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ABSTRACT

Electric toothbrushes are widely used for home oral care, but many
users do not achieve desired hygiene results due to insufficient
brushing coverage or incorrect brushing techniques. Existing elec-
tric toothbrushing monitoring systems fail to detect these issues
because they cannot achieve fine-grained position tracking. In this
paper, we present a novel electric toothbrushing monitoring system
called MET that tracks brushing coverage for all the 15 surfaces of
teeth and detects different types of incorrect brushing techniques.
This design is inspired by our observation that the motor inside an
electric toothbrush generates a unique magnetic field, which can
serve as a reliable signal for position and orientation tracking. MET
is the first system that tracks both the position and orientation of
an unmodified electric motor using magnetic inductive sensing. Ex-
periments with fourteen users show that the average toothbrushing
surface recognition accuracy of MET is 85.3%. Moreover, MET is
robust to user location changes and posture variations and does
not require any training from the users. Experimental results also
demonstrate our significant advantages over existing commercial
systems.
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1 INTRODUCTION

As one of the most widely used home oral hygiene devices, a typical
electric toothbrush (ET) uses a motor to generate rapid automatic
bristle motions that can effectively remove plaque, reduce gingivitis,
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and prevent tooth decay and gum diseases [23, 41]. However, many
users still develop dental problems even after using electric tooth-
brushes on a daily basis [75], and some users even experienced
receding and bleeding gums, eroded enamel, and fillings falling
out [1]. This is because they make some common mistakes, such as
missing surfaces of some teeth, brushing with incorrect techniques,
and brushing for insufficient or excessive time. The automatic de-
tection of improper brushing habits can significantly improve the
user’s oral hygiene results.

Existing ET monitoring systems have employed a variety of
sensors, including camera [79], microphone [43], and inertial sen-
sors [48]. The most advanced Oral-B GENIUS 7000 model uses a
mounted smartphone camera to detect which one of the four quad-
rants that a user is brushing [11]. Nevertheless, it cannot tell which
surfaces are being brushed within a tooth quadrant, not to men-
tion the insufficient or over brushing, because the camera cannot
see inside the user’s mouth. Moreover, the camera-based approach
does not work in low light conditions and often raises privacy con-
cerns. Some other systems like Philips and Kolibree rely on inertial
sensors to detect brushing areas [8, 13]. However, inertial sensor-
based solutions usually suffer from low recognition accuracy due
to drifting errors, and our experiments showed that the strong ET
vibrations significantly aggravate the drifting errors of IMU-based
positioning. Similarly, previous research on manual toothbrushing
monitoring using motion features [39] does not work for ET due
to its significant motion noise. As we can see, these sensing tech-
niques have intrinsic limitations, and it is very challenging to build
a monitoring system that monitors finer-grained surface coverage
and incorrect brushing techniques reliably.

In this paper, we describe MET: a Magneto-Inductive Sensor
based ET monitoring system, by exploiting a different sensing
modality: magnetic field sensing. From extensive experiments, we
observed that the motor of an ET generates a sub-µT level quasi-
static magnetic field around the brush. Although the strength of
this magnetic field is weak, it has its unique frequencies and pat-
terns that allow us to differentiate it from the ambient magnetic
field. This offers a reliable and accurate indicator for toothbrush
positioning as the field is robust to obstructions, e.g., human arms
and non-line-of-sight conditions. Therefore, we build a magneto-
inductive sensor using customized induction coils, which capture
the time-varying magnetic flux density generated by the motor at
specific frequencies. Previous research employs magnetic sensing
for localization [24, 55, 57, 66, 68, 78], engine monitoring [61], and
vehicle detection [34, 38]. Our work is different as we are the first
to develop a position tracking system for an electric motor, which
serves as a non-cooperative target in toothbrushing monitoring.
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We develop a set of technologies to track the 6 Degrees of Free-
doms (6 DoF) pose of electric toothbrush from scratch. Specifically,
we construct an analytic magnetic model for the motor based on a
point magnetic source that has a time varying magnetic moment.
This model enables us to track the motor’s 5 DoF pose (3D position,
yaw and pitch angles) based on magnetic sensor measurements.
We note that this model is insensitive to the motor’s roll angle
changes, so we also design a collaborative sensing algorithm that
estimates the roll angle of the motor based on the unique signal
waveform features. We design unsupervised learning algorithms
to recognize brushing surfaces under user mobility. we develop
an expectation-maximization based algorithm that iteratively es-
timates the toothbrushing surfaces. Although MET cannot sense
the location and head pose of a user, it can infer these movements
from toothbrush motion patterns and directions during brushing
indirectly. Such techniques can be applied in a broader setting to
recognize activities and correlated context simultaneously.

Our design targets the rotation-oscillation based toothbrush,
represented by Oral-B [11] that has the largest market share [2]. In
a set of experiments with fourteen users, MET achieves a surface
recognition accuracy of 85.3%, and detection accuracy of 92%, 87%,
and 94% for aggressive, over, and insufficient brushing, respectively.
Compared with commercial toothbrushing monitoring systems
Oral-B and Phillips that use the camera and inertial sensors, MET
also demonstrates significantly higher detection accuracy.

The contribution of this work is summarized as follows.

• We build MET - an electric toothbrush monitoring system
that can reliably track brushing coverage for 15 surfaces of
teeth and detect incorrect brushing.
• To the best of our knowledge, this is the first work to perform
the position and orientation tracking of an unmodified motor
based on sensing the motor magnetic field. Previous studies
on motor magnetic field primarily focus on motor status
monitoring, and magnetic signature and noise modeling
[33, 76], but these works do not provide solutions to achieve
pose tracking.
• We create a set of technologies to track fine-grained tooth-
brushing activity, including 1) an analytic magnetic model to
approximately characterize the complex magnetic field gen-
erated by the toothbrush motor; 2) a collaborative sensing
scheme to detect motor roll angle based on a signal waveform
model; 3) a training-free surface recognition algorithm that
infers brushing surfaces under user movements, e.g., location
changes and head posture variations, based on correlated
toothbrush motion direction and orientation changes.
• Experimental results with fourteen users show that MET
achieves average toothbrushing surface recognition accu-
racy of 85.3%, outperforming other state-of-the-art systems
significantly.

