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Abstract—As occupancy sensing technologies become mature,
various occupancy sensors are increasingly deployed in commer-
cial buildings for pervasive occupancy monitoring. These sensors
provide occupant-count data, which contains rich spatiotemporal
information about occupancy patterns. With long-term occupant-
count data collected from a commercial building, we design three
different predictive models that capture the occupancy dynamics
and examine how a model predictive control of the HVAC system
benefits from actual occupancy count prediction. Our analysis
reveals that mispredictions of occupancy states, especially false
positives and false negatives, may introduce inefficient control
that leads to energy waste or user discomfort. To address this
issue, we take a step further to design an adaptive model
predictive controller that minimizes inefficient control actions
according to misprediction types and distributions. A compre-
hensive evaluation is performed in OpenBuild and EnergyPlus
simulators to study the effectiveness of the proposed end-to-
end control strategy. The evaluation shows that the proposed
solution reduces energy consumption by 29.5% while improving
the average weighted occupants comfort by 86.7% in Predicted
Mean Vote (PMV) over the fixed schedule strategy.

I. INTRODUCTION

Heating, ventilation, and air conditioning (HVAC) is a

major source of energy consumption in the U.S. In 2017,

approximately 30% of energy consumption for commercial

buildings in the U.S. was used for HVAC [1]. Usually, building

operators use a static schedule for controlling HVAC systems

without having a deeper understanding of how many people

use the building at different times of the day. In addition, many

HVAC systems operate by assuming maximum occupancy in

each room, which leads to significant energy waste, e.g., an

HVAC system providing ventilation for 30 people when there

are only ten people in a room [2]. Such widely-used HVAC

control designs miss opportunities to perform more accurate

and efficient control.

As occupancy sensing technologies become mature, occu-

pancy sensors are increasingly deployed in modern commer-

cial buildings. These sensors provide fine-grained occupancy

count in real-time. Such information can benefit the HVAC

control to significantly improve building energy efficiency,

provide occupant thermal comfort, and enhance building man-

agement.

There have been a number of research works on occupancy-

based sensing and control [3], [4], [5], [6]. However, most of

these efforts focus on coarse-grained occupancy estimation,

e.g., binary occupancy patterns (occupied or not). These works

include recent studies employing PIR motion detectors [3], [4]

and energy consumption data analysis [5], [7]. Compared to

these approaches, this work leverages fine-grained occupancy

estimation information (people count) from a large commercial

office for the long-term (six months). With this dataset, we

design predictive models that capture the spatiotemporal nature

of occupancy dynamics, and with such predictive models, we

design a model predictive control algorithm for HVAC control

that achieves more significant energy savings.
There are a few works considering occupancy count for

HVAC control [8], [9], [10], [11]. In [12], [13], heuristic-

based HVAC control algorithms are introduced to control room

temperature. In [14], [15], [16], stochastic model predictive

control algorithms have been developed to infer the statistics of

the disturbances and optimize control actions. Different from

these works, our work takes a step further to systematically

analyze the prediction error and the introduced extra control

cost, addressing a common problem for existing predictive

control designs. Our analysis shows that even with sophis-

ticated predictive models, e.g., inhomogeneous Markov chain

and sequential & contextual neural network, mispredictions

still occur often due to the stochastic nature of the occupancy

behaviors. These mispredictions usually introduce inefficient

and ineffective HVAC control, especially in the morning

and evening hours: the false positives may increase HVAC

working time significantly when no occupants actually show

up, whereas the false negatives decrease occupant comfort

when they are still present.
To address these issues, it is essential to find a good

trade-off between prediction accuracy and control cost. We

design an adaptive model predictive controller to minimize

inefficient control actions according to different types of

misprediction and the occupancy states. Our control design

provides probabilistic guarantees on the control cost under

occupancy prediction uncertainty.
We implement the adaptive MPC control using OpenBuild

and EnergyPlus and compare our approach against existing

MPC control algorithms with different prediction models.

Extensive real-world trace-driven simulations show that our

approach outperforms the existing fixed schedule solution by

29.5% in energy-saving and 86.7% in thermal comfort.
The major contributions of this work are listed as follows:

• We perform a comprehensive study to understand oc-

cupancy patterns in a commercial space with long-term
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Fig. 1: Occupancy-aware HVAC Control System Overview

(nine months) fine-grained occupancy estimation data.

We develop multiple predictive models to understand the

effectiveness of future occupancy prediction for such a

setting.

• We develop an adaptive model predictive HVAC con-

troller that uses future occupancy prediction to control

HVAC to reduce energy consumption and improve the

thermal comfort of the occupants. Different from existing

MPC control designs that rely on accurate prediction to

perform precise control, our adaptive MPC dynamically

adjusts the policy to minimize inefficient HVAC control

actions due to misprediction under high occupancy uncer-

tainty and provides probabilistic guarantees on the control

cost.

• We perform a thorough evaluation using OpenBuild and

EnergyPlus to evaluate the effectiveness of the proposed

end-to-end control strategy in terms of energy-saving

and thermal comfort. Our evaluation based on real-world

occupancy data shows that the proposed solution reduces

energy consumption by 29.5% while improving thermal

comfort by 86.7% in terms of PMV over the existing

fixed schedule control strategy.

II. OCCUPANCY-AWARE MPC FOR HVAC SYSTEM

A. Design Overview

Figure 1 shows the system overview of the occupancy-

aware HVAC control system for building HVAC. Firstly, the

HVAC controller imports a building thermal model according

to the building data, such as floor plan, building material, and

HVAC system deployment, and so on. Then the occupancy-

aware HVAC control system adaptively adjusts the HVAC

power to maintain desired occupants’ comfort and save energy

with two feedback inputs: predicted occupant-count and real-

time building thermal states. The first one is the predicted

number of occupants in each zone over a time slot based

on the historical and sensed real-time occupants’ information,

requiring an occupancy count predictor. The building thermal

state information can be detected via building monitoring

systems [17].

