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Abstract—Recent advances in wireless energy transfer technol-
ogy propels the developments of renewable sensor networks. To
sustain the operation of a sensor network, a mobile charger is used
to recharge each node. Consider each node’s recharge request as a
task with a soft due time, the mobile charger needs to dynamically
schedule these tasks. This scheduling problem is very challenging,
since both the nodes’ due times and their locations have to be
considered. Existing solutions to this problem usually assume
fixed paths generated by the travelling salesman or Hamilton
cycle algorithms. These solutions suffer from high deadline miss
ratios. In this paper, we investigate maximum response ratio based
scheduling algorithms that can dynamically select the path of
chargers for higher network coverage ratio. To further improve
the performance, we exploit the dependencies of different recharge
tasks and predict the impacts of executing one charging task to
the others. With extensive trace-driven analysis, our algorithms
significantly outperform existing algorithms.
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I. INTRODUCTION

Sensor networks are deployed for various military surveil-
lance [1], scientific exploration [2], and first responder applica-
tions [3]. Such applications may use visual or acoustic sensors,
which have high energy consumption rates. To sustain long-
term system operations, sensor nodes need to be recharged
periodically after their deployments. With recent advances of
wireless energy transfer technology, a mobile vehicle equipped
with wireless recharge device can be used to recharge sensor
nodes automatically [4], [5]. In small scale systems with low
energy consumption rates, the recharge schedule is trivial. We
can generate a fix schedule to recharge nodes using travelling
salesman algorithms. However, in large scale networks with
high energy consumption rates, the travelling time of the
mobile charger is comparable to the lifetime of the sensor
nodes. Under this condition, using fix schedules will result in
low coverage ratio. This is because fix schedules can not adapt
itself to the dynamics of sensor nodes’ energy levels.

The intrinsic spatiotemporal constraints make this dynamic
mobile charge scheduling problem unique and challenging.
To solve this problem, both the mobile charger’s travelling
time and the sensor nodes’ due time must be considered. For
example, if the travelling time is much shorter than sensors’
lifetime, the mobile charge scheduling algorithm boils down
to the real-time scheduling problem on a single machine. This
can be solved by classic algorithms such as Earliest Deadline

First (EDF) algorithm. On the other hand, if the travelling time
is much longer than sensors’ lifetime, mobile charger basically
needs to select the most efficient route to pass every node. This
becomes the travelling salesman problem, which is well-known
to be NP-hard. When the travelling time is comparable to the
sensors’ lifetime, this problem is not studied before. There
lacks efficient solutions: classic scheduling algorithms [8] focus
on task deadlines, while computational geometry algorithms [9]
mainly seek efficient routes in multidimensional spaces regard-
less of deadlines. There are a few related works [6], [7] that
deal with the mobility scheduling in the context of sensor
networks. Different from these works, we focus on scheduling
algorithm designs dealing with spatiotemporal dynamic tasks.

To address this problem, we take each node’s recharge
request as a task with a soft due time. We note that the
due times of tasks are independent to each other, since the
energy consumption rate of each node is determined by its own
workloads. However, these tasks are dependent in space. Given
the same due time, recharging a node with high spatial prox-
imity requires much less travelling overhead than recharging a
node far away. To characterize this special feature of mobile
charge, we introduce the spatial dependency task model. This
model quantifies how the execution of one task influences all
others. The spatial dependency model allows nodes lying close
to the travelling path to have higher priorities than the other
tasks. However, this alone is not enough to avoid falling into
local optimal, partially due to the lack of global information
in a distributed large scale networks. Therefore, we further
design predictive heuristics to look ahead with rough grained
global task estimations. Our solution demonstrates a good
tradeoff between scheduling coverage and cost. We evaluate
our solutions in extensive simulations. The simulation results
show that significantly higher coverage with little travelling
overhead can be achieved.

II. TASK AND SYSTEM MODELS

We consider a sensor network of n nodes deployed in a
two-dimensional space. These sensor nodes have independent
energy consumption rates. A Mobile Charger (MC) is a vehicle
equipped with a wireless power recharge device. It travels to
the sensor nodes one by one to deliver energy.

1) Task Model: the recharge requests of sensor nodes are
modelled as tasks. A task τi is represented by processing time,
waiting time and soft due time. These three parameters are
denoted by {pi, twi , di}. Since these parameters are dependent



on time, the MC has to regenerate the task list each time when
it is to make recharge schedule decisions. These parameters are
described as follows:

Processing time pi is modelled as the travelling time for
the mobile charger to move to the next target. If we use v
to represent MC’s speed and lnext to represent the distance
between current and target nodes, then pi can be calculated as
bellow:

pi =
lnext
v

(1)

Waiting time twi is modelled as the amount of time the node
has been waiting since its last recharge.

