essential piece P(C) and an essential cut are shown in

Figure 2. For a given polygon P , suppose v is a reflex vertex in P and one of its adjacent vertices is

v ′
. If we shoot a ray from v ′

to v , hitting the polygon at y, then the visibility cut C = vy is a cut of

P and it separates P into two parts. We call the part of P not containing v ′
the essential piece of P ,

denoted as P(C). Suppose the watchman route has not visited the part of P(C) yet, then it must
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Fig. 4. The guarding region of vi (shaded)
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Fig. 5. Different Camera Deployment
Locations

at least touch the visibility cut C in the later route to guard P(C). A visibility cut Cj is dominated

by another cut Ci if P(Cj ) contains P(Ci ), which means if the route passes Ci to touch P(Ci ), then

P(Cj ) is guarded automatically. We call a cut to be an essential cut if it is not dominated by any

other cuts. Two cuts C1 and C2 can also intersect. If they intersect, i.e., the essential piece P(C1)

and P(C2) partially overlap, we will only consider the region that is outside the union of the two

P(C1) ∪ P(C2). And each cut is shortened to be only the part on the boundary of P(C1) ∪ P(C2).

Based on the concepts of essential cut, we can reduce the watchman route problem to finding the

shortest route that touches every essential cut inside a polygon. We first list the essential cuts in

clockwise order, {C1,C2, · · · ,Ck }. Starting from point s , we want to find a path to visit this cut list.

It has been proved that the optimal watchman tour will visit the cuts in a clockwise order, making

a ‘bounce’ at each cut similar to a ray bouncing off a mirror. There is still one unknown parameter

as which cut is visited first from s . We simply enumerate all possibling starting cuts. We reorder

this list so that the first cut being visited comes first in the list. Specifically, if the first cut to visit is

Ci , then the tour visits π = Ci ,Ci+1, · · · ,Ck ,C1, · · · ,Ci−1.

Once the path touches the next essential cut C on the list, we calculate the reflection image of

the polygon using C as a mirror – the watchman tour goes straight through the cut in the reflected

copy. In the original polygon P the tour is reflected back at C . The path finding process will stop

when it visits the last cut Ci−1 in the list and it goes back to s . In other words, the reflections with

respect to the cuts will generate a sequence of k copies of the polygon P glued along the cuts in

the same order π . We denote this glued polygon by P̂ . The minimum watchman tour is found by

finding the shortest path inside P̂ connecting the starting point s and the image of s in the last copy

of P . We can get the watchman route T by mapping this path back to the original polygon.

Once the shortest watchman route R of a polygon P is acquired, a camera will be installed at

every vertex of R. Furthermore, we walk through all the intersections between R and each of the

polygon cut, and add cameras when needed (i.e., if the cameras placed at junctions of R cannot

cover P(Ci ) for a cut Ci , we add one more camera at the intersection of Ci with R). This set of
guards is sufficient to ensure the visibility coverage of P . See Figure 3 for an example.

If the network is not connected, additional wireless camera nodes are necessary. To reduce the

detour for the network deployer, we add extra nodes along the watchman tour to connect the

adjacent cameras. The camera nodes are placed uniformly every r units.

3.2 Connected Visibility region Planning
The second algorithm is called Connected Visibility region Planning (CVP). The basic idea is to

determine guarding regions that can look around reflex vertices in the polygon, and place a camera

in each guarding region to ensure visibility coverage. Then we deploy wireless relay nodes to
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ensure wireless connectivity using the Steiner Minimum Tree with Minimum number of Steiner

Points and bounded edge length algorithms.

In a simple polygon without holes, only reflex vertices can block the view. The basic idea of CVP

is to deploy cameras such that for each reflex point in P that obstructs the view, at least one camera

can look around it. Specifically, let vi be a reflex vertex of P , and vi−1, vi+1 be its two neighboring

vertices. We define a guarding regionW (vi ) as the region such that any point withinW (vi ) has line
of sight to both vi−1 and vi+1. See Figure 4 for an illustration.