The knowledge of real-time and future occupant-count in

each zone is important to make efficient HVAC control in

two aspects. Firstly, accurate binary occupancy status, e.g.,

occupied or not, helps HVAC controllers to determine when

to turn on or off the HVAC system. Secondly, due to the oc-

cupants’ heat emission, the controller with accurate occupant

count can save energy and perform precise heating and cooling

accordingly. In this framework, we deploy occupancy sensors

to collect the real-time occupant counts of different zones,

and then use such a dataset to design occupancy predictors

and model predictive HVAC controllers.

For the model predictive control (MPC) based HVAC con-

troller [15], [18], one MPC-based optimization problem is

solved to determine the HVAC power for the future time slots.

The MPC controller discretizes the timeline into multiple time

slots and considers the power control for future N time slots

at the beginning of time slot t. One time slot is index by k,

(k = t, ..., t + N − 1). Suppose there are n zones in one

building and let u(k) be a length n column vector to describe

control input, i.e., heating/cooling power during time slot k
for n zones.

B. Real-time Building Occupancy Detection

Estimating real-time building occupancy information is an

active area of research. There are several techniques for

occupancy estimation using different types of sensors, e.g., ul-

trasonic sensors [19], PIR sensors [20] and RGB cameras [21].

In this work, we implement a solution called FORK [22]

(Fine grained Occupancy estimatoR using Kinect), which uses

a depth sensor (Microsoft Kinect for XBOX One) mounted

at the ceiling near a doorway to estimate occupancy. We

deploy five depth sensors to cover all the doorways of a

Bosch office to collect real-time depth frames that are fed into

the FORK algorithm. FORK estimates and updates occupancy

count when someone enters or exits through each door. FORK

can accurately estimate occupancy even when multiple people

move simultaneously as it achieves over 99% accuracy for

occupancy estimation under realistic scenarios [22]. FORK

estimated occupancy count is used as the actual occupancy

count in this work. The floorplan and dataset can be found

in [23]. One empirical study of occupancy estimation can be

found in [24].

C. Dynamic Building Thermal Model

According to [25], [26] and [15], we have the following

dynamic building thermal model to describe how the building

thermal states change with HVAC power and number of

occupants:

x(k + 1) = Ax(k) +Buu(k) +Bdd(k), y(k) = Cx(k)

where xi(k) is the state vector (containing the temperatures,

surfaces, and internal nodes) by the end of time slot k of zone

i. d(k) is a column vector to represent the external (e.g., out-

side temperature and solar gains) and internal (e.g., occupants)

gains disturbance vector during time slot k. y(k) is a length n
column vector denoting the indoor temperature by the end of

time slot k for n regions. A, Bu, Bd and C are fixed parameter

matrices which are specified by the building configurations. It
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is noted that these fixed parameters not only describe how

the state of one zone i is affected by the state, action and

disturbance of this zone, but also consider the heat exchange

among zones, e.g., xi(k+1) is determined by a linear model

of x(k), u(k) and d(k), where the parameters are the i-th row

of matrix A, Bu and Bd. In detail, some elements of d(k)
represent the heat load due to occupant heat emission and

the other ones describe the heat exchange with surrounding

environment. Suppose each occupant emits the same amount

of heat, and the indoor human heat emission is formulated

as eheat × Occi(k), where eheat is the heat emitted by an

occupant during one time slot, Occi(k) is the actual number

of occupants in zone i for time slot k. For a zone that does

not exchange heat directly with the ambient, the corresponding

elements in Bd are zero.

D. occupant-count Predictor

In the Model Predictive Control (MPC) framework,

occupant-count is a forcing-function for the system and does

not depend on any state variables except time. The effect

of occupants appears in the dynamics as an internal heat

gain to the thermal state of the building. If we are able to

predict the number of occupants accurately for the MPC’s

time horizon, the controller can make informed decisions to

counteract this disturbance and stabilize the thermal condition

of the building. In this section, we show how statistical models

that are trained on real-world data can be leveraged to predict

occupancy changes: at the end of the current time slot t and

with previous occupancy counts, we want to predict the future

occupancy counts in zone i for the next N time slots, denoted

by Ôcci(t+ 1), Ôcci(t+ 2), . . . , Ôcci(t+N).
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Fig. 2: Occupancy dynamics as Time Inhomogeneous
Markov Chain unrolled for one day

1) Time-Inhomogeneous Markov Chain: For the base-

line, we model the occupancy dynamics with a Time-

Inhomogeneous Markov Chain, where the state represents the

occupant count and the transition between states refers to

occupancy change temporally. Given the nature of occupancy,

the Markov Chain is naturally time inhomogeneous: the proba-

bility distribution of the next state depends on the current state

and the current time. Therefore at time slot t, the probability of

the future occupant count at the next time slot being m2 given

the current count m1 is P (Ôcci(t+1) = m2|Occi(t) = m1).
If we fix time slot duration to be 30 minutes and occu-

pant count to range from 0 to 50 (max count), the Time-

Inhomogeneous Markov chain can be unrolled temporally as

in Figure 2 in which the occupancy state of a whole day is

represented as a chain of 48 states. Here, we assume the state

dynamics do not differ from day to day. So the structure of

the chain repeats itself after 48 states.

After we use historical occupancy data to estimate the

transition probability, an N -step prediction is made by taking

the expectation of future counts after N steps: Ôcci(t +
N) =

∑
m2

m2 × P (Occi(t + N) = m2|Occi(t + N − 1))
· · ·P (Occi(t + 1)|Occi(t) = m1). It is possible that some

states do not appear once in the training data but occur after

training. In that case, we pick the closest state transition.

2) Linear Regression: The Markov Chain requires that the

occupancy dynamics obey such assumptions as the Markov

property, which may not be true in practice. Therefore, we

also implement a linear regression model to make predictions:

Ôcci(t + 1) =
∑T

j βjOcci(t − j) + bias. The predicted

occupancy at t + 1 can be fed into the regression function

again to predict the occupancy at t+2. After unrolling for N
steps, N future occupant counts are predicted. In this model,

we have T coefficients βj and a bias term as the parameter to

be trained on.