2 OVERVIEW

2.1 Electric Toothbrushing Monitoring

To use an Oral-B electric toothbrush, themanufacturer recommends
holding the brush head against each tooth for a few seconds, then
slowly moving on to the next one. Repeat the process for all the
outer, chewing, and inner surfaces [5, 6]. The entire toothbrushing
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Figure 1: System Overview

session should last for two minutes, and every surface of the teeth
needs to be covered evenly. Although the procedure is straight-
forward, users still make the following mistakes: 1) insufficient
brushing. Clinical studies show that insufficient brushing for tooth
surfaces, especially the inner surfaces of the back teeth, is among
the most common improper brushing habits. If not cleaned regu-
larly, these tooth surfaces develop dental plaque quickly and can
lead to tooth cavities [3, 52, 54, 69]. 2) Over-brushing. Due to the
high-frequency motions of bristles, brushing a surface for too long
can cause tooth sensitivity and receding gums [25]. 3) Incorrect
brushing motions. Aggressive brushing, such as the vigorous back
and forth brushing motions in long strokes, is not effective in re-
moving dental plaques and can injure the gum [7, 37].

To accurately monitor the toothbrushing process, it requires
high precision to differentiate the subtle direction and orientation
changes. Existing monitoring systems rely on different types of
sensors, including a camera, a microphone, or inertial sensors. How-
ever, these sensors have limitations, including visibility blockage
or motion noises. For example, the state-of-the-art Oral-B tooth-
brushing monitoring system that is based on the camera can only
achieve rough-grained monitoring, i.e., quadrant (one of the four
tooth sections) level. This monitoring granularity is still insufficient
for detecting blind spots or missing surfaces.

In this paper, we make an observation that the toothbrush mag-
netic field can serve as a reliable pose tracking signal.While themag-
netic field generated by an electric appliance was usually treated as
noise in previous research [33, 76], we initiate a systematic study
on its spatial distribution in the open space. We construct an ap-
proximate magnetic field model, which enables the position and
orientation tracking for an unmodified motor. We then use our
novel tracking technique to develop a toothbrushing monitoring
system that is more fine-grained than prior arts.

2.2 System Design and Challenges

Figure 1 shows an overview of our monitoring system design. Our
design has three major components: the sensor hardware, the motor
pose tracking models and algorithms, and the algorithms to monitor
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Figure 2: The Coordinate System

toothbrushing surfaces and techniques. These three components
and their associated challenges are discussed as follows.
Hardware for Motor Magnetic Field Sensing. As shown in the
left part of Figure 1, our system uses a customizedmagneto-inductive
sensor array to measure the motor magnetic field. Our initial exper-
iments showed that the Oral-B genius 7000 generates a magnetic
field with a strength that ranges from approximately 5nT (10−9) to
1µT (10−6), and the primary harmonic of the time-varying magnetic
field is about 1000 Hz. In a typical home environment, there is a
constant background magnetic field that ranges from about 50µT
to hundreds of µT . It is challenging to sense the electric toothbrush
motor magnetic fields in a high-fidelity, reliable, and low-cost way.
We have considered multiple sensor design options, as detailed in
Section 6. We eventually custom-built magnetic inductance sensors
to achieve a nT -level of sensing resolution, with a sufficient sensing
bandwidth (> 2000Hz).
Motor Pose Tracking. As illustrated in the middle part of Figure
1, our system uses the magnetic field strength information to track
the motor position, and the magnetic field waveform information
to track the motor roll angle. The motor magnetic field is generated
by its internal rotor, which contains three poles and each functions
as an electric magnet with time-varying position, orientation, and
magnetic strengths. It is very challenging to model this field to
support motor position tracking. We construct an approximate
analytic model of the magnetic field strength, and a data-driven
statistical model of the magnetic field waveform.

Modeling the Motor Magnetic Field Strength. Our goal is to estab-
lish a mathematical relationship between the motor position and
the magnetic field strength at the sensors. Previous works have
employed the Finite Element Method (FEM) to model the motor
magnetic field [21, 26, 30, 80]. However, these works only focus on
analyzing the magnetic fields inside of the motor, not the magnetic
field in the open space, which is pertinent to the motor pose track-
ing. Furthermore, the FEM technique requires detailed parameters
of the motor, such as the strength of the internal magnets and the
permeability of the electromagnet cores. Such proprietary informa-
tion is not available for the DC motor in an electric toothbrush due
to the private implementation. The FEM is also compute-intensive,
which makes it difficult to achieve real-time monitoring in our
application. In this paper, we construct an approximate motor mag-
netic model with sufficient accuracy but with significantly lower
computation complexity than the FEM model. In particular, we
model the motor as a point magnetic source with a time-varying
magnetic moment and validate it with empirical data. This model

enables a tracking algorithm for the 5 DoF pose of the motor, i.e.,
3D position, and pitch and yaw angles.

Modeling the Motor Magnetic Field Waveform.We next study how
to use the magnetic field waveform infer the roll angle of a motor.
The toothbrush roll angle, which is illustrated in Figure 2, is crucial
information for differentiating brushing surfaces [39, 47]. However,
as we shall see in Section 3.2, the change of roll angle has little im-
pact on the magnetic field strength. To track an object’s orientation
using magnetic sensing, previous approaches typically require at-
taching additional magnetic field sources, such as a regular-shaped
magnetic tag or magnetic coils with sinusoidal currents [19, 28, 60].
In our system, we avoid modifying the electric toothbrush for the
sake of user convenience. We observe that the magnetic field sig-
nal waveforms have subtle changes according to the roll angle.
Based on this observation, we developed a new machine learning
algorithm that achieves a coarse-grained toothbrush roll angle es-
timation using the magnetic signal waveform measurement data
from multiple sensors.
Toothbrushing Monitoring. Based on the toothbrush pose track-
ing results, we Even with the 6 DoF pose tracking, it is not enough
to recognize each brushing surface and detect various brushing
mistakes. The primary challenge is that a user is not standing still
during brushing. A user can stand at different locations near a sink
on different days. During each brushing session, a user can change
brushing gestures, turn head, and even walk around slightly. The
key insight is that the tooth surfaces still maintain their relative
positions regardless of the user movements. We analyze the relative
positions of the teeth and describe them using a tooth map. We then
design an Expectation-Maximization algorithm that iteratively esti-
mates the most likely brushing surface, and a HiddenMarkovModel
(HMM) algorithm that estimates the user’s most-likely movements.

