
DeResolver: A Decentralized Negotiation and Conflict
Resolution Framework for Smart City Services

Yukun Yuan, Meiyi Ma
□
, Songyang Han

§
, Desheng Zhang

†
, Fei Miao

§
, John A. Stankovic

□
, and

Shan Lin

Stony Brook University,
□
University of Virginia,

§
University of Connecticut,

†
Rutgers University

ABSTRACT
As various smart services are increasingly deployed in modern

cities, many unexpected conflicts arise due to various physical

world couplings. Existing solutions for conflict resolution often rely

on centralized control to enforce predetermined and fixed priorities

of different services, which is challenging due to the inconsistent

and private objectives of the services. Also, the centralized solutions

miss opportunities to more effectively resolve conflicts according

to their spatiotemporal locality of the conflicts. To address this

issue, we design a decentralized negotiation and conflict resolution

framework named DeResolver, which allows services to resolve

conflicts by communicating and negotiating with each other to

reach a Pareto-optimal agreement autonomously and efficiently.

Our design features a two-level semi-supervised learning-based

algorithm to predict acceptable proposals and their rankings of

each opponent through the negotiation. Our design is evaluated

with a smart city case study of three services: intelligent traffic

light control, pedestrian service, and environmental control. In this

case study, a data-driven evaluation is conducted using a large data

set consisting of the GPS locations of 246 surveillance cameras and

an automatic traffic monitoring system with more than 3 million

records per day to extract real-world vehicle routes. The evalua-

tion results show that our solution achieves much more balanced

results, i.e., only increasing the average waiting time of vehicles,

the measurement metric of intelligent traffic light control service,

by 6.8% while reducing the weighted sum of air pollutant emission,

measured for environment control service, by 12.1%, and the pedes-

trian waiting time, the measurement metric of pedestrian service,

by 33.1%, compared to priority-based solution.

ACM Reference Format:
Yukun Yuan, Meiyi Ma

□
, Songyang Han

§
, Desheng Zhang

†
, Fei Miao

§
, John

A. Stankovic
□
, and Shan Lin . 2021. DeResolver: A Decentralized Negotiation

and Conflict Resolution Framework for Smart City Services. In Proceedings
of 12th ACM/IEEE International Conference on Cyber-Physical Systems (with
CPS-IoT Week 2021), May 19–21, 2021, Nashville, Tennessee. ACM, New York,

NY, USA, 12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The number of smart services has been increasing in modern cities.

These services aim to improve the quality of urban lives, e.g., safety,

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ICCPS ’21, May 19–21, 2021, Nashville, Tennessee, USA
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

wellbeing, and environmental quality. Examples of smart services

include intelligent traffic light control [11, 40], air quality control [4],

and ambulance management [13], etc. However, city managers

are facing more and more potential conflicts across the growing

number of deployed services [20, 23, 31]. For example, services may

have different actions on the same devices due to self-interested

objectives. Another example is that when acting alone, some city

services are fine, but when combined they may be detrimental, e.g.,

to the environment. Such conflicts have significant impacts on the

mobility and health of citizens.

Importantly, how to deal with potential conflicts across services

is still under-explored. There exist several papers on resolving

conflicts across smart services [18, 20, 24, 25, 36]. [36] uses a client-

server architecture to choose one conflict resolution considering

each application’s specific performance requirements, e.g., resource

consumption, and quality of services. [24] proposes a centralized

conflict resolution for multiple city services by using an opera-

tion center to determine which actions are approved. [18] and [25]

resolve conflicts in the smart home by assigning different priori-

ties to smart applications based on their domains. However, these

solutions have their intrinsic limitations: most of them require

abundant and detailed knowledge of each service to determine the

priority/weight, which is usually difficult to achieve in practice due

to the private implementations of services; the rapid evolution of

services makes keeping the decision center updated for all changes

impractical; and it is hard for the center to understand and encode

the complex operating logic of all services.