Occi(t− T ), . . . Occi(t)

Ôcci(t + 1), Ôcci(t + 2), . . . , Ôcci(t +N)

f0(t) fk(t)

Fig. 3: Proposed network that combines temporal and
contextual features to predict the next N occupanct count

3) Sequential & Contextual Neural Network: Based on

the preliminary analysis in [27], the occupancy dynamics are

inherently non-linear. With the prolonged period of data we

collected, we are able to use statistical models that have higher

representative power, meanwhile generalizing well without

over-fitting.

With a neural network, we cast the prediction as a regression

problem. The recurrent part of a neural network is a function

that takes the occupant count in T previous time slots as

input and connects to the final N neurons, which represented

the value of the future occupancy counts of the next N time

slots. This recurrent function is shown as the rectangular box

in Figure 3, which consists of two hidden layers with 32
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units (i.e., neurons) each and ReLU activation. Besides the

sequential occupant count, we also leverage other contextual

information such as time of the day and day of the week in

the prediction. Therefore, we have a fully-connected layer to

transform the categorical feature f0(t), . . . , fk(t) to a one-hot

encoding (e.g., the time of the day feature is discretized into 24

columns as hour) and again connects to the final N units. So

the pyramid-like architecture in Figure 3 illustrates how we can

combine the temporal and contextual information to make the

final occupancy prediction at the top level. This architecture

is flexible to incorporate a more categorical feature that may

be available in different applications and usage of the building

space.

E. Occupancy Aware Model Predictive Controller Design

Our occupancy-aware model predictive controller has two

objectives: minimizing HVAC energy consumption and opti-

mizing occupant thermal comfort. At the beginning of time

slot t, the model predictive controller considers the HVAC

control for future N time slots and computes the HVAC power

sequence in this horizon to optimize these two objectives.

Energy Consumption: Occupancy-aware MPC reduces

energy waste based on occupancy prediction, especially when

zero occupancy is correctly predicted during working hours,

e.g., occupants arrive late in the morning or leave early in the

evening. We constrain that the HVAC power for one zone i
during time slot k as:

Ui ≤ ui(k) ≤ Ui

where Ui and Ui represent the cooling and heating capacity of

the building HVAC system, respectively. If ui(k) is positive,

it means the HVAC system is heating the zone; otherwise,

the HVAC system is cooling the zone. The ui(k) refers

to the amount of heat flux from the HVAC system that is

acting on the zone. Because larger values of ui(k) would

imply more HVAC energy consumption, we use the L1-norm

of ui(k) as a proxy of energy consumption, which is also

used in [28]. The total power consumption is represented as∑t+N−1
k=t

∑n
i=1 |ui(k)|.

Occupant Thermal Comfort: Predicted Mean Vote (PMV)

is a common comfort measurement, which is standardized

in ISO 7730 [29]. The PMV model estimates the average

occupants’ comfort level using a function PMV (·) [30]:

PMV (M,Ta, Tr, v, Pa, Icl), where M is the metabolic rate of

the occupant; Ta is the air temperature; Tr is the mean radiant

temperature (set equal to Ta); v is the relative air velocity;

Pa is the relative humidity; and Icl is the clothing insulation

factor of the occupant. The range of PMV is between -3 (cold)

and 3 (hot), where 0 is neutral. To simplify the description,

let PMVi(k) to describe the individual occupant comfort for

zone i in time slot k.

To make HVAC work efficiently, we consider the weighted

occupants’ comfort, meaning: (i) we ensure occupants’ ther-

mal comfort if the zone is occupied, and (ii) the more

more occupants there are in the zone, the more com-

fortable the indoor environment becomes. Our objective

for providing group occupants’ comfort is formulated as:∑t+N−1
k=t

∑n
i=1 Occi(k)|PMVi(k)|.

There exists a trade-off between the two objectives. For

example, if the outside weather is cold, e.g., below 0 ◦C, to

make occupants comfortable, HVAC needs to heat the zones.

However, this would induce high energy cost. Therefore, we

use one weight β, to sum up and balance the two objectives,

and the problem for our model predictive HVAC controller is

formulated as:

min
u(k),x(k)

t+N−1∑
k=t

n∑
i=1

(|ui(k)|+ β Occi(k) |PMVi(k)|
)

s.t. x(k + 1) = Ax(k) +Buu(k) +Bdd(k)

y(k) = Cx(k)

Ui ≤ ui(k) ≤ Ui (1)

where Ui ≤ ui(k) ≤ Ui constrains the HVAC power for

each zone i. Let P(Occ(t)) denote the above Problem (1)

with actual occupant-count Occ(t) = {Occi(k)|1 ≤ i ≤
n, t ≤ k ≤ t + N − 1}. However, at the beginning of

time slot t, the actual occupant-count Occ(t) is unknown for

our controller. Therefore, predicted occupant-count is used as

the input parameters of the MPC to determine the HVAC

power and the model predictive HVAC control problem is

denoted as P(Ôcc(t)), where Ôcc(t) = {Ôcci(k)|1 ≤ i ≤
n, t ≤ k ≤ t + N − 1}. In this work, we use the previous

three predictors: time-inhomogeneous Markov chain, linear

regression, and sequential & contextual neural network to

predict Ôcc(t) based on the historical collected data and real-

time occupancy information at the beginning of time slot t.

Although there are some other papers [31], [32], [33]

proposing model predictive HVAC controllers using occu-

pancy prediction, their objectives are only reducing the HVAC

energy consumption while bounding the indoor temperature

within one range, which usually sets the temperature as the

feasible extreme values and does not provide satisfied human

comfort.

Since our objective and constraints are convex functions, it

can be solved by existing solvers, such as Gurobi [34], which

is used in OpenBuild [25].

III. ADAPTIVE MODEL PREDICTIVE HVAC CONTROLLER

DESIGN

A. Empirical MPC Control Performance Analysis

Based on the previous description, the occupancy-aware

model predictive HVAC controller determines the power for

each zone based on the predicted occupancy count for future

Prediction of occupancy

unoccupied occupied

Truth of

occupancy

unoccupied True negative False positive

occupied False negative True positive

TABLE I: Misprediction classification
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Fig. 4: Performance of Time-
Inhomogeneous Markov Chain
Predictor

Fig. 5: Performance of Linear Regres-
sion Predictor

Fig. 6: Performance of Sequential &
Contextual Neural Network Predictor

Fig. 7: Average occupant-count over one day for six months

time slots. However, its performance is significantly affected

by prediction accuracy due to occupancy pattern uncertainty.