After obtaining the guarding regions for all the reflex vertices, we further reduce the redundancy

by selecting only the intersections between these visibility regions. We calculate the intersection

guarding region setŴ = {w1,w2, ...wn}, such thatw1∪w2∪ ...∪wn =W (v1)∪W (v2)∪ ...∪W (vN ),
andwi ∩w j = ∅,∀i , j. Some elements in the set Ŵ are intersections of more than one elements

inW (vi ), while others are partial portions ofW (vi ).
Our goal is to find the minimum region setM = {m1,m2, · · · ,mk } from the intersection guarding

region set Ŵ , such that the entire polygon is covered. Finding such a deployment region set for

a collection of geometric regions is NP-hard. We adopt a greedy algorithm to achieve this goal.

Initially, we set the guarding set G to be empty. At each iteration, we find a deployment region ŵ
from Ŵ that is contained in the maximum number of uncovered guarding regions, deploy a camera

д′ at the center of ŵ , and add д′ into the guarding setG . Then we check the visibility coverage area

of the guarding set G, if it covers the entire polygon, then the algorithm terminates. Otherwise we

select the next deployment region ŵ and repeat the procedure.

3.2.1 Optimizing Camera Locations. By deploying one camera at the centroid of each deployment

regionmi , the visibility coverage of the entire area is ensured. However, since we have the freedom

to select locations inside each deployment region, we can deploy them in such a way that the total

length of the spanning tree of the cameras is reduced. This is illustrated in Figure 5. In this simple

example, there are two deployment regions, and we need to deploy one camera at each of them. To

achieve the minimum distance between cameras, we should deploy cameras at point c1 and c2. On
the other hand, if we deploy the cameras at the centroids ofm1 andm2, i.e., c

′
1
and c ′

2
, their mutual

distance will be larger.

Specifically, our goal is to determine the location of the camera within each deployment region

mi , such that the total length of the spanning tree of these cameras is minimized. This is reduced

to the problem of Minimum Spanning Tree with Neighborhoods, and we adopt the algorithm

proposed in [59]. For any two regionsmi andmj , we define their distance di j as the minimum

Euclidean distance from any points inmi to any pointmj . We use si j to denote the shortest segment

that connects points in regionmi andmj . Let S be the set of n2 − n distance segments of the set

of deployment regionsM , called the distance set. We say regionsmi andmj are connected if the

segment si j is selected in a tree. The minimum connecting tree T is defined as the subset of S such

that all the regions are connected and the total length

∑
si j ∈T di j is minimized.

We use the standard Minimum Spanning Tree algorithm to find the minimum connecting tree T
from the distance set S . After the minimum connecting tree T is obtained, let ni1,ni2, ...nik denote

the set of endpoints of distance segments from T that are incidental to the regionmi (k represents

the number of segments incidental to regionmi ). We randomly select one point nci from these

points as the location for camera deployment. We repeat this process until one camera is placed in

each regionmi . We denote this set of cameras by N .

3.2.2 Ensuring Wireless Connectivity. After the camera set N is deployed to ensure visibility

coverage, our next goal is to form a connected network. Different from the scenario of CVT when

, Vol. 1, No. 1, Article . Publication date: May 2020.



Connected Wireless Camera Network Deployment with Visibility Coverage 9

�1 + �)r

Camera
Wireless Relay

(a) Uniform Deployment (b) Steiner Tree De-
ployment

Fig. 6. Deployment of Additional Wireless Nodes to Ensure Network Connectivity.
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Fig. 7. Sensor Node Deployment

the deployment time is limited, we now consider the case when there is ample time so that the

locations of the wireless nodes can be further optimized.

Specifically, we formulate the problem of deploying additional wireless camera nodes as what

follows: given the set of wireless cameras N in the area and the upper bound r of the transmission

range, compute the minimum number of wireless nodes such that all the wireless cameras form a

connected network Ts . This problem is called the Steiner Minimum Tree with Minimum number
of Steiner Points and bounded edge length [8][9], which is an NP-hard problem. There are several

approximation solutions for it, with constant approximation ratios.

A basic algorithm is to deploy wireless nodes every r distance along the Minimum Spanning

Tree (MST) of the existing camera nodes. This algorithm in theory achieves a 4-approximation

ratio [8]. In particular, for any wireless link that has a length l greater than r , we deploy ⌊l/r⌋ relay
nodes uniformly along the link. This is illustrated in Figure 6a. We can see that when the distance

between two cameras (adjacent black blocks) is larger than r , we will deploy an additional relay

node in the middle.