2.3 System Deployment

As shown in Figure 2, the sensor is mounted near the sink on one
side of a user at an appropriate height. The Oral-B monitoring sys-
tem has a similar requirement of mounting a smartphone (camera)
in front of the user. We assume a user conducts a toothbrushing
session over a sink for rinsing and cleaning to prevent drooling
everywhere, which is recommended for electric toothbrushing in
general [18, 22, 35]. MET does not require any training from its
users, because all the tracking and recognition algorithms can be
calibrated and trained by the developer before usage.

MET alerts its user in real-time when it detects over-brushing
or the vigorous back-and-forth brushing technique. By the end of
each brushing session, it reminds the user if he or she forgets to (or
insufficiently) brush any of the 15 surfaces of teeth. It also generates
a post-brushing report with detailed information on the brushing
surface sequence and duration. Such monitoring functions are use-
ful for general users. Moreover, dentists can provide personalized
brushing recommendations to the patients, and the patients want
to know if their toothbrushing is adequate and correct while they
are at home. Children and teens who need training and real-time
assistant to develop good toothbrushing habits can also benefit
from it.

To monitor toothbrushing, it is essential to track both its position
and orientation. To describe the pose of a toothbrush, we introduce
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Figure 3: Electric Motor Magnetic Field Characteristics

the coordinate system as shown in Figure 2. The Z axis is pointing
vertically up, the Y axis points to the right of the user, and the X axis
points towards the user. The 3 DoF orientation of the toothbrush is
described using the Tait-Bryan convention. Specifically, the initial
orientation of the toothbrush is parallel to the X axis. Any orien-
tation can be obtained by consecutively rotating the toothbrush
around X axis (roll), around Y axis (pitch), and around Z axis (yaw).

3 MOTOR MAGNETIC MODEL AND 5 DOF
POSE TRACKING

In this section we construct a model that can estimate the magnetic
field distribution around the motor. Using this model, we develop a
positioning algorithm to track the 5 DoF pose based on magnetic
sensor measurements.

3.1 Electric Toothbrush Motor

An Oral-B 7000 ET relies on a brushed direct current (DC) motor to
generate high-speed rotary motions. The DC motors usually have
private implementation, but the general structure is the same. As
shown in Figure 3a, a DC motor contains two sectors of permanent
magnets. The rotor contains three poles, which generate magnetic
field using the magnetic coils. Part of the rotor is a commutator that
connects the coils to the electric brush. As the commutator rotates,
its connection with the electric brush changes and reverses of the
currents in the magnetic coils periodically. This process maintains
a rotary torque with a constant direction. The periodic motions
of the rotors and the switching of the electric brush generate a
complex and discontinuous magnetic signal [29, 71, 72], whose
main harmonic is correlated with the motor rotation rate [46].

3.2 Empirical Study

We conduct experiments to understand themagnetic field generated
by a motor, and the experimental setup is illustrated in Figure 3b.
We place two magnetic sensors around an electric motor. The two
sensors are in a plane perpendicular to the motor axis. They have
the same distance to the motor center, and they are apart by an
angle p. We record magnetic signals when the angle p changes.
From this experiment, we make the following observations.

Signal Periodicity. By analyzing the magnetic signals collected
at different locations, we find that the signals are highly periodic,
with a constant signal frequency.We plot the power spectral density
of a sample magnetic signal in Figure 3c. In this figure, we can see
a large peak around the frequency of 1124 Hz.

Signal Strength Isotropy. Next, we record the signal strength
of the coil c2, measured by root mean square (RMS) when the coil
c2 is placed at different angles p. We plot the recorded RMS when
the angle p changes in Figure 3d. We can see that the RMS remains
stable, with only small fluctuations.

Signal Phase Difference. We next collect the magnetic field
signals simultaneously on both coil c1 and c2 when the angle p
between them changes. Then we compute their signal phase dif-
ference by finding the peak value of the signal cross-correlation.
The results are shown in Figure 3e. We can see that when the two
coils are at an angle p apart, the signal phase difference is also
approximately p.

3.3 Motor Magnetic Model

We use s(p, t) to denote the sensor measurement collected at angle
p at time t . To summarize the above three observations, we can
approximate the signal s(p, t) using |M | cos(ωt − p). In particular,
s(p, t) can be approximated by a sinusoidal function because of
the first observation: the signal is highly periodic. The signal has
a constant amplitude of |M | because of the second observation:
the signal has approximately the same magnitude regardless of
the angle p. And the signal has a phase of p because of the third
observation. One feasible model of the magnetic field source that
satisfies all the three observations is shown as follows. (We assume
the motor axis is in parallel to the x-axis as described in Figure 2):

M0(t) = |M |[0, cosωt , sinωt]
T
. (1)

The model described by Equation 1 suggests that if we replace
the electric motor with a point magnet with a magnetic moment of
M0(t), then magnetic sensors will still have similar measurements.

3.4 Sensor Measurement Model

Based on the motor magnetic model described in Equation 1, we
can deduct a sensor measurement model based on the magnetic
field distribution equations. As illustrated in Figure 2, our goal is
to find a mathematical model that can predict the measurements
of a sensor when a motor changes its orientation (pitch β and yaw
θ ), and position [x ,y, z]. We assume the position of the induction
sensor, denoted by [a,b, c], is known.
The Influence of Orientation Changes. Without loss of gener-
ality, we assume the toothbrush’s initial orientation to be parallel
to the positive direction of the x-axis, as shown in Figure 2. Any
orientations of the toothbrush can be obtained by rotating along
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Figure 4: Magnetic Sensing Model Validation

the y and z axes. As shown in Equation 1, we useM0(t) to denote
the magnetic moment of the toothbrush when it is at its initial
orientation. Then we can obtain the magnetic moment M(t ,θ , β)
using the the rotation matrices Rz (θ ) and Ry (β) that represent the
yaw and pitch rotation:

M(t ,θ , β) = Rz (θ )Ry (β)M0(t),

Rz (θ ) =



cosθ − sinθ 0
sinθ cosθ 0
0 0 1


,Ry (β) =



cos β 0 sin β
0 1 0

− sin β 0 cos β



(2)

The Influence of Motor Position. The relative position from the
motor to the sensor is r = [rx , ry , rz ]T = [a −x ,b −y, c −z]T . Then
the magnetic field B at the sensor’s position can be calculated using
following equation [19]:

B(r,M(t ,θ , β)) =
µ

4π |r|3

[
3rrT

|r|2
− I3

]
M(t ,θ , β) (3)