In this paper, we propose a novel decentralized negotiation and

conflict resolution framework called DeResolver. Unlike the central-

ized conflict resolutions [18, 24, 25], DeResolver allows the services

to resolve conflicts by communicating and negotiating with each

other to automatically achieve a Pareto-optimal agreement. The

decentralized design has several advantages. First, the decentralized

conflict resolution can ensure the privacy of services, i.e., without

requiring the private information of services, e.g., objectives, ser-

vice state, and actuator information, and it avoids the single point

failure. Second, the decentralized design does not impractically

require city managers to determine the importance or priority of

an increasing number of services. Finally, most conflicts have the

spatiotemporal locality. The spatial-temporal locality of conflicts

means a conflict may only influence a local area of the city, and it

may repeat multiple times during the upcoming time period after

the first occurrence. Therefore, multiple conflicts may exist simul-

taneously but they usually influence different local areas of a city,

or exist in different time periods of a day. It is natural and efficient

to use a decentralized way to resolve each conflict independently.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ICCPS ’21, May 19–21, 2021, Nashville, Tennessee, USA Y. Yuan et al.

The service negotiation problem provides a unique setting for

an autonomous negotiation design. Services have access to local

sensor data but do not know each other’s objectives and utility

functions. The services that compete against service 𝑖 in a negotia-

tion are called the opponents or opponent services of service 𝑖 . To

reach an agreement efficiently, it is essential for a service to learn

about opponents’ preferences under different situations. Therefore,

a smart automated negotiation algorithm is designed to make ac-

curate proposals based on the estimation of opponents’ rankings

of proposals. A semi-supervised learning algorithm is designed to

predict acceptable proposals and their rankings for each opponent

through historical negotiation records and corresponding states of

the city. This design is evaluated with a case study of services from

the domain of transportation and environment with real-world

data-driven simulations using the Simulation of Urban MObility.

In summary, the contributions of this paper are as follows:
• To the best of our knowledge, we are the first to propose a decen-

tralized negotiation framework, called DeResolver, for conflict

resolution among city services. As service conflicts demonstrate

high spatiotemporal locality in the physical world, the decentral-

ized resolution allows smart services to mitigate cross-domain

conflicts in an efficient and robust manner.

• We design a smart automated negotiation algorithm to perform

automated negotiation and achieve a Pareto-optimal agreement.

The automated negotiation algorithm is based on the estimation

of how opponent services rank the configurations. We assumes

that services do not know each other’s internal state and utility

function, which is different from the previous automated negoti-

ation research, modeling utility functions of the opponents. We

utilize the ranking of proposals reflected through historical nego-

tiations to improve the accuracy and efficiency of negotiations.

• We design a two-level semi-supervised learning algorithm for

estimating an opponent’s rankings of configurations, the config-

uration ranking problem is different from state-of-the-art page

ranking algorithms, as it is essential to classify proposals into

acceptable and unacceptable sets under different states of the

city besides providing a quantitative ranking estimation.

• Our data-driven evaluation is based on a dataset for vehicles that

consists of the GPS locations of 246 surveillance cameras, and

an automatic vehicle capture system with more than 3 million

records per day. The results show that compared to a priority-

based solution, our resolution can achieve a more equitable solu-

tion, i.e., only increasing the average waiting time of vehicles, the

measurement metric of intelligent traffic light control service, by

6.8% while reducing the weighted sum of air pollutant emission,

measured for environment control service, by 12.1%, and the

pedestrian waiting time, the measurement metric of pedestrian

service, by 33.1%.

2 CONFLICTS ACROSS CITY SERVICES
2.1 Motivating Example
Modern cities have already implemented smart services to enhance

the quality of citizens’ lives. These services may be provided by

the different companies or departments to the city government.

For example, the city bike company dispatches bikes around the

city to provide the last-mile transit service [37], the taxi company

!"#$$% &$'()*+%

,

-

!