Soft due time di is modelled as the amount of time before
the corresponding node’s energy depletes. In some cases, tasks
may be past due. di is defined to be negative under these
conditions. If we denote the node’s maximum energy storage
by emax and energy consumption rate by ri, then the due time
of a task can be calculated by the following equation:

di = emax/ri − twi (2)

When twi > emax/ri, it means that the node has been
waiting too long so that it has already run out of energy.

2) Spatial Task Dependency: Different from traditional task
scheduling problems [8], [10], [11], the execution of one task
can affect the processing time of all other tasks in our Dynamic
Mobile Charger scheduling problem. This is because when
the MC executes one task, it moves and changes its relative
locations to all other nodes. This will in turn affect all their
processing time by equation 1.

An example is shown in Figure 1a. Assume MC is located
at node A. Then the processing time of the task to recharge
node B is p(B) = d(AB)/v. But if MC is located at node C,
then the processing time of the same task is p(B)′ = d(CB)/v.
In this case, p(B) > p(B)′. In other words, the time it takes to
recharge node B depends on the MC’s current location. This
indicates that potential performance gain could be attained by
exploring the sensor nodes’ spatial dependencies. We discuss
two motivating examples as follows.

Nodes near MC’s path: In Figure 1a, suppose the MC’s path
is from node A to node B. Processing time of τB is p(B) =
d(AB)/v. If p(C) + p(D) + p(B)′ = d(ACDB)/v < dB ,
then MC can take advantage of this laxity and recharge node
C, D before B without missing B’s due time. The additional
cost for this new scheduling can sometimes be small if C and
D are located near path AB. The extra cost introduced for τB
is p(C) + p(D) + p(B)′ − p(B).

Node clusters: When a group of closely located nodes have
similar approaching deadline, higher priority should be given
to them. As illustrated in Figure 1b, say MC is located at node
A, the processing time of node B is shorter than the other nodes
(p(b) < p(d) ≈ p(e) ≈ p(f) ≈ p(g) ≈ p(h)). However, if MC
recharges B first, other nodes will die before being recharged. A
solution for lower due time miss ratio is to first charge the node
clusters (C, D, E, F, G) with a higher density of approaching
due times.

(a) Nodes near path (b) Spatial Cluster

Fig. 1: Task Spatial Dependency

3) Model Metrics: Based on this task model, we can define
the following metrics to evaluate any scheduling algorithms.

Coverage: If the energy of a sensor node runs to 0, it will
stop functioning. We define the Coverage of the network to be
the percentage of sensor nodes functioning at the moment. It
can be defined by the following equation:

Coverage =
Number of functioning nodes

Number of all nodes
(3)

MC Cost: Cost denotes the energy overhead for the MC
to recharge the sensor network. In this paper, we consider only
the travelling cost of MC. Since MC is travelling at a constant
speed, the cost is linearly proportional to the travelling time:

Cost =
∑

all charged nodes
K × pi, (4)

where K is the energy consumption per unit time.

III. ALGORITHM

In this section, we propose several algorithms for MC
scheduling.The MC makes scheduling decisions only when it
finishes recharging a node. Our goal is to provide a reliable
network such that the coverage ratio is maximized, while
lowering MC cost and maintaining fairness between nodes and
between regions.

A. Minimum Weight First

In Minimum Weight First (MWF), we seek for a tradeoff
between processing time and due time. Therefore, we employ
the parameter α to represent their relative importance. The
priority of MWF is defined as follows:

Priorityi = αpi + (1− α)max(0, di), (5)

where pi is the processing time defined in equation 1. It
represents the cost of executing the task. di is the node’s soft
due time by equation 2. The task with minimum Priorityi
will be selected as the next target. When α = 1, the problem
becomes the Greedy TSP. When α = 0, only the deadline
determines the schedule.



B. Maximum Response ratio First

Maximum Response ratio First (MRF) scheduler defines the
priority of each task to be dependent on both its processing time
and waiting time. The longer tasks wait, the higher priority
they gain. This will prevent infinite postponement (process
starvation) [8]. Intuitively, the higher energy consumption rate
a node has, the less time it can afford to wait. Therefore we
multiply the energy consumption rate ri with the waiting time
twi . MRF’s priority is defined as follows:

Priorityi =
twi × ri +Wdmax(0,−di)

pi
(6)

The term max(0,−di) will be non-zero only when a task is
past due. We assign the weight Wd to this term to reflect the
additional penalty of lateness.

C. Spatial Laxity based Heuristics

As described in section II, spatial dependency of nodes
exists. Based on these observations, we propose two heuristics:
Spatial Laxity Filling (SLF) and Spatial Laxity Clustering
(SLC). SLF searches nodes near MC’s travelling path. SLC
partitions the sensor network into spatial clusters and computes
each node’s priority based on both its own and its cluster’s
energy conditions.