To understand its impact, we conduct an empirical analysis

using the real-world data collected.

1) Prediction accuracy: We first define misprediction and

misprediction on occupant-count. Misprediction means the

predictor mispredicts the occupied or unoccupied status for

the future time slots, and the misprediction on occupant-count

is where the predictor estimates the number of occupants in

one zone for the future time slots incorrectly. Then we have

two measurement metrics: misprediction type distribution and

prediction error to measure the performance of one predictor.

We classify the misprediction into four categories: false pos-

itive, false negative, true positive and true negative, which is

shown in Table I. If both truth and prediction of occupancy are

occupied, the misprediction type is marked as true positive.

If both truth and prediction of occupancy are unoccupied,

the misprediction type is marked as true negative. If the

predictor mispredicts occupied as unoccupied or unoccupied as

occupied, we note the misprediction as false negative or false

positive, respectively. The prediction error is used to measure

the misprediction on occupant-count and it is equal to the

absolute value of the difference between the predicted number

of occupants and the ground truth.

Figures 4, 5, and 6 show the performance of three predictors,

respectively. Since predicting the occupancy status correctly

does not influence the control performance, we combine true

positives and true negatives as true. It can be observed that

each predictor incorrectly predicts the occupancy index at the

beginning and end of the day with a probability of up to 40.2%.

Meanwhile, during the working hours of a day, the predicted

occupancy index is always true, whereas, the predictor error

is small at the beginning and end of the day and is large

during the working hours. For example, the actual occupant-

count over one day is shown in Figure 7 and we see that there

are few occupants in the zone during the large misprediction

probability period, which is why the predictor mispredicts

the occupancy status with a higher probability compared with

the probability during the high occupant density period. The

occupancy pattern variation over months in Figure 7 can be

explained as follows. Interns joining in the Summer causes

an increase of occupancy count from April to May to June.

The reason for smaller occupancy count in February, March,

and April compared to January is because employees return to

work in January after holidays. However, in February, March,

and April, some of them need to do traveling to different

offices and conferences. Sometimes they need to work from

home due to winter conditions. The occupancy count is also

affected due to incoming visitors and events hosted in the

office.

2) HVAC control performance assessment : After analyzing

the prediction accuracy of the three predictors, we study the

performances of an occupancy-aware MPC controller with any

of the three predictors.

At first, we define one measurement metric: the energy

efficiency times effective PMV improvement to measure the

combination of energy efficiency and how much occupant

comfort is offered. We conduct several steps to calculate

energy efficiency and effective PMV improvement for time

slot k: (i) based on the actual detection of occupant-count in

time slot k, Occi(k) and the initial building state x(k − 1),
we solve the one time slot version of Problem (1) to decide

the optimal HVAC power ui(k) and comfort value PMVi(k);
(ii) we calculate the energy efficiency and effective PMV
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Fig. 8: Performance of MPHC using predicted occupant-count (neural network) and ground truth over 4 days

improvement as follows:

Energy efficiency =

{
min{ui(k),ûi(k)}

ûi(k)
if ûi(k) �= 0

1 if ûi(k) = 0

Effective PMV

improvement
=

{
|̂PMV i(k)− F | if Occi(k) �= 0

3 if Occi(k) = 0

where F is the extreme value of PMV (-3 for cold and 3

for hot). The idea behind this measurement metric is that if

HVAC consumes the energy while the zone is unoccupied,

its efficient energy consumption ratio is 0 because the optimal

energy consumption is 0, and if there are occupants, the control

performance is determined by the PMV improvement and

energy efficiency regarding the model predictive HVAC control

using true occupant-count.

3) Performance of MPHC using three predictors: We

show the control traces of the MPC-based HVAC Controller

(MPHC) using predicted occupant-count and ground truth over

four days in Figure 8.

Due to the space limit, we only show the performance

of using the Sequential & Contextual Neural Network (NN)

Large misprediction

probability period

Small misprediction

probability period

Energy (kWh) PMV Energy (kWh) PMV

GT 54.26 -0.159 36.08 -0.052

MC 71.08 -0.130 28.66 -0.050

LR 72.54 -0.099 27.50 -0.043

NN 79.03 -0.094 25.50 -0.041

TABLE II: HVAC controller performance comparison
using different predictors for one day (GT: ground truth;
NN: sequential & contextual neural network; LR: linear
regression; MC: Time-Inhomogeneous Markov Chain)

Fig. 9: Adaptive Model Predictive HVAC Control Archi-
tecture
predictor, and the details of the experiment setting are de-

scribed in Section IV. It can be observed that due to the

false positive prediction, the controller heats the zone when

it is unoccupied, wasting energy, as highlighted in red in the

bottom sub-figure. Meanwhile, the prediction-based controller

also sacrifices occupants’ comfort by closing the HVAC when

it makes the false negative prediction, as highlighted in blue in

the bottom sub-figure. We partition one day into two periods:

large misprediction probability period and small misprediction

probability period according to the misprediction probability

distribution. Table II shows the performance of the HVAC

controller using ground truth or different predictors in terms

of energy consumption and average weighted PMV during

a different period of one day. During the period with large

misprediction probability, using ground truth saves more en-

ergy and gives slightly worse occupants comfort compared

with using prediction. Based on Figure 8 and Table II, it is

concluded that the prediction-based HVAC controller wastes

the energy and provides a little better occupants comfort

due to its large false positive or false negative misprediction

probability in some time periods.