.

!"#$%&!'$()*'+

!"#$%

&'#'

/' /0' 10'
2$34%)"* $3

2$3*5$%%)36 *#7

!)63+% 8)6#*'

,-.+)*#/&

01$/2

!"#$%

!'

97:7'*5)+3;

!75<)"7
=3*7%%)673*;>5+44)";8)6#*;

2$3*5$%;!75<)"7

,3<)5$3?73*;

2$3*5$%;!75<)"7

!73'$5'

Figure 1: Demonstration of Example
provides the ride-sharing service [43], and the public safety depart-

ment schedules patrols to defend against potential attackers [42].

However, conflicts across services arise when two services cannot

perform actions simultaneously due to undesirable and harmful

effects. In this work, we introduce and use the following example to

better illustrate the definition and real-world application scenario

of conflicts across services, the scope of the problem that this work

addresses, and the system design.

Example 2.1. The example demonstrates the inconsistent config-

urations on traffic lights by three decentralized services. Intelligent

traffic light control service [11, 39]: it configures the traffic lights

to minimize the average traffic delay at the road intersections. This

service can be a decentralized service [39] configuring a traffic

light for a intersection independently, while also considering the

possible effects of nearby traffic lights due to the high computation

complexity of coordinating multiple traffic lights simultaneously. It

is in the transportation domain. Pedestrian service [29]: it sets up

the traffic lights that show pedestrian crossing signals to minimize

the average pedestrian waiting time. This service is a decentralized

service, meaning that a controller is implemented to configure the

traffic lights for pedestrians at a road intersection independently.

The reason is the setup of a traffic light for pedestrians has little

influence on the setup of another one at a nearby road intersec-

tion due to the limited walking distance of pedestrians. It is in the

transportation domain. Environment control service [4]: it controls

the traffic lights to raise environmental quality, e.g., increasing

air quality and decreasing noise levels, of road segments. It is a

decentralized service and in the environment domain.

These three services run concurrently to achieve their respective

objectives. However, potential conflicts may exist among these

services at run-time. All three services need to determine their

configurations of the green light interval of the West-East (W-

E) or North-South (N-S) directions. The configurations of traffic

lights for pedestrians and vehicles should be consistent. Intelligent

traffic light control wants a long green light duration due to the

high waiting traffic from W-E, whereas pedestrian service wants to

configure a short green light interval because of a few pedestrians

in the N-S direction. For environment control service, it does not

desire a long green light duration because the accumulated vehicles

around a hospital would increase the air pollution, nor desire a short

interval due to the increment of noise level from congested vehicles

near a school. Therefore, to meet individual service performance

requirements, the conflicts exist among these services.

Example 2.2. Another example is three services desire different

amount of traffic on certain road segments and cause conflicts.

2

DeResolver ICCPS ’21, May 19–21, 2021, Nashville, Tennessee, USA

01%(&234+#()

5+4"(&3(&"#)6/"("'"%

-*#*%+.%*%/"#$

!"#$%

0(12")(3(,#4

6;)((5%6/#"+,4

783/()7+/.&'+-

83*)#%!"#$%

9,.)*4#)2/#2)(

!"#$%&'()*'(&"#+)

,-."(&/(&"#

!"#$%&'()*+(+'(&"#

!"#$%&'()*#"+,%!(,#()

(a) Overview of decentralized conflict resolution

!"#$%&'()*+(+'(&"#

!"#$%&'()*#"+,%!(,#()

-*#*%+.%*%/"#$

!"#$%
0(12")(3(,#4

-*#*%+.%
*%/"#$

0(12(4#(5%

6/#"+,4

6'')+7(5

6/#"+,4

83*)#%!"#$%9,.)*4#)2/#2)(

8()7"/(48()7""""""""""""/(

!"#$%&'(),+-"%.+/

!+,.:"/#4

(b) Overview of centralized conflict resolution

Figure 2: Comparison of centralized and decentralized conflict resolution
Event service: it blocks the lanes nearby the event to reduce traffic

near a city event. Parking service: it navigates the drivers to parking

lots near the event. Detour service: it navigates traffic around a

road segment under emergency repairs near the event. A conflict

across the three service occur when these three services decide how

much traffic can be directed to a certain road segment. These three

services need to take coordinated actions and shared the affected

road segments to minimize local congestion.