The InducedVoltage in aMagneticCoil.According to Faraday’s
law of induction, the induced voltage v(t) at the induction coils
sensor is linear to the derivative of the magnetic field. In our setting,
all the induction coils are parallel to the Y axis, i.e., s = [0, 1, 0]T .
Substitute Equations 1, and 2 into 3, we can obtain the analytical
expression of the received signal in an induction coil, as shown in
Equation 4.

v(t) = dB(r,M(t ,θ , β))/dt · s

= ωNRXARX µRX B(r,M(t ,θ , β)) · s

= K[ac (r,θ , β) cos(ωt) + as (r,θ , β) sin(ωt)]
ac (r,θ , β) = [cos(θ )(2r2y − r

2
x − r

2
z )

−3ryrz sin(θ )]/(r2x + r
2
y + r

2
z )

2.5

as (r,θ , β) = [sin(β) sin(θ )(2r2y − r
2
x − r

2
z ) + 3rx ry cos(β)

+3ryrz sin(β) cos(θ )]/(r2x + r
2
y + r

2
z )

2.5

(4)

In this equation, ω is the magnetic signal angular velocity. K is a
constant determined by NRX , ARX and µRX , which represent the
number of rounds, area, and the magnetic permeability of the induc-
tion coil, respectively. The expressions for ac (r,θ , β) and as (r,θ , β)
are also provided.
Model Validation. According to equation 4, the RMS of the signal

v(t) is linearly correlated with
√
a2c + a

2
s . We conduct experiments

to validate this relation. We place the electric motor at the locations
with x coordinate ranges from [0, 12] cm, y ranges from [0, 8] cm, z
ranges from [0, 8] cm, yaw angle from [−30◦, 30◦] and pitch angle
ranges from [−60◦, 40◦]. Sample measurement results are shown
in Figure 4. We can see that the prediction of the model closely

matches the actual sensor measurements. The R2 value between the
sensor measurements and the theoretical predictions of our model
is 0.988, indicating the high accuracy of our model predictions.

3.5 5D Pose Tracking

The algorithm to track the motor’s 5D poseX = {x ,y, z, β,θ }works
as follows. In our setting we have eight magnetic induction coil
sensors, with each coil i installed at a known position [ai ,bi , ci ]T ,
at the same direction of [0, 1, 0]T . At each time moment, the sensor
array records the signal RMS v = [v1,v2, ...,v8]. Then we can com-
pute the motor’s 5 DoF pose by solving the following optimization
problem:

min
X

J =

√
8∑
i=1
|v ′i −vi |

2

s .t ., v ′i = K
√
ac (ri ,θ , β)2 + as (ri ,θ , β)2.

Xmin ≤ X ≤ Xmax

(5)

In this equation, ac (ri ,θ , β) and as (ri ,θ , β) are defined in Equa-
tion 4. We use a standard optimizer to solve this optimization prob-
lem.We plot a sample 3D position tracking results in Figure 5. In this
figure, the black dots represent the ground truth coordinates, while
the red crosses represent the estimated positions by our tracking
algorithm. We can see that the tracking algorithm can distinguish
different positions. The average tracking error is 2.9 cm, and the
90% percentile tracking error is 4.1 cm.

To calibrate the positioning algorithm, it is necessary to obtain
parameters used in Equation 4, which include the position, [a,b, c],
and the magnetic parameters, NRX , ARX , and µRX , for each coil.
While it is possible to measure these quantities directly, we found
it easier to estimate them indirectly. In particular, we need to place
the toothbrush at different known poses and obtain the sensor
measurements. Then we use the maximum likelihood estimation
technique, which estimates the parameters such that the difference
between the magnetic field prediction of our model and the actual
measurement is minimized.

4 ROLL ANGLE ESTIMATION

As illustrated in Figure 2, the roll angle represents how the tooth-
brush rotates around its handle axis. The accurate monitoring of
the toothbrush’s roll angle is essential to reliable toothbrushing
monitoring [39, 40, 49]. For example, when brushing the left upper
and lower chewing surfaces, the toothbrush has similar positions
and pitch, yaw angles. The most effective way in distinguishing
these two surfaces is by the roll angle: there is an 180◦ difference
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Figure 5: Position Estimate vs. Ground Truth

in the roll angle when the user is brushing upper or lower chew-
ing surfaces. In our experiments, we found that the RMS of the
magnetic field strength in the induction coil is insensitive to the
changes in rolling angle. Fortunately, we also found that when the
electric motor has different roll angles, the captured signals have
different waveforms in the time domain. Based on this observation,
we design a signal signature based algorithm that can accurately
recognize the roll angle of the electric motor.

We conduct experiments to investigate how the roll angle in-
fluences the signal waveforms. We define the roll angle to be 0◦

when the toothbrush faces the coil with the brush head, and set the
clock-wise rotation direction as positive. We rotate the toothbrush
and take measurements at different roll angles. Figure 6 shows the
different magnetic signal waveforms captured by a single induction
coil. We can see that when roll angles are 90◦ and 270◦, the wave-
forms have small jitters that are reverse to each other at 1 and 6
millisecond; this is caused by the large current changes during the
switching of the electric commutator. We can also see that the wave-
forms when roll angles are 0◦ and 180◦ are inverse to each other:
when the upper signal has small peaks at 0.5 and 5 milliseconds,
the lower signal has small valleys at the same moments.

Based on these unique signal characteristics and patterns gener-
ated by the motor, we design a collaborative sensing algorithm to
recognize the toothbrush roll angle. Note that different sensor coils
can collect different waveforms of the magnetic signal because they
have different roll angles relative to the toothbrush, this algorithm
needs to fuse sensing data from multiple coils to obtain the final roll
angle recognition result. The basic ideas for recognizing the electric
motor roll angle are as follows. At each moment, the sensor array
collects eight signal waveforms. Then a customized signal similarity
measurement function is used to calculate the similarities between
the collected signal waveforms and the template signal waveforms.
These signal similarities measurements serve as inputs to a deep
fully connected neural network to recognize the toothbrush roll
angle.

We firstly collect a list of template signals {t1, t2, ..., tM }, where
tm represents the magnetic field signal collected by the sensor when
the toothbrush has a roll angle of rm . Since all the sensor coils have
the same gains, the signal templates are collected from a single coil.