To reduce the number of wireless relay nodes, we apply the Steiner Tree based camera deployment

algorithm. The intuition is that wireless nodes can be used more efficiently by connecting multiple

components of the network. This is illustrated in Figure 6b. If we generate the minimum spanning

tree of the camera nodes and deploy wireless nodes along edges, then we will need 4 additional

nodes to ensure connectivity (Figure 6a). However, for this case, one additional wireless node will

be sufficient to connect the entire network, as is shown in Figure 6b. Based on this idea, we design

a Steiner Tree based algorithm to reduce the number of wireless nodes.
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The algorithm proceeds as follows. Initially, the network topology Ts consists of all the camera

nodes, with no edges. Through three loops, we include necessary wireless nodes into the network

and compute the topology of the network.

Loop 1: In the first loop, we find out camera node pairs that do not need any relay nodes. We

scan the edges ei ≤ r in the order of increasing lengths. We include edge ei if the two endpoints of

ei belong to different connected components of Ts .
Loop 2: In the second loop, we find out all the potential relay node positions that can connect

more than two components in the network. We scan all camera node triples {ci , c j , ck } ∈ N 3
. If

ci , c j , and ck are in three different connected components of the graph Ts , then we check whether

there exists a Steiner pointvs such that these three components can be connected to it. Such a point

vs is found by using the following approach: If △cic jck is an acute triangle, vs is the circumcenter

of △cic jck . Otherwise if △cic jck is an obtuse or right triangle, then vs is the center point of the
longest edge of △cic jck .
If the longest distance of these three nodes to vs is shorter than the communication range r , it

means that all the three components can be connected using a single wireless node, so a wireless

camera vs and the three edges vsci , vsc j , and vsck are included in the topology Ts .
In some cases vs is located outside of the polygon P . In such cases, we scan all reflex vertices of

P that are inside of △cic jck . If any of these reflex vertices has direct line of sight to ci , c j and ck and

has distances at most r to ci , c j and ck , then a camera node is placed at that point. Otherwise this

camera triple is skipped.

Loop 3: In the final loop, we deploy relay nodes uniformly to ensure wireless connectivity. We

scan all the edges ei that have larger length than r in increasing order. If any edge ei connects two
different components of Ts , then we deploy wireless nodes along ei every r distance. This loop
proceeds until all the devices are able to form a connected network. Using this approach, we can

achieve 3-approximation ratio [9].

3.3 Discussion
Extension to Polygons with Holes. The CVT and CVP algorithm are designed for simple

polygons. However, in terms of application, the cases when internal holes exist are also of interest.

The first step of the CVT algorithm is to find the shortest watchman route, which is NP-hard when

the polygon has holes [17]. For a polygon P with diameter diam(P), perimeter per (P) and k holes,

an approximation algorithm can achieve a length ofO(per (P)+
√
k ·diam(P)) relative to the optimal

solution. Therefore, the CVT algorithm can be adapted by using an watchman route algorithm

designed for polygon with holes. To extend the CVP algorithm to general polygons, it’s necessary

to define the guarding regions for the internal holes that can also obstruct view. Once the guarding

regions are defined, we can use the same region intersection algorithms described in Section 3.2 to

determine the camera locations.

Time Complexity. The computation complexity of finding the minimum watchman route is

O(n4)[13, 50]. This determines the overall big-O time complexity of CVT. To find the set of guarding

regions in CVP, the time complexity isO(n2) (O(n2) to find the mutual intersections of all guarding

regions, O(n logn) time for sorting, and O(n) time to find a subset using greedy algorithm). To

determine the location of camera deployment, the Minimum Spanning Tree with Neighborhoods

algorithm is used. Its time complexity is O(n2 logn). For the relay node deployment algorithm, the

time complexity will be O(n3). Therefore, the overall big-O time complexity of CVP is O(n3).

4 SYSTEM IMPLEMENTATION
In this section we introduce the design of our prototype wireless camera network testbed. Our goal

is to demonstrate the ability of the system to ensure basic wireless connection. This testbed has
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Link ID 1 2 3 4 5 6 7

Length(ft) 25 8 30 15 43 13 44

Packet Loss Rate 4% 0% 4% 0% 0% 0% 0%

Table 1. CVP Wireless link packet loss rate

(a) Floor Plan (b) CVP (c) CVT (d) 3-Coloring
Fig. 8. Deployment Locations in a Real Floor Plan

12 battery-powered wireless camera nodes, and each of them is built based on the off-the-shelf

BeagleBone low power development board. A 3.1 megapixel Aptina CMOS digital image sensor

MT9T111 and a USB Wi-Fi dongles with Realtek RTL8192CU chipsets are plugged to the board’s

USB extension board, and the board is powered by 4 AA batteries. A picture of the camera node is

shown in Figure 7a.