Based on the examples, we define the conflicts across services

as if two or more services have inconsistent actions on the shared
resources due to incompatible individual goals, they have a conflict. If
conflicts are not resolved and managed equitably, they can affects

citizens’ daily lives. We note that such conflicts do not happen very

often for well designed smart services, they usually occur when 1)

new services and requirements are deployed, 2) city environment

changes, and 3) disruptive and unexpected events happen.

2.2 DeResolver Framework
In this work, we consider the following setting of services that

result in the conflicts across services. Each service is provided

by a stakeholder and has the self-interested and private control

objective, which is usually not completely known by the other

services. For instance, any service in Example 2.1 do not know the

exact control models of the other services. The services can access

data from the deployed sensors to check the specific state of the city,

e.g., NYC [27] and Newark [28]. Services can reliably communicate

and share information with each other. The reason is that services

managed by different stakeholders have already communicated

with the city center to report the operational data in the existing

city systems.

To resolve the conflicts across services under the above setting,

we design a decentralized negotiation based conflict resolution,

DeResolver. Figure 2a shows an overview of DeResolver and it

works in three steps. First, smart services collect the data of the city

using deployed sensing devices to determine the control decisions

and send them to the city operation center. After receiving the

control decisions, the operation center uses a conflict detector,

e.g., CityGuard [22] to check whether a conflict exists. If a conflict

is detected, the center notifies all the involved services that their

collective control decisions result in a conflict and they should

resolve the conflict by DeResolver; otherwise, the operation center

applies the received control decisions.

Second, with DeResolver, the services that result in the conflicts
are organized to negotiate an agreement on the configuration or

action of the shared resources based on a carefully designed multi-

agent negotiation protocol. In each negotiation period, a randomly

selected service makes its proposal of the action (i.e., new con-

trol decisions) to the other services. Please refer to Section 4.2 for

how to make the proposal. Then each of the other services an-

swers acceptance or rejection for the proposal and their answers

are broadcasted to all the services in the negotiation. Please refer

to Section 4.3 for how to make the acceptance or rejection decision.

If a proposal is agreed upon by all the services, they reach an agree-

ment and the negotiation terminates; otherwise, the negotiation

continues until the deadline is reached. Section 3.1 introduces how

to define the deadline of the negotiation based on the application

scenario.

Finally, when an agreement is achieved, it is sent to the operation

center, which will detect whether the agreement results in a new

conflict considering potential new control decisions from other

services that were not in the previous negotiation process. If not,

the operation center applies the agreement; otherwise, the center

notifies all the services resulting in the new conflict that they need

to repeat the second step to resolve the new conflict. If the services

do not reach an agreement, the city operation center will execute

the default action on the shared resources, which is unknown to

the services that result in the conflict.

Existing work [24] proposed CityResolver, a centralized reso-

lution for conflicts across services. Figure 2b shows the overview

of it. Services send their requested actions to the city operation

center. Then the center detects whether conflicts exist using City-

Guard [22]. If so, the conflict resolver approves part of requested

actions to generate a group of actions without conflicts based on its

objectives, and then apply the approved actions. If no conflict is de-

tected, all requested actions are applied to the actuators. There are

two features of CityResolver. The first one is that it simultaneously

addresses all the conflicts using an integer linear programming

based method if these conflicts happen at the same time. The sec-

ond feature is that it assigns a weight to each requested action that

is determined by current state-dependent importance policies.