B. Adaptive Controller Design

As described in Section II-E, there are two objectives of

HVAC control, minimizing energy consumption and maxi-
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mizing group occupants comfort, and there exists a trade-

off between these two objectives. Ideally, an optimal con-

troller should aim at minimizing energy consumption if there

is no occupant in one time slot and consider minimizing

one weighted sum of energy consumption and group occu-

pant comfort for a time slot with occupants. However, due

to the misprediction, the existing controller using predicted

occupant-count optimizes HVAC control with incorrect objec-

tives. Therefore, in order to handle the misprediction, espe-

cially the random false positive/negative case, the controller

should determine the HVAC power, which is robust to the

misprediction and introduces the minimum misprediction cost.

To make our control decisions robust to the random mispre-

diction, we design an adaptive model predictive HVAC con-

troller (MPHC), adapting to the misprediction type distribution

and corresponding misprediction cost in the different time slot.

The control diagram is shown in Figure 9, which has a closed

control loop. The adaptive MPHC determines the HVAC

power, which further changes the temperature of manipulated

airflow and building thermal states. The occupancy sensors

sense the occupants’ events and calculate the actual occupant-

count, which is used to predict the future number of occupants

by the predictor. The environmental sensors detect and output

the real-time building thermal state. This information from

occupant-count predictor and environmental sensors is for-

warded to our adaptive MPHC as feedback to improve control

efficiency. The main idea behind our adaptive MPHC is for

one upcoming time slot we first generate the misprediction

type distribution by sampling the historical prediction and true

occupant-count information. Then based on the misprediction

type distribution and predicted occupant-count information

for a given time slot, we determine the HVAC power by

minimizing the misprediction cost expectation.

Misprediction classification and distribution: This part

mainly updates misprediction type distribution in the differ-

ent time slots of the day based on the real-time collected

prediction and actual occupant-count data. For the upcoming

N time slots, we first sample the historical prediction and

true occupancy status data at the same time of day and then

count the frequency of different types of misprediction. Let

ptni (k), pfpi (k), pfni (k) and ptpi (k) be the probability that the

misprediction types true negative, false positive, false negative

and true positive exist in zone i for time slot k, respectively.

The distribution of these four types of misprediction is for-

warded to the misprediction cost optimization part.

Misprediction cost optimization: As shown in Section

III-A, the MPHC solving problem P(Ôcc(t)) is sensitive to

the misprediction when there is a large probability of false

positive/negative misprediction due to the incorrect weight be-

tween two objectives. Hence, our misprediction cost optimiza-

tion part aims at determining the HVAC power to minimize

the misprediction cost expectation based on the probability of

predicting the occupancy status correctly or incorrectly for a

given predicted status.

Let us recall our model predictive HVAC control objective

with true occupant-count Occi(k) for zone i in time slot k,

defined as

Ji(k) = |ui(k)|+ βOcci(k)|PMVi(k)|
However, at the beginning of time slot k, we only have the

predicted occupant-count for future N time slots and n zones.

Let ûi(k) and ̂PMV i(k) be the energy consumption and

PMV when using Ôcci(k) to solve problem (1) for zone i and

time slot k. Here, the control objective value with ûi(k) and

Ôcci(k) is defined as

Ĵi(k) = |ûi(k)|+ βOcci(k)|̂PMV i(k)|
Then the misprediction cost is defined as ΔJi(k) = Ĵi(k) −
Ji(k).

The misprediction cost expectation for zone i and region k
is defined as:

E(ΔJi(k)) =
pfpi (k)ΔJfp

i (k)

pfpi (k) + ptpi (k)
+

ptpi (k)ΔJ tp
i (k)

pfpi (k) + ptpi (k)

or =
ptni (k)ΔJ tn

i (k)

ptni (k) + pfni (k)
+

pfni (k)ΔJfn
i (k)

ptni (k) + pfni (k)
(2)

According to the predicted occupancy status information, we

have the different mathematical equations of misprediction

cost expectation. ΔJfp
i (k),ΔJfn

i (k),ΔJ tp
i (k) and ΔJ tn

i (k)
are the misprediction cost of different type of misprediction,

and we will discuss how to calculate them one by one.

As shown in Table I, for both true negative and false

positive misprediction, there is no occupant in the zone, so

the misprediction cost should be the wasted energy, i.e.,

ΔJ tn
i (k) = |ûi(k)|, ΔJfp

i (k) = |ûi(k)| (3)

For true positive prediction, the objective value deter-

mined by our control decision ûi(k) is Ĵi(k) = |ûi(k)| +
βÔcci(k)|̂PMV i(k)|, where we use the predicted value

Ôcci(k) as the actual value since the predictor makes true

positive prediction. If the occupancy status is correctly pre-

dicted as occupied, the optimal HVAC power in zone i during

time slot k is also influenced by the other nN − 1 decision

variables in MPC. Therefore, we define the optimal objective

value of zone i and time slot k with true positive prediction

as the expected optimal objective value with 2nN−1 possible

cases. For case 1 ≤ j ≤ 2nN−1, let Pj be the probability that

this case exists. Given the case with certain correct or incorrect

prediction information, we can determine the MPHC problem

formulation and calculate the optimal objective value, denoted

by Ji,j(k). Then we have J tp
i (k) =

∑2nN−1

j=1 PjJi,j(k|Ii(k) =
true positive), where Ii(k) is one indicator function to show

the misprediction type. The misprediction cost is defined as:

ΔJ tp
i (k) = |ûi(k)|+ βÔcci(k)|̂PMV i(k)|

−
2nN−1∑
j=1

PjJi,j(k|Ii(k) = true positive) (4)

In the above function, J tp
i (k) is one pre-computed constant

value for given prediction and misprediction distribution of
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Algorithm 1: Adaptive model predictive HVAC controller
real-time HVAC power control

Input: Time horizon N time slots; number of zones n;

weight decided by building managers to balance two

objectives β.

Output: Control decision: ui(k), 1 ≤ i ≤ n,

t ≤ k ≤ t+N − 1
1: while At the beginning of every time slot t, denoted as

t-th time slot do
2: Update the initial building thermal state x(t− 1);
3: Update the predicted occupant-counts in the upcoming

N time slots of n zones, denoted as Ôcc(t);
4: Update the misprediction type distribution

ptni (k), pfpi (k), pfni (k) and ptpi (k) for the future N
time slots and n zones.