At each moment, the sensor array collects a set of magnetic sig-
nals, represented by {si }(i = 1, 2, ..., 8). For each signal si , we need
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Figure 6: Waveforms with Different Roll Angles.

to measure its similarities to the template signals {tm }. To obtain a
reliable and robust result, we test different signal transformation
techniques in time series classification, including Fourier transform
domain, power spectrum domain, auto-correlation domain. We
eventually select two signal similarity measures. The first one is
the cross-correlation between the signals (do (·, ·)), and the second
one is the correlation between the signal derivatives (dd (·, ·)). Their
definitions are as follows:

do (si , tm ) = max(corr (si , tm ))
dd (si , tm ) = max(corr (dir (si ),dir (tm ))).

(6)

The operator corr (·, ·) represents the cross-correlation between
two signals, which quantifies their similarities. The operatordir (·, ·)
represents taking derivative of the signal. In our implementation,
we also use the bandpass filter centered around 1000Hz to remove
signal noises. By computing the similarities between different sig-
nals and templates, we obtain the feature set.

The feature set contains rich information about the toothbrush
roll angle. However, the relationship between the feature and the
toothbrush roll angle is nonlinear, and many classifiers cannot
handle the complexity. In our tests, the deep fully connected neural
network achieves the best accuracy and robustness. This network
contains four fully connected hidden layers with 32 neurons each.
The output contains four classes of roll angles: left, right, up, and
down. The classifier is trained by moving the toothbrush around
with different roll angles to allow the sensors to collect the signals.
This training process is conducted before system deployment by
the developer so that no user participation is needed.

5 TOOTHBRUSHING MONITORING

We achieve brushing monitoring based on the toothbrush pose
tracking results. To improve user convenience, we designed an
unsupervised brushing surface recognition algorithm based on the
spatial distribution of 15 tooth surfaces. To improve the algorithm
robustness to user movements, we also developed an HMM-based
algorithm to track the user’s motions.
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Figure 7: Tooth Surfaces

Roll Angle Surface List
up LUC, RUC, FUI

down LLC, RLC, FLI
right LLO, LUO, RLI, RUI
left LLI, LUI, RUO, RLO

Table 1: Toothbrush Roll Angles

and Tooth Surfaces

5.1 Preliminaries

Tooth Surfaces. As illustrated in Figure 7, a user’s left lower teeth
include Left Lower Outer (LLO), Left Lower Chewing (LLC), and
Left Lower Inner (LLI) surfaces. Similarly, the user’s left upper side,
right lower side and right upper side also include outer, chewing,
and inner surfaces. For the user’s front teeth, there are Front Lower
Inner (FLI), Front Upper Inner (FUI), and Front Outer surfaces (FO).
A complete list of tooth surfaces are listed in Table 1.
Toothbrush Model. Our motor tracking algorithm monitors the
poses of the electric motor. We can use the motor pose to compute
the pose of the brush head using the following equation.

[x ′,y′, z′] = [x ,y, z] + [l , 0, 0] ∗ Ry (β) ∗ Rz (θ ). (7)

In this equation, l represents the distance between the brush
head and the electric motor. Ry (β) and Rz (θ ) are rotation matrices,
which are defined in Equation 2.

5.2 Unsupervised surface recognition

Let the toothbrush pose tracking results be denoted asX = {X1, ...,Xn },
where X includes the x ′, y′, z′ coordinates, and the roll angle of the
toothbrush. Our goal is to recognize the brushing surfacesm based
on the toothbrush poses X . There are two steps to achieving this
goal. We firstly conduct a clustering of the toothbrush poses using
the Expectation-Maximization algorithm (EM). Then we identify
the tooth surface corresponding to each cluster by analyzing their
spatial characteristics.
Toothbrush Pose Clustering. Due to the spatial distribution
of the teeth, the toothbrush poses form distinct clusters when
brushing different surfaces, as illustrated in Figure 8. We model the
distribution of the toothbrush poses within each cluster using a
multivariate Gaussian distribution. We conducted a Shapiro-Wilk
test, a classical approach to test the normality of data [16], on
the data collected from five toothbrushing sessions. The mean p-
value is 0.407, which is higher than the threshold value 0.05 that is
needed to accept the normality assumption of data. In other words,
P(X |Mt ) ∼ N (µm , Σm ), where µ represents the mean of the brush
head positions, and Σm represents the covariance matrix. If the user
is standing at location ST and brushing surfacem, then P(X |St ,m)

is the following Gaussian distribution:
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Figure 8: Brush head positions for different surfaces.

P (X |St ,m) =
exp(− 1

2 (X − µm − St )
T
Σ
−1
m (X − µm − St ))

(2π )
k
2 det(Σm )

1
2

. (8)

We use an EM-based algorithm for clustering. We repeat the
expectation and maximization steps described in Equation 9 until
convergence.

Expectation : P(m |X ) =
N (X |µm,Σm )∑
k N (X |µk ,Σk )

Maximization : µm =
∑
n P (m |Xn )Xn∑
n P (m |Xn )

Σm =

∑
n P (m |Xn )(Xn−µm )(Xn−µm )

T

∑
n P (m |Xn )

(9)

Using this algorithm, we obtain the mean µm and covariance
matrix Σm for each clusterm. We also obtain the probability P(m |X ),
which represents the likelihood for the head pose X to belong to a
clusterm.
HeadTurnDetection. When a user turns their head during brush-
ing, the positions of the tooth surfaces change accordingly. To
maintain recognition accuracy, we estimate the user’s tooth surface
position after a head turn. The key observation is that when the
user brushes the back teeth, the motion direction of the toothbrush
is approximately the same as the user’s facing direction.

In particular, we use the vectord to represent the facing direction
of the user’s head, which is approximately equal to the primary
axis of toothbrush motions. Therefore, for a cluster of toothbrush
positions with a mean of µm and covariance matrix Σm , we can
estimate the facing direction d using the Principle Component
Analysis (PCA), which is shown in the first line of Equation 10.
Note that there are two feasible values for d , and we select the one
that represents a smaller head turn angle.

dm ← argmax
d
(dT Σmd/dTd).