Experiments. We firstly conduct ad hoc node to node communication between wireless camera

nodes. We have deployed our prototype system in the building of the Computer and Information

Sciences Department building in Temple University, which is shown in Figure 8. In these figures,

the thick line represents the input polygon. In Figure 8b, 8c, and 8d, the black dots represent camera

deployment locations and the dash lines represent the wireless links. The actual camera system

deployed on the wall is shown in Figure 7b. A sample picture taken by this system is shown in

Figure 7c.

Next we evaluate the network’s wireless connectivity. We set the Wi-Fi mode to be Ad-Hoc, and

tune 2.412 Ghz as the communication frequency. The power management function is turned off so

that the Wi-Fi communication will be running at highest performance. For each wireless link in

this network deployed in Figure 8b, we execute the ping command between each pair of nodes

50 times and record the packet loss rate. The result is shown in Table 1. We can see the lengths

of the wireless links range from 8 to 44 feet, and most links achieve 100% delivery rate. The only

exception is in link 1, where there is a 4% packet loss rate. One possible reason for the packet loss

is that there are lots of other WiFi devices being used in the office during the experiments. The

mutual interference between our system and the other WiFi devices can cause packet loss.

In order to further establish the wireless link quality, we conduct a long term experiment. We

deploy two cameras at the two ends of the corridor, whose length is 43 feet. We ping from one node

to the other every second for one hour and record the success rate. This experiment is repeated

three different times. All three sessions of experiment achieve the packet loss rates smaller than 1%,

and the average round trip times are 16.875, 18.007, and 35.513, respectively. Since the length of the

wireless link is 43 feet, which is the longest one in the CVP deployment in our department building

floor plan, we can see that the CVP deployment ensures high quality wireless connectivity in the

long term.

Finally we test the system’s power by measuring each node’s voltage and current when the Wi-Fi

module is on and off. We found that the power of a node is about 1.22w and 0.72w when the Wi-Fi
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is on and off, respectively. An ordinary AA Alkaline long-life battery has a capacity of about 5000

J , therefore, the system with 4 batteries is expected to sustain for hours. We configure a node to

take pictures occasionally and exchange hello messages with its neighbors, and its battery life is

above 5 hours.

5 SIMULATION
5.1 Experiment Setup
We have implemented a simulation framework to evaluate our algorithms. In the experiments, we

take the floor plans of 20 realistic buildings as input. These buildings include hotels, classrooms,

houses, and museums. The goal of the evaluation is two-folded. Firstly we need to verify that both

the CVP and CVT algorithms can ensure the full visibility coverage of the floor plans. Secondly

we need to compare the number of cameras, wireless transmission power, and number of relay

nodes. In each specific floor plan, the numbers of cameras and relay nodes are positive integers.

To evaluate the algorithm performance, we compute statistics of node numbers, which can be

fractional numbers.

We selected the 3-Coloring algorithm [55] and the random deployment algorithm[39], which are

two classical algorithms that are widely used in sensor deployment literature, as baseline algorithms.

In the 3-Coloring algorithm, the input polygon P is firstly triangulated. The vertices of the polygon

are then 3-colored in such a way that every triangle has all three colors. Once a 3-Coloring is found,

the vertices with any one color form a valid guard set. By choosing a color with fewest vertices, this

algorithm forms a valid guard set with at most ⌊n/3⌋ guards [20]. Then we compute the minimum

spanning tree of the guard set, and deploy wireless nodes every r distance along each link. In the

random deployment algorithm, we randomly select the deployment locations for cameras one by

one inside the building, until the entire area is covered [39].

5.2 Number of Cameras
The camera number is an important metric to evaluate the performance of a deployment algorithm.

The camera number is directly related to the construction cost. Besides, as the camera number

grows, the video data size also increases. This will cast heavier burden on power supply because

wireless data communication is energy expensive. To evaluate the algorithms’ performance, we

simulate them on the 20 floor plans and record the required camera numbers. The results are shown

in Figure 9.