5: According to predicted occupant-count Ôcci(k) and

misprediction type distribution, update the total

misprediction cost expectation
∑

i,k E(ΔJi(k)) by

Equation (2).

6: Solve problem (6) to determine the HVAC power

ûi(k) for 1 ≤ i ≤ n and t ≤ k ≤ t+N − 1.

7: end while
8: return HVAC power decisions

n zones and N time slots and ̂PMV i(k) is also one linear

function related to ûi(k). Therefore, ΔJ tp
i (k) is one linear

function of ûi(k).
For false negative prediction, Ĵi(k) = |ûi(k)| +

β| ̂PMVi(k)|, where we use Occi(k) = 1 since the predictor

infers the status as unoccupied. The optimal objective value

of time slot k and zone i, denoted as Jfn
i (k), is also one

expected optimal objective value. Its equation is:

ΔJfn
i (k) = |ûi(k)|+ β|̂PMV i(k)|

−
2nN−1∑
j=1

PjJi,j(k|Ii(k) = false negative) (5)

This equation is also one linear equation related to HVAC

power ûi(k), 1 ≤ i ≤ n, 1 ≤ k ≤ N .

Our objective is minimizing the total misprediction cost

expectation over N time slots and n zones, defined

as
∑n

i=1

∑t+N−1
k=t E(ΔJi(k)). According to Equation (2),

E(ΔJi(k)) is linear to ΔJfp
i (k) and ΔJ tp

i (k) or ΔJ tn
i (k)

and ΔJfn
i (k). Based on the previous definition of these four

variables, they are linear to the control decision variables

ûi(k). Therefore, our objective function is linear to HVAC

power ûi(k). The problem of determining the HVAC power to

minimize the total misprediction cost is formulated as follows:

min
û(k),x̂(k)

t+N−1∑
k=t

n∑
i=1

E(ΔJi(k))

s.t. x̂(k + 1) = Ax̂(k) +Buû(k) +Bdd̂(k)

ŷ(k) = Cx̂(k), Ui ≤ ûi(k) ≤ Ui, (2) ∼ (5) (6)

Since the objective function of the total misprediction cost

minimization problem is linear to our decision variables and

all the constraints are also linear, problem (6) is convex and

can be solved using the convex optimizer.

The pseudo-code of the adaptive model predictive HVAC

controller algorithm is shown in Algorithm 1. At the beginning

of each time slot t, we first update the building thermal

state and predict the occupant-count for the future N time

slots in n zones. Then the misprediction classification and

distribution part updates the probability of the different types

of misprediction for N time slots and n zones. Thirdly,

according to the predicted occupant-count and misprediction

type distribution, we update our objective of minimizing the

total misprediction cost expectation. Finally, we solve the

problem (6) to determine the optimal HVAC power, which

is robust to the random misprediction.

Based on the empirical performance analysis of predictors

and MPC control, during the time slots with small mispredic-

tion probability, the occupancy-aware MPC control shows very

close performance compared with MPC using true occupant-

count. However, for the time slots with large misprediction

probability, due to the small true number of occupants, it is

hard to estimate the occupancy status with high accuracy.

Our probability-based adaptive MPHC essentially offers a

probabilistic guarantee that if ε percentage of all misprediction

type data follows the sampled misprediction type distribution,

our solution can minimize the total misprediction cost of ε
percentages of future time slots. According to the law of large

numbers, with long-term occupancy data, the ε percentage of

time slots’ mispredictions gets close to the true distribution.

Therefore, our solution can minimize the misprediction cost

expectation over time.

IV. EVALUATION

A. Evaluation of Prediction Accuracy

We deployed occupancy sensors in a commercial building

to collect data for learning and prediction of occupancy. The

description of the dataset is shown in Table III. After collecting

over nine months of data, there were around 90,000 events

in total. Each event is represented by a tuple (date, time,

occupancy count) in the dataset.

To investigate the effectiveness of the various occupancy

prediction models, we first perform an offline training that

uses one month of occupancy data as training data. Then

we evaluate the trained model with six months of testing

data. The mean average error (MAE) and root mean square

error (RMSE) is reported in Table IV. The model of neu-

ral network is: input→dense (32 units)→ReLu→dense (32

units)→ReLu→output. The number of epochs is 30, the loss

function is mean square error and the optimizer is Adam. Our

proposed neural network is able to perform very well in both

Collection Period 2015/08/26∼2016/06/07

Events >90,000

Format [date,time,real-time occupant-count]

TABLE III: Dataset of occupants
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Granularity= 30 minutes, Horizon= 4 slots (2 hours)

Models Main office Warhol

MC
MAE 1.64 0.41

RMSE 3.09 0.98

LR
MAE 1.46 0.44

RMSE 2.69 0.92

NN
MAE 1.43 0.42

RMSE 2.60 0.9
TABLE IV: Prediction accuracy of Time Inhomogeneous
Markov Chain (MC), Linear Regression (LR) and Sequen-
tial Contextual Neural Network (NN)

metrics. Note that the main office in our dataset is a medium-

sized commercial space that can possibly host 50 people. This

accurate prediction made by our models, will be beneficial for

the model predictive controller, as shown in the later evaluation

section.

We also evaluate how the freshness of the data will affect

the prediction result in an online setting. To perform online

training, we re-train our model every day using all the data we

have by this day. The prediction accuracy over months of the

main office is shown in Table V. It is observed that the neural

network-based model improves the RMSE from 2.23 to 2.03.

However, it performs worse in May and June, which is because

the occupancy pattern changes a lot from May, meaning that

the previous knowledge does not hold accurately for these two

months. This observation aligns with the empirical analysis

that the distribution of occupancy in the office space may shift

in the year and we need to update our belief regularly.