µ ′m ← µm − l ∗ dm/|dm | + l ∗ [−1, 0, 0]T .
(10)

Then we estimate the position of the tooth surface when the
user is facing front, i.e., the head is facing the direction of [−1, 0, 0],
as illustrated in the coordinate system in Figure 2. This is achieved
in the second line of Equation 10. In this equation, l is the distance
between the tooth surface and the user’s neck. We empirically set
its value to 10cm. We then use the cluster center µ ′m to conduct
tooth surface identification.
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Tooth Surface Identification. The identification rules are as fol-
lows. First, depending on the toothbrush roll angle, we divide the
clusters into four categories: the toothbrush bristles can face up,
down, left, and right. The tooth surfaces for each toothbrush bris-
tle directions are shown in Table 1. We next describe the surface
identification rules for each toothbrush bristle orientation.

When the toothbrush bristle faces up, there are three possible
surfaces: Left Upper Chewing (LUC), Right Upper Chewing (RUC),
and Front Upper Inner (FUI) (shown in Table 1). We compare the y
coordinates of the three clusters. Since the y-axis points to the right
of the user, the cluster with the largest y coordinate is identified as
RUC, the one with the smallest is identified as LUC, and the other
is identified as FUI. Using a similar rule, we can also identify the
surface labels when the toothbrush bristle is facing down, i.e., the
LLC, RLC, and FLI surfaces, as shown in Table 1. When the tooth-
brush bristle is facing right or left, we basically compute cluster
centers to distinguish different surfaces, as illustrated in Figure 8.

5.3 User Location Tracking

A user may walk around while brushing his or her teeth, and such
walking motions can negatively impact brushing monitoring. To
achieve robust surface recognition, it is important to distinguish a
user’s walking motions and the brushing motions. The key observa-
tion is that a user’s walking motions usually have unique patterns,
which can be used for its tracking. For example, significant changes
of the toothbrush location are often caused by location changes of
the user, because the regular toothbrush movements when a user
stands still are all in very short distances (the distance between the
left and right teeth and the distance between the back and front
teeth of an adult are less than 5cm for an adult [42, 65, 67]). Besides,
frequent movements in horizontal direction often indicate walking
movements, because with brushing motions alone, the toothbrush’s
horizontal positions will concentrate in three small regions deter-
mined by the positions of the left, front and right teeth. To track the
user’s walking movements, we model the user’s standing location
as a hidden variable, and develop a Hidden Markov Model (HMM)
based algorithm to recognize the walking movements.
State Definition: Each state, St , is defined as the 2D location of
a user, as shown in the first row of Equation 11. We discretize the
region in front of the sink so that there are in totalN different states.
Since we do not know the initial standing location of the user, we set
the prior probability Π(St ) to be uniform, as shown in the second
row of Equation 11. We set a uniform transition probability for
the user to move to an adjacent or remain at the same location, as
shown in the third row of Equation 11. We use the notation N (St )

to represents all the states adjacent to St and the state St itself.

St = [xs ,ys ]

Π(St ) = 1/N

P(St |St−1) =

{
1/|N (St−1)| i f St ∈ N (St−1)

0 otherwise

(11)

Emission Probability. As discussed in the previous subsection,
the toothbrush poses form a mixture of Gaussian Distributions
when the user’s standing location is given. The influence of the
standing location is modeled as a translational shift. Therefore, the
emission probability can be computed as follows:

Figure 9: Motions for Different Techniques

P(X |St ) =

Km∑

m=1

P(X |St ,m). (12)

The definition of P(X |St ,m) is shown in Equation 8. Before
tracking walking movements, we assume that the user brushes
at least once without walking so that our system can estimate
P(X |S = 0,m), µm , and Σm at the user’s standing location. Then
we can generate the emission probability by changing the value of
S to the other standing locations.

Based on this HMM formulation, we use the classical Viterbi
algorithm to find the most likely standing locations {S1, S2, ..., St }
based on the toothbrush pose measurements X . Then we use first
row (Expectation step) in Equation 9 to calculate the probability
for P(m |X ). The most likely surfacem is returned as the surface
recognition result.

5.4 Incorrect Toothbrushing Detection

Aggressive Brushing Detection. Aggressive toothbrushing in-
volves periodic back and forth motions, which can be reflected by
the toothbrush position changes, as shown in Figure 9a. On the
other hand, when the user brushes using the correct technique that
moves the brush head slowly, the x coordinate changes gradually.
We detect aggressive brushing as follows. We compute the auto-
correlation of the x coordinates within a time window ofW . If the
period is smaller than the threshold Ts and the moving distance is
larger than a distance threshold Td , then an aggressive brushing
alert will be issued to the user.
Under-brushing andover-brushing. We compute the time spent
on each surface based on the surface recognition algorithm de-
scribed in this section. For each surface, if the time is larger than
Ta or smaller than tu , then the system will remind the user for over
or under brushing, respectively. Since uneven brushing tends to
have lower damage in the short term, our system will provide a
toothbrushing report to the user after brushing is finished, so that
the user can make make up for the under-brushed surfaces, or be
reminded to reduce brushing the over-brushed surfaces next time.

6 IMPLEMENTATION

The motor magnetic field has a strength of around 5nT at a distance
of 50cm, and a much stronger strengths of around several µT at
a close distance. The main harmonics of the magnetic signals is
around 1000 Hz. We have considered different sensor options to
capture this signal. The Hall-effect sensor, which is low-cost and
widely available in mobile devices [28, 31, 36, 39, 73], does not meet
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Figure 10: Sensor Array
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Figure 11: Circuit Diagram

the sensing requirements because it cannot detect fields weaker
than 0.1µT . Low-endmagnetoresistive sensors, such as the KMI25/2,
has a sensing dynamic range of less than 188µT and high sensitivity
to temperature changes. As a result, everyday magnetic materials,
such as a metal shelf or jewelry, can cause the sensor to saturate.
High-endmagnetoresistive sensors, such as HMC1001, canmeet the
sensing requirements, yet they have high costs of above $30 each.
The fluxgate sensor has a similar sensing capability to the magnetic
inductance sensor, and the main difference is that the fluxgate
sensor can monitor the DC component of the magnetic field [50].
Since in monitoring electric toothbrushing, we are focused on the
time-varying component of the magnetic field, we eventually select
the low-cost ($1<), flexible, highly-sensitive and reliable inductive
sensor to develop our system.

According to Faraday’s law, the induced voltage in an induc-
tance sensor is linearly proportional to the cross-section area of the
coil and quadratic to the number of rounds. Furthermore, a ferro-
magnetic core can increase the induced voltage by 100 folds. As a
trade-off between the size of the sensor and the sensing sensitivity,
we custom-built coils with 3000 rounds and 3cm2 cross-section
areas, with a ferromagnetic core. A photo of the sensor array is
shown in Figure 10.