We can see that the CVP, CVT, the 3-Coloring algorithm, and the random deployment algorithm

require 4.2, 4.8, 5.9, 14.75 cameras on average, respectively. This demonstrates that the CVP and CVT

algorithms achieve more efficient use of cameras. The 3-Coloring algorithm always places cameras

at the vertices of the room, which limits the cameras’ guarding areas. The random deployment

algorithm requires more cameras because their locations are randomly selected, and there exists

much redundancy in the monitoring areas of the cameras. On the contrary, the CVP and CVT

algorithms deploy cameras such that larger areas can be monitored. As a result the total number of

cameras is reduced.

Besides, the 3-Coloring algorithm’s camera number has a standard deviation of 2.1, while that
of CVP and CVT are 1.6. This shows that the fluctuation of the camera numbers with different

structures is reduced when using CVP and CVT.

5.3 Number of Relay Nodes
In this experiment, we simulate and find out the number of wireless cameras necessary to ensure

both visibility coverage and wireless connectivity in each of the 20 floor plans. When the camera
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Fig. 9. Camera Number
nodes cannot form a connected network, we deploy additional wireless relay nodes uniformly

along the wireless link to ensure connectivity. In testbed experiments, we have found that using

the Belkin F5D7050v3 USB Wi-Fi dongle, the effective communication range is about 60 feet. When

the distances between nodes are larger, packet loss rates begin to grow. Since the communication

range depends on many factors, we compare the number of wireless relay nodes when different

assumptions on communication range are used. The results are shown in Figure 10.

From Figure 10, we can see that the number of wireless relay nodes drops dramatically when the

communication range increases from 10 to 40 feet, but when the communication range is larger

than 40 feet, it remains relatively stable. The number of wireless relay nodes is approximately

inversely proportional to the communication range.

We can also discover that the CVT has a good performance in terms of number of wireless relay

nodes. On average, it requires 19.2, 11.05, 7.05, 5.75 and 5.4 nodes when the communication range

is 10, 20, 40, 60 and 80 feet, respectively. This is because the CVT deploys wireless relay nodes

along the shortest watchman route, which is the shortest path that can guard the polygon. Since

the total distance is small, the number of wireless nodes is also smaller when compared with the

CVP and the 3-Coloring algorithm.

We can see that the random deployment algorithm requires the largest number of relay nodes,

78 when the communication range is 10 feet, to ensure connectivity. This is because a large number

of cameras result in larger total distances of the wireless links, which is linearly correlated to

the number of relay nodes when the communication range is small. The 3-Coloring algorithm

also requires a larger number of wireless nodes to ensure connectivity, because all the cameras

are deployed at the vertices of the building, which results in larger total distances of the wireless

communication links. On the other hand, the CVT and CVP algorithms are able to a achieve a much

better performance in number of wireless camera nodes, because they are optimized in this aspect.

5.3.1 Wireless Relay Node Deployment Algorithms. Next we evaluate the performance of the

wireless relay node deployment algorithms, the Minimum Spanning Tree with Neighbors (MSTN)

and the Steiner Minimum Tree algorithms. In this experiment, we normalize the building sizes

by scaling all floor plans to be within the area 0.5 × 1. We apply the CVP algorithm to find the

deployment regions, then we find the locations of cameras either by using the MSTN algorithm, or

by deploying a camera at the centroid (Centroid) of each deployment region. After the locations

of cameras are found, we deploy wireless camera nodes either uniformly along each edge of the

minimum spanning tree (Uniform), or by using the Steiner tree algorithm (Steiner). When the

communication range varies from 0.12 to 0.28, with step size being 0.02, the number of wireless

nodes needed to ensure connectivity is shown in Figure 11.
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The MSTN Algorithm. From this figure, we can see that the MSTN algorithm can effectively

reduce the number of wireless camera nodes. The improvement of MSTN is more significant when

the communication range is smaller. For example, when the communication range is 0.11 units, the

MSTN based algorithms require about 2.4 relay nodes, while the Centroid based algorithms require

more than 4.6 relay nodes. This is because compared with deploying cameras at the centroids of

deployment regions, MSTN algorithm can reduce the total distances of the spanning tree. When

the communication range is small, the number of wireless camera nodes is almost proportional to

the total distances between the cameras. On the other hand, when the communication range is

larger (when r ≤ 0.23), the number of relay nodes approaches zero.