B. Evaluation of Adaptive Model Predictive HVAC Controller

1) Evaluation Setup: We perform a data-driven simulation

to evaluate and compare the quantitative performance of the

following controllers: (i) OBSERVE [12]: at first, it estimates

the future occupancy information using Markov Chain model,

and then sets up the temperature set point based on the

different predicted occupancy status. It works from 5 am to the

end of the day. It aims to make PMV be close to 0 if the zone

is occupied; otherwise, the temperature is set to make PMV

be close to -0.5. (ii) Fixed Schedule: At the beginning of each

time slot, it detects the current indoor temperature and decides

the HVAC power during this time slot to make the future

PMV value close to 0. The controller works between 6 am and

11 pm, and it does not predict any future binary occupancy

NN MCT LRT

MAE RMSE MAE RMSE MAE RMSE

Jan. 1.28 2.23 1.32 2.44 1.23 2.19

Feb. 1.26 2.21 1.47 2.69 1.24 2.27

Mar. 1.25 2.11 1.40 2.53 1.18 2.04

Apr. 1.21 2.03 1.33 2.32 1.18 2.01

May 1.83 3.37 1.84 3.44 1.57 2.88

Jun. 3.11 5.47 3.83 6.64 2.46 4.37

TABLE V: Prediction accuracy over months of three
predictors

Energy (kWh) PMV

MPHC

+OC

NN 104.53 -0.046

MC 99.74 -0.058

LR 100.04 -0.048

Adaptive

MPHC

NN 89.35 (15.3%) -0.052 (−0.026 ◦C)

MC 88.01 (11.8%) -0.068 (−0.037 ◦C)

LR 87.59 (12.4%) -0.056 (−0.029 ◦C)

TABLE VI: Average one-day energy consumption and
PMV over six months with different predictors
information or occupancy count. (iii) MPHC+Binary: At the

beginning of each time slot, it first predicts whether the zone is

occupied or unoccupied in the following time horizon. Then it

determines the HVAC power by MPHC assuming the number

of occupants is 1 if the zone is predicted as occupied in

one upcoming time slot. (iv) MPHC+OC: it determines the

HVAC power by solving MPHC with predicted number of

occupants information. (v) Adaptive MPHC: our design that

determines the HVAC power adaptively to the misprediction

type distribution.

To measure the occupants comfort of zone i over one

day, we use the weighted average PMV value defined as∑48
k=1 Occi(k)PMVi(k)/

∑48
k=1 Occi(k). We also evaluate

the total energy consumption of one day.

The building in the simulation environment EnergyPlus [35]

has three thermal zones with sizes 250m3, 100m3, and 250m3,

respectively. We use the default weather data in EnergyPlus

as the environmental conditions. We set the power range for

zone 2 to be −5 ≤ u(k) ≤ 5 and that for zone 1 and 3 is

−15 ≤ u(k) ≤ 15. The time slot is 30 minutes and prediction

horizon N is 4. To simulate PMV model, we use the thermal

comfort tool [36] to estimate the PMV value for given indoor

temperature. Several parameters are set as follows: M = 1
met, v = 0.2m/s, Pa = 50% and Icl = 1 col, where we

set metabolic rate and clothing level by assuming an occupant

wears typical winter indoor clothing and takes a seat according

to the instructions in [36]. The default β value is 5.

2) Experimental Results: We summarize the main evalua-

tion results as follows:

• Occupancy patterns obtained from the historical data are

useful to improve the energy efficiency and occupants

comfort, e.g., MPHC+binary reduces the energy con-

sumption by 9.9% and increases occupant comfort by

4.5% over the fixed schedule control strategy.

• Fine-grained occupant-count allows more efficient and

precise heating/cooling control than using binary oc-

cupancy status information. For instance, MPHC+OC

consumes 10.7% less energy and provides 88.1% better

thermal comfort than MPHC+binary does.

Energy (kWh) PMV

OBSERVE 132.17 0.350

Fixed Schedule 124.30 0.422

MPHC+Binary 111.97 0.403

MPHC+OC 100.04 -0.048

Adaptive MPHC 87.59 -0.056

TABLE VII: Average one-day energy consumption and
PMV over six months by different solutions
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Fig. 10: Control Traces of different solutions over one day

• Due to the false positive and false negative misprediction

at the beginning and end of the day, only occupancy-

aware MPHC experiences energy waste and occupant

discomfort. Our adaptive MPHC based on historical mis-

prediction can minimize the total energy consumption

of one day while only introducing a slight decrease of

occupant comfort.

First, we compare the performance of MPHC+OC and

adaptive MPHC using one of three predictors that we pro-

posed in Section II-D and show the average one-day energy

consumption and PMV over six months in Table VI. The

key observation is that compared with MPHC+OC, our adap-

tive MPHC reduces the average one-day energy consumption

significantly, and meanwhile, a slight decrease of average

weighted PMV is introduced for any predictor. For instance,

when using a neural network-based predictor, our solution

consumes 15.3% less energy on average for one day and

only introduces a temperature decrease of 0.026 ◦C. Another

observation is that no matter which predictor our adaptive

MPHC uses, it always outperforms MPHC+OC. In the rest

of the evaluation, we compare our adaptive MPHC using LR

against the other three solutions since it consumes the least

energy compared with using the other two predictors.

Secondly, in Table VII, we show the performance of five so-

lutions in terms of energy consumption and weighted average

PMV for one-day when conducting a six-month trace-driven

evaluation. Our adaptive MPHC solution reduces the average

one-day energy consumption by 33.7%, 29.5%, 21.8%, and

12.4%, respectively, compared with OBSERVE, fixed sched-

ule, MPHC+binary, and MPHC+OC. Meanwhile, it decreases

the indoor temperature by 0.044 ◦C against the fixed schedule,

which provides the most comfortable indoor environment.

One more observation is that OBSERVE, fixed schedule

and MPHC+binary solutions overheat the zones during the

daytime, e.g., fixed schedule makes the average weighted

indoor temperature be 0.044 ◦C above the most comfortable

value. The reason is that they do not consider the human heat

Large misprediction

probability period

Small misprediction

probability period

Energy PMV Energy PMV

OBSERVE 94.92 0.139 37.25 0.373

Fixed

Schedule
92.33 0.186 31.97 0.447

MPHC

+binary
73.44 0.157 38.53 0.428

MPHC

+OC
72.54 -0.100 27.50 -0.043

Adaptive

MPHC
52.20 -0.180 35.39 -0.043

TABLE VIII: Average energy consumption and PMV
during different periods of one day over six months

emission, resulting in more energy consumption to heat the

zone.