The circuit diagram of the system is shown in Figure 11. To am-
plify the received magnetic signal, we use the low-noise MAX4466
amplifier, with amplification gain up to 60db. The multi-channel
signals are digitized simultaneously using the 16 bits ADC on
SGTL5000 chips and transmitted to twoMK20DX256micro-controllers
using the I2S protocol. Our system is currently powered by a USB
cable connected to a computer. Since many electric toothbrushes
are recharged by chargers connected to the electrical outlets, in the
future, we can also power our system using an electric toothbrush
charger. The SGTL5000 costs $1.27 each [15] and we used four. the
MK20DX256 costs $3.07 each [10] and we used two. The MAX4466
cost $0.24 each [9] and we used eight.

7 EVALUATION

7.1 6 DoF Pose Tracking

Position TrackingAccuracy. Wefirstly conducted amicrobench-
mark experiment to evaluate electric motor tracking accuracy. In
this experiment, we placed the electric toothbrush at 32 positions,
with x, y, and z coordinates ranging from 0 to 12 cm, 12 to 24 cm,
and 0 to 4 cm, respectively. Meanwhile, we changed the motor
orientation while it was in these positions. We adjusted the pitch
angle β from -30 degree to 30 degrees, with 30 degrees apart, and
the yaw angle θ from -20 degree to 20 degrees, with 10 degrees
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Figure 12: Toothbrush Pose Tracking

apart. The tracking error is represented by the distance between
the predicted position and the ground truth position.

The results are shown in Figure 12a. We can see that when
the motor has no orientation changes, i.e., β = 0 and θ = 0, the
90% percentile tracking error is 1.6 cm. When orientation changes,
the tracking accuracy decreases slightly. When we changed the
pitch angle β between −30◦ and 30◦, the 90% percentile error is
2.2cm. When the yaw angle θ changed between [−20◦, 20◦], the
90% percentile error is 3.0 cm.
Roll Angle Estimation. We next evaluated how accurately the
system can recognize the motor roll angle. The data were collected
when the users were brushing teeth, which involve rolling the
toothbrush to clean different surfaces. In total, there are more than
100 minutes of data from 10 users, and over 18431 data points used
in the evaluation. The results are shown in Figure 12b. On average,
over 94% of roll angles are recognized correctly. The recognition
accuracy for the left and right orientation are close to 100%, while
the recognition accuracy for the up orientation is about 86%. Since,
during data collection, the toothbrush is moving around the users’
teeth, it also demonstrates that the algorithm is robust to small
position and orientation changes.

7.2 Toothbrushing Monitoring Functions

We recruited 14 volunteers and let each volunteer brush 5-10 ses-
sions, each session ranging from 1minute to 4 minutes. An observer
recorded all the toothbrushing surface ground truths. The volun-
teers included three females and eleven males, with heights ranging
from 155 cm to 185 cm. We adjusted the aligned the system accord-
ing to each user’s height. Ten participants were in late twenties,
one was in late thirties, and three were in late fifties. To enable the
evaluation of uneven brushing detection, we set different brushing
duration requirements for different surfaces. We labeled brushing
for over 10 seconds as over-brushing, and below 5 seconds as under-
brushing. In total, we have recorded 102 toothbrushing sessions.
Each user tried to stay in the same location each time, but there
were no deliberate measurements for the user standing locations.
As a result, small variations did exist.
Surface Recognition The overall toothbrushing surface recogni-
tion results are shown in Figure 13. The surface recognition preci-
sion, recall, and f1 scores are 85.4%, 85.5%, and 85.4%, respectively.
We can see that in general, most brushing surfaces are correctly
recognized.

We can see that a major source of error is that difficulties in
differentiating upper or lower surfaces. For example, there are 21.5%
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of wrong recognition from Right Lower Inner (RLI) to Right Upper
Inner (RUI), and 19.4% of the opposite direction. There are also 8.8%
of wrong recognition from Left Lower Outer (LLO) to Left Upper
Outer (LUO), and 6.6% of the opposite direction. This is because, in
some cases, the distances between the upper and lower surfaces
are small so that they can introduce errors. In the future, we will
consider sensing the fine-grained roll angle of the toothbrush to
assist in differentiating the upper and lower surfaces.

We can also see cases when the algorithm confuses left and right
surfaces. For example, there are 14.2% of incorrect recognition that
confuses Left Lower Chewing (LLC) with the Front Lower Inner
(FLI), and 14.3% of incorrect recognition that confuses Right Lower
Chewing (RLC) with the Front Lower Inner (FLI). Similarly, there
are recognition errors between FUI, RUC, and LUC. The system
rely on the horizontal coordinates of the toothbrush poses to differ-
entiate these surfaces, and wrong recognition results occur when
the tracking error is larger than the horizontal distance between
the tooth surfaces.

We also investigated how individual variations influence the
surface recognition accuracy. In Figure 14, we plot the surface de-
tection precision, recall, and f1 scores for all the 14 users with and
without head pose and location tracking. We can see that there are
two users (13 and 14), achieving over 90% of the surface recognition
f1 score. The detection accuracies for different users vary between
around 70% to 95%. The monitoring accuracy variations among
different users are caused by many factors, including mouth struc-
ture, the distance between a user and the sensor, user movements
during brushing, and personal brushing habits. Actually personal
brushing gestures can influence recognition accuracy. We noticed
that some users slightly raised their heads when brushing the lower
surfaces, and then lowered their heads when brushing the upper
surfaces. As a result, the toothbrush pose estimations of the up-
per and lower surfaces are sometimes inaccurate. Also, some user
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Figure 14: Surface Recognition Accuracy vs. Users

tilted his head during brushing, which caused some incorrect sur-
face recognition results. This suggests that a personalized surface
recognition algorithm could be useful for many users.

We can also see that the tracking-based approach can improve
the recognition of F1 scores for most of the users. When the user
moves during brushing, the tracking based algorithm begins to
achieve better performance. We can see that for user 2 and user 7,
the HMM algorithm achieves 5% and 6% than the basic algorithm,
because these two users changed their standing locations during
brushing.
Incorrect Toothbrushing Detection. Our goal is to detect ag-
gressive brushing, over brushing, and under brushing. To eval-
uate aggressive brushing detection, we conducted an additional
experiment that includes ten toothbrushing sessions, with the user
brushing teeth using back-forth motions. In total, there are 120 in-
stances of aggressive brushing, and 740 instances of normal brush-
ing. Then we evaluated whether our algorithm can differentiate
aggressive brushing data from other normal brushing data. To eval-
uate over/under brushing, we use the same dataset described in the
previous section. Specifically, there are 452, 190, and 101 instances
of normal, over, and under brushing in the dataset, respectively.