The Steiner Tree Algorithm. When the communication range is small, the Steiner algorithm

achieves the same performance as the Uniform algorithm. This is shown in Figure 11 when

communication range is smaller than 0.12. We can see that the values of Uniform+MSTN almost

coincide with the values of Steiner+MSTN. This is because under this condition, no wireless nodes

are able to connect more than two wireless nodes.

When the communication range is larger, the steiner minimum tree algorithm becomes more

effective. For example, when the communication range is 0.14, the Uniform+Centroid algorithm

requires 3 wireless nodes, while Steiner+Centroid algorithm requires 2.2 on average. This is because

when the communication range is larger, the possibility of finding steiner points that connect more

than two components becomes higher.

5.4 Network Energy Consumption
In practical deployment of sensor networks, the battery constraint needs to be considered. The

network needs to ensure a sufficient amount of time in order to provide high quality monitoring.

Therefore, we adopt the radio model constructed in [26]. To transmit and receive a k bit message

over a distance d , the transmission and reception node consumes ETx and ERx amount of energy,

respectively. These are calculated using Equation 1. The physical meaning of the parameters in

this equation are summarized in Table 2. In this simulation, we assume that the wireless cameras

are able to transmit over any communication range, at the cost of quadratic growth of power

consumption.

ETx (k,d) = ETxe (k) + ETx−amp (k,d))
= Eelec ∗ k + ϵamp ∗ k ∗ d2

ERx (k) = ERxe (k) = Eelec ∗ k .
(1)
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The camera nodes are modeled after the VIVOTEK CC8130 1MP Panoramic View camera. It

operates at frame rate of 10 fps with image resolution at 1280 × 800. The images are encoded in

H.264 format and the video is compressed with a ratio of 30%. Therefore, the data bandwidth of

each camera is 254 KBit/s. In order to collect these video data, the camera nodes send them link

after link to arrive at a data sink. In this experiment, we select one camera node for each camera

network to be the data sink, and compute the energy consumption rate of the network during the

data transmission process.

From Figure 12, we can see that by using CVP, CVT and the 3-Coloring algorithm, the networks

consume 0.18, 0.23 and 0.34mW , respectively on communication. One reason why CVP achieves

lower communication cost than the 3-Coloring is that CVP algorithm reduces the mutual distances

between camera nodes. On the other hand, the 3-Coloring algorithm deploys cameras at the vertices

of the polygons, which results in the increase of mutual distances between nodes. Since the wireless

power consumption is proportional to the square of link distance, increase in camera nodes’ mutual

distances will increase the communication power.

Operation energy cost

Transmitter Electronics (ETxe )
Receiver Electronics (ERxe ) 50 nJ/bit
(ETx−elec = ERx−elec = Eelec )
Transmit Amplifier (ϵamp ) 100 pJ/bit/m2

Table 2. Radio Characteristics
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Fig. 12. Communication Power

In summary, the CVP and the CVT outperform the classical 3-Coloring algorithm in terms of

camera number, communication power, and number of relay nodes. Specifically, the CVP can

achieve a near optimal performance in necessary camera numbers, while the CVT can reduce the

number of relay nodes significantly. Both of these algorithms can reduce communication power

compared with the 3-Coloring algorithm. When the communication range is small the MSTN

algorithm can significantly reduce the number of relay nodes. When the communication range is

large, the effectiveness of the steiner minimum tree algorithm begins to be more evident.

6 RELATEDWORK
Recent development in camera network deployment research mainly focused on addressing new

and different coverage goals [35, 36, 42, 43, 60, 64]. The full-view area target coverage problem in

camera sensor networks aims at deploying the cameras in a way such that all the 360
◦
direction of

the objects can bemonitored [21, 29, 32, 56, 58, 62]. The barrier coverage problem, another important

new research direction in camera network deployment, aims at deploying sensors that guarantees

the detection when an intruder enters the area through any routes [3, 4, 7, 21, 24, 48, 49, 57, 63]. By

modeling the human movements patterns, the authors of [5, 7, 42] developed algorithms to improve

the expected coverage ratio while minimizing the number of cameras. However, these works did

not address the wireless connectivity issue, which is crucial for the operation of a sensor network

, Vol. 1, No. 1, Article . Publication date: May 2020.