To better understand the control strategy of the different

solutions, we plot their control traces over one day in Figure

10, and we have several observations. (i) The first one is both

MPHC+Binary and MPHC+OC turn on the HVAC to heat

the zones when the zone is predicted as occupied for the

future time slots. (ii) The second observation is OBSERVE,

fixed schedule and MPHC+binary solutions consume more

energy and overheat the zones due to no consideration of

occupants’ heat emission. (iii) The last one is our adaptive

MPHC consumes the power conservatively when one time

slot experiences high probability that the ground truth is

unoccupied for a given prediction as occupied, e.g., 6:30

and 20:00, and heats the zone aggressively when there is

a probability that the ground truth is occupied for a given

prediction as unoccupied, e.g., 18:30, 19:00 and 20:30.

Finally, we analyze the average performance of five so-

lutions during different time periods of one day and show

the results in VIII. It is observed that our adaptive MPHC

consumes the least energy during the large misprediction

probability period than the other four solutions do by 45.0%,

43.5%, 28.9%, and 28.0%, respectively. The reason is that our

controller determines the HVAC power adaptively to mispre-

diction type distribution, which saves the energy. Meanwhile,

it reduces the average weighted indoor temperature by 0.30 ◦C
compared with MPHC+OC. Our controller consumes the more

energy during the small misprediction probability period since

it needs to compensate the saved energy during the previous

large misprediction probability period in order to offer occu-

pant comfort with more occupants. The OBSERVE solution

also consumes more energy during the small misprediction

probability period since it only aims at making PMV be close

to 0 without considering the energy consumption. However, it

still saves the energy for the overall day, as shown in Table

VII.

V. DISCUSSION

In this work, we deploy depth sensors to detect and esti-

mate occupancy in a commercial space. Depth data from a

similar deployment can be found in [37]. Compared with the
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traditional PIR based motion detection systems, our solution

can accurately estimate the number of occupants entering or

exiting in different rooms. Our solution achieves over 99%

accuracy in estimating space occupancy [22] and it is not as

privacy invasive as RGB cameras.

The collected long-term building occupancy count infor-

mation is used to predict the future occupancy count and

fed into the adaptive model predictive HVAC controller. In

this work, we focus on the problem that the misprediction

of future occupancy information can result in ineffective and

inefficient HVAC control. We design an adaptive MPHC to

address this challenge. Our proposed solution is agnostic of

underlying occupancy estimation solution as it will work with

other sensing technologies as long as they provide real-time

occupancy estimation information. However, the more accurate

the occupancy estimation system is, the better our solution

performs. Our solution expects building managers to feed such

occupancy data, building and HVAC system information to our

solution in order to control the HVAC system.

VI. RELATED WORK

Occupancy-aware HVAC control exploits real-time or pre-

dicted future occupancy states to determine the HVAC power,

aiming to minimize the HVAC energy consumption. There are

three types of occupancy-aware HVAC controllers: reactive

controller, condition-based predictive controller, and model

predictive controller. (i) The reactive controller uses real-time

occupancy information to conduct HVAC power optimization

without any prediction of future occupancy states [38]. (ii)

The condition-based controllers [12] predict the schedule of

occupancy and then adjust the HVAC temperature set-point

according to some pre-defined logic to meet occupant comfort,

rather than determining the HVAC power directly. (iii) The

occupancy-aware model predictive HVAC controller employs

a model describing the dynamic building thermal states with

predicted knowledge of building occupancy and weather, and

then solves an optimization to determine the best HVAC power

decisions [8], [9], [10], [13], [15], [16], [14], [11], [39].

There are two differences between these papers and our work:

(i) we investigate the sequence of false positive or negative

misprediction and propose an adaptive controller to handle

such cases, and (ii) our work intends to optimize both energy

consumption and occupant comfort, whereas, the related works

only constrain the indoor temperature within a bound.

Although some other papers fall within the scope of HVAC

control, their focus is not determining the HVAC power

directly. [31] concentrates on designing occupancy prediction

algorithms for automatically setting up the target temperature

that is used for MPC-based HVAC control. [40] considers

combining a model predictive control HVAC system with

free cooling, such as natural ventilation, minimizing energy

consumption while maintaining occupant comfort. [6] studies

how to use low-cost sensing technology to detect occupancy

and sleep patterns. Moreover, based on such patterns, one

strategy for automatically turning off the resident HVAC

system is designed. [41] studies how to distort the occupancy

data aiming at hiding individual occupant location information

while bounding the HVAC system performance.
Some related works [42], [43], [44], [45], [46], [47] argues

that traditional thermal comfort measurement methods intro-

duces a high load of sensory input. Therefore, they propose

several feedback mechanisms for receiving the occupants’

feedback, e.g., their vote on thermal comfort within a space

via some web applications.
There are several papers [48], [49] focusing on deploying

some infrastructure, such as Wi-Fi, passive infrared sensors

and motion (CO2, sound, ambient light) detectors, etc. to

collect real-time building states [50] and then inferring the

real-time occupancy that is employed for predicting occupancy

states and setting HVAC target temperature.

VII. CONCLUSION

With a long-term fine-grained real-world occupancy dataset,

we conducted a comprehensive study on occupancy prediction

and its benefits and constraints for HVAC control in commer-

cial buildings. Our analysis confirmed the results from previ-

ous studies that occupancy patterns obtained from historical

occupancy data can be used to improve energy efficiency and

occupant comfort in buildings. We also reveal that using fine-

grained occupancy count allows more efficient and precise

control than binary occupancy count. However, mispredictions

in the morning and evening often occur and introduce energy

waste and user discomfort. Our solution to this problem

is an adaptive control design that minimizes misprediction

costs based on historical distributions of different types of

mispredictions. A comprehensive evaluation is performed in

OpenBuild and EnergyPlus, and the evaluation result shows

that the proposed solution reduces energy consumption by

29.5% while improving the average weighted occupants com-

fort by 86.7% in terms of Predicted Mean Vote (PMV) over

the fixed schedule control strategy.
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