1) Spatial Laxity Filling: As illustrated in figure 1a,
Assume MC is located at node A. The Spatial Laxity Filling
(SLF) scheduler firstly selects the target node using MRF, say
B. Then the scheduler will check if there are any nodes located
inside the circle whose diameter being line AB. If so, SLF will
select the node that lies closest to line AB to be recharged
before B.

2) Spatial Laxity Clustering: Spatial Laxity Clustering
(SLC) divides the network into different clusters and takes
into account the estimation of each cluster’s urgency when
scheduling. SLC firstly divides the node space into m non-
intersecting clusters. SLC defines the priority of each cluster
using the following equation:

Priorityc =

∑
nodes in cluster t

w
i × ri

pc
, (7)

where twi is the waiting time and ri is the energy consumption
rate of each node. The term

∑
node in cluster t

w
i × ri is an

estimation of the cluster’s urgency. pc is modelled as the
travelling time for MC to travel from its current location to
the geometric centroid of the node cluster.

SLC will select the next cluster with maximum Priorityc.
After entering a cluster, MC will be scheduled to recharge
nodes within this cluster using MRF. After the urgency estima-
tion of the cluster falls below a threshold, the charger will begin
to travel to next cluster. Using this algorithm, better fairness
among different clusters can be achieved.

IV. EVALUATION

We have implemented a simulation framework to evaluate
the scheduling algorithms proposed in this paper. In the simu-
lation, the sensor network consists of 15× 15 nodes deployed
in a grid manner. We assume the charger has the global energy
information of all the nodes. A node’s recharge is assumed to

be finished at the moment MC moves to it. We will present the
results of MRF, SLF, SLC and MWF with α = 0.2, 1 in this
section.

A. Coverage

Firstly, we compare the performance of different mobile
charger algorithms in terms of network Coverage defined in
equation 3. In each experiment, the charger totally recharges
10000 times before it stops. Then we compute the network’s
average coverage ratio during the experiment. For each algo-
rithm, we repeat this experiment 50 times and compute the
average of these two statistics. The results are shown below.

Fig. 2: Coverage

From figure 2 we can see that MRF achieves the highest
coverage ratio among all the five algorithms tested. This is due
to its ability to achieve a balance between waiting time and
processing time in scheduling. On the other hand, SLC has a
lower performance. The reason is that a large travelling cost
can occur during cluster switching.

When MWF algorithm has the parameter α = 0.2, it has a
better performance than when α = 1. However, as can be seen
in later analysis, this is at the expense of higher recharging
overhead.

B. Due Time

Each time a sensor node is being recharged, we record that
node’s soft due time defined in equation 2. The Cumulative
Distribution Functions(CDF) of the Due time are plotted below:

Fig. 3: Due Time

From figure 3 we can see that MRF is able to maintain a
smaller deadline miss ratio. This is because MRF focuses more
on nodes with low energy. On the other hand, although SLF



can ensure the next task’s due time will not be missed, a larger
number of dead nodes still occur. This is because inserting
nearby nodes can increase the waiting time of nodes lying far
away.

C. Fairness

In order to evaluate the spatial fairness of these scheduling
algorithms, we divide the sensor network equally into 3 × 3
clusters with rectangle shape. Each cluster has 5×5 nodes. The
coverage ratio is computed for each cluster using the following
equation:

Coveragei =
Number of functioning nodes in Clusteri

Number of all nodes in Clusteri
(8)

Then we can compute the standard deviations of Coveragei
between different clusters for each algorithm. The results are
shown below.

Fig. 4: Fairness

This figure shows that SLC has the lowest standard devia-
tion, which means the coverage ratios between different clusters
are similar. This is due to the fact that SLC can adjust its
scheduling based on each cluster’s need. On the other hand,
MRF has high standard deviation. This indicates that MRF
achieves higher coverage ratio at the expense of spatial fairness.
The fairness of MWF with α = 1 is the worst. This is because
this scheduler favours too much about nearby nodes, while
being unfair to nodes far away.

D. Cost

We sum up all the travelling distance of the MC for each
experiment. Then we normalize these distances by dividing
them by the travelling cost of MWF with α = 1. This is
because MWF with α = 1 is a classical greedy solution to
Travelling Salesman Problem. Besides, it achieves minimum
travelling cost in all the algorithms we designed.

As shown in 5, we can see that SLC has a large travelling
cost, due to its long distance travel when changing clusters.
SLF achieves a lower cost than MRF because it selects to
recharge nodes which are located close to the recharging
route. This proves to be efficient in terms of travelling cost.

To summarize, we can see that MRF can achieve a higher
coverage ratio. The advantage is more significant when the

Fig. 5: Cost

recharge workload is heavy. When we hope to minimize the
travelling cost of MC, we can choose SLF that can reduce
travelling cost, while not incurring serious performance degra-
dation. If the geometric condition of the sensor network is so
complex that energy consumption rates of nodes from different
regions differ greatly, we can choose SLC scheduler so that
fairness between different regions can be ensured automatically.
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