16 Hua Huang, Chien-Chun Ni, Xiaomeng Ban, Andrew T. Schneider, Jie Gao, and Shan Lin

because the lack of connectivity means there is no guarantee that the data will arrive at the sink

for processing [1, 19]. Besides, while these works address the diverse monitoring requirements for

different monitoring scenarios, in certain scenarios, such as the emergency rescuing, battle field

monitoring, and natural environment monitoring, full area coverage is still necessary because the

events of interest can happen at any locations within the area. Besides, all these papers only focus

on visibility coverage, with little attention given to wireless connectivity. In our paper we focus on

algorithms that not only ensure the full visual coverage of the area, but also ensure the wireless

connectivity of the network.

The joint optimization for both sensing coverage and wireless connectivity has attracted much

research attentions in recent years. In particular, the Simulated Anealing algorithm [18], Genetic

Algorithm [22, 25, 47], and the local search algorithm [47] are used to developed time-efficient

deployment algorithms to ensure both the network coverage and connectivity requirements while

reducing the number of sensor nodes. The Integer Programming technique, which has exponential

computation complexity, is used to find the optimal deployment of the wireless sensor nodes [47].

In [39], the directional sensing and communication models are used, and the joint optimization of

both sensing coverage and connectivity is discussed. However, all these algorithms focus on the

disc-shaped or directional sensing models with limited sensing range, which is different from the

Line-of-Sight (LoS) sensing model we adopted. The LoS sensing model more accurately describes

the performance of a class of sensors whose sensing ranges are limited only by line of sight and

have long monitoring distances, such as panoramic cameras, infrared sensors, lidars, and radars,

etc. Furthermore, we proposed a 2-approximation algorithm to the minimum geometric guarding

network problem with polynomial time complexity.

The Art Gallery problem is a classical problem in computational geometry and is well known

to be NP-hard [45]. This problem is about finding the minimum number of guarding points such

that any point in the entire polygon is guarded. It is also well known that ⌊n/3⌋ cameras are

occasionally necessary and always sufficient to cover a simple polygon with n vertices [14]. In

a polygon with n vertices and h holes, ⌊(n + h)/3⌋ point guards are always sufficient [27]. If the

polygon is orthogonal (having only horizontal and vertical edges), ⌊n/4⌋ point guards are always
sufficient [33]. In [41], the guarded guard set problem was formulated, where each guard in the

guard set G must be visible to at least another guard in G , while G can completely ensure visibility

coverage of a simple polygon. Different from their work, we focus on the requirement that each

guard is wirelessly connected to at leas another guard. These papers provide valuable insights on

designing deployment algorithms to ensure visibility coverage, and we adopt their line-of-sight

visual sensing model.

The Watchman Route Problem deals with finding a route in a simple polygon P such that each

point in the interior of P can be seen from at least one point along the route[52]. In [12], the authors

propose an O(n4) algorithm to solve the problem under the constraint that the watchman route

must pass through a starting point s on the boundary of P . To remove the constraint of given

starting point, the authors of [44] give an O(f (n)n2) time solution. The authors of [6] apply the

concept of essential cut to solve this problem. They design an algorithm to find out all essential

cuts in the polygon, then a simple route that visits all these essential cuts will ensure coverage of

the entire polygon. In our paper, we utilize the polynomial time solution to the Watchman Route

problem as a building block for our CVT algorithm.

7 CONCLUSION
We focus on a wireless camera network deployment problem for indoor monitoring applications,

where both physical sensing and cyber networking constraints are imposed by the application

requirements. We formally define the Minimum Connected Guarding Network Problem. We proved
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the NP-hardness of the problem and designed a 2-approximation algorithm in the geometric setting.

We developed the Connected Visibility Tracking (CVT) algorithm to minimize the deployment time,

which is crucial for first responder applications. To further reduce deployment cost, we designed

the Connected Visibility Planning (CVP) that utilizes close to minimal number of cameras. We

further apply the Minimum Spanning Tree with Neighborhoods (MSTN) and Steiner Minimum Tree

algorithms to optimize the network deployment to improve wireless connectivity. Experiments

are conducted on an implemented prototype of the proposed system to verify the feasibility for

the system. Simulations are conducted to evaluate the performance of the proposed algorithms on

realistic floor plans. The results demonstrate that the proposed algorithms can ensure visibility

coverage and reduce the camera numbers and the number of relay nodes by up to 28% and 47%,

respectively. The communication power consumption is also reduced when our algorithm is applied.
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