The incorrect toothbrushing detection results are shown in Fig-
ure 15. We can see that the f1 scores of detection for over-brushing,
under-brushing, and aggressive brushing are 93.2%, 87.4%, and 92%,
respectively. Since the over-brushing and aggressive brushing are
potentially more damaging, we need to alert the user immediately
once they are detected. The miss detection rates, which equal 1
minus recall rates, for over-brushing and aggressive brushing are
10% and 8%, respectively. On the other hand, the under-brushing
cause less immediate damage, so the system can aggregate the
toothbrushing data over several brushing sessions, and remind the
user to increase brushing time for specific surfaces.
Comparison with Commercial Systems. Next, we tested two
existing commercial systems. Our goal is to provide a baseline com-
parison between our magnetic sensing based system with existing
camera and IMU-based systems. Oral B and Kolibree electric tooth-
brushes were used in this test. Oral B system used a smartphone
camera to monitor the user’s toothbrushing, while Kolibree used
the toothbrush onboard IMU sensors. Both systems only detected
brushing quadrants or sextants instead of tooth surfaces, as each
quadrant of the teeth contains three surfaces. For example, the left
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cial Systems

upper quadrant contains LUO, LUC, and LUI surfaces. To compare
with these systems, we adjusted our algorithm to generate quadrant
recognition results.

In this experiment, we used an Oral B toothbrush to brush three
times, and used our system and the Oral B app to monitor the tooth-
brushing concurrently. Then we used the Kolibree app to monitor
toothbrushing with the Kolibree toothbrush separately. The detec-
tion results are shown in Figure 16. We can see that our system
outperforms these two systems. We can see that Kolibree and Oral
B achieve 41% and 58% of accuracy, respectively. On the other hand,
MET achieves 86% of detection accuracy. During the experiment,
we observe some drawbacks of the existing systems. The Kolibree
toothbrush accurately tracked the toothbrush roll angle, but it was
insensitive to the subtle brushing position changes under mechan-
ical vibrations during electric toothbrushing. As a result, it has
large errors in differentiating the left, right, up, and down surfaces
that have the same roll angle. The Oral B system requires careful
alignment of the user’s head position each time before brushing:
the user needs to make sure their face appears inside a small area
within the camera image. In general, it can differentiate different
tooth quadrants. However, the system does not perform well when
there are variations in the toothbrush orientation: a small change in
the toothbrush yaw angle can confuse the system between left and
right quadrants. Similarly, a small change in the toothbrush pitch
angle can confuse the system about the upper and lower quadrants.
Its performances degrade would further when the user is in poor
lighting conditions.
Monitoring Range We conducted experiments to test the range
for the system to achieve reliable monitoring. In the first experi-
ment, we gradually increased the horizontal distance between the
user’s chin and the sensor, and conducted toothbrushing for four
times at each distance. The mean and variance of the surface recog-
nition accuracy are shown in Figure 17a. We can see that when
the distance is less than 30 cm, the system maintains over 90% of
monitoring accuracy. When the distance is larger 35 cm, the moni-
toring accuracy begins to drop, and the variations also increase. At
a distance of 40 cm, the average monitoring accuracy 62%.

In the second experiment, we tested the monitoring accuracy
when we adjust the vertical alignment between the sensor and the
user, and the results are shown in Figure 17b. We define the vertical
position as the difference between the user’s chin’s height and the
height of the lower row of the sensors. We can see that when the
vertical position is between -5 cm to 20 cm, the monitoring accuracy
is above 90%. When the position is below -5 cm or above 25 cm,
the monitoring accuracy drops to about 70% and 50%. The vertical
monitoring range is sufficient to handle the issue of a user changing
height when brushing teeth, such as wearing different shoes. Plus,
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Figure 17: Toothbrushing Monitoring Performance

the system will benefit from a user-friendly wall mount that can be
adjusted according to the height of the user.

7.3 Environmental and Battery Factors

Environmental Magnetic Noise.We next tested the background
magnetic noises at two bathrooms, and two offices, where we con-
ducted experiments. We recorded the background magnetic noises
and plotted the power spectrums in Figure 18. We can see that at
bathroom 1 (B1) and office 1 (O1), there is a large peak at 64 Hz,
which corresponds to the powerline magnetic field. B2 and O2 have
much lower magnetic noises of less than 10−5 W/Hz. For all these
rooms, the magnetic noises at about 1000 Hz are lower than 10−3

W/Hz, which are two magnitudes of orders weaker than the electric
motor magnetic field, as illustrated earlier in Figure 3c. We also
observe that the background noise remains stable over time, as
reported in earlier works [51, 53, 70].

We also tested if normal metal objects will influence the monitor-
ing results. These rooms had different layouts and were normally
furnished with metallic objects, including tables with iron legs,
mirrors, faucets. We also tested placing different objects near the
user, including a metal plate, jewelry, and a metal cup. We have not
observed noticeable impacts of these matal objects. The magnetic
fields experience no absorption by the human body, so the user’s
hand, tongue, or head does not influence the motor position track-
ing [19]. One of the users had a tooth implant, which contained
zirconium and titanium. These materials have weak magnetic per-
meability, and we have not observed any negative effects on the
monitoring system.
Influence of Battery Level.We experimented to test the influence
of the battery level on the motor magnetic field. We placed the
toothbrush at a fixed location and turn it on continuously for 30+
minutes, and recorded the signal RMS 5 times each second. The
results are shown in Figure 19. We can see that the RMS of the
motor magnetic field remains stable for about 1500 seconds. There
are small fluctuations from time to time. The motor rotation speed
occasionally drops for a very short period (<0.3s), possibly due
to motor overheating. This causes some fluctuations in the RMS
values. In MET, we discard magnetic signals that have excessively
low frequencies (below 1000 Hz). After about 25 minutes, the RMS
value drops noticeably due to the low battery levels. Since each
toothbrushing session lasts for about 2 minutes, the battery life of
the toothbrush is long enough to allow accurate tracking of our
system. Besides, we have not observed any significant mechanical
deterioration that influences tracking in the past 2 years .
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