We summarize the reasons of using the decentralized negotiation

based solution to address the conflicts across services as follows.

• The decentralized negotiation based resolution can avoid sin-

gle point of failure by relying on services rather than a central

agent to resolve conflicts. Meanwhile, our decentralized solution

does not require the services to upload any private information,

ensuring the privacy of services and actuators.

3

ICCPS ’21, May 19–21, 2021, Nashville, Tennessee, USA Y. Yuan et al.

• The decentralized design does not impractically require city man-

agers to determine the importance or priority of an increasing

number of services.

• A centralized solution may not be efficient to resolve multiple

conflicts happening at the same time in a city. It may not perform

well due to the curse of dimensionality in the joint action space

of actuators [39], e.g., using a single agent to control hundreds

of traffic lights. In general, it is not necessary to consider many

simultaneous conflicts together in a centralized optimization,

which is computationally challenging and resource demanding.

Because these conflicts may happen in the different local areas

of a city and they do not affect each other.

3 DERESOLVER FRAMEWORK DESIGN
3.1 Formulation of DeResolver
We propose that multiple services that result in a conflict can play

a negotiation to resolve this conflict, which is the main idea of

DeResolver. In this section, we provide a general mathematical for-

mulation of DeResolver, which shows how to define and formulate

a negotiation for a conflict across services.

Negotiation agent: A negotiation is organized for resolving a

conflict, and it consists of 𝑁 services whose control decisions result

in a conflict. For example, if 𝑁 services have inconsistent configura-

tions of an actuator, these services play a negotiation to resolve the

inconsistency. A negotiation agent represents a service. These 𝑁

services negotiate the issue under discussion with a time horizon

of 𝐻 periods.

Proposal: It is a tentative suggestion about a solution to the issue

under discussion. Let 𝑂ℎ
𝑖
be the proposal that is made by service

𝑖 to the other 𝑁 − 1 services during a negotiation period ℎ. In a

negotiation, the issue under discussion can be a configuration of

an actuator for a direct conflict, or the distribution of a shared com-

mon resource, e.g., the upper bound of noise and the air pollutant

emission budget, for an environmental conflict.

Agreement: We define that all the negotiation agents (𝑁 services)

achieve an agreement if there exists a proposal 𝑂ℎ
𝑖
that is accepted

by the other 𝑁 − 1 services.

Utility: It represents the benefit that a service 𝑖 can receive by

applying a proposal 𝑂ℎ
𝑖′ , denoted as 𝑟𝑖 (𝑂ℎ

𝑖′). The utility function is

defined according to the objective of each service 𝑖 . For example, this

function may represent the number of packages that are delivered

on time for package delivery service, or the inverse value of total

vehicle waiting time for intelligent traffic light control service.

Multi-agent negotiation protocol: A key issue in designing a nego-

tiation amongmultiple services is to determine a protocol that these

services obey. The negotiation protocol for resolving a conflict is

defined as follows.

The negotiation process terminates if 𝑁 negotiation agents reach

an agreement within the 𝐻 time periods, or they cannot find an

agreement after 𝐻 time periods. The length of a time period can

be set as a static value, e.g., a second. The maximum number of

time periods (𝐻) is determined according to the specific application

scenario. How to set 𝐻 will be introduced in Section 3.2, where

we exemplify the formulation of negotiations with the motivating

examples of conflicts.

During the negotiation, 𝑁 services make their proposals by the

round-robin principle during different negotiation periods. The

round-robin principle means only a service proposes its solution

to the issue under discussion during a negotiation period and 𝑁

services make the proposals in a circular order. If a service makes a

proposal during period ℎ, it should make another proposal during

the negotiation period ℎ + 𝑁 as long as neither an agreement is

reached nor the negotiation terminates. If there exists a negotiation

agent that rejects the proposal 𝑂ℎ
𝑖
, the negotiation moves to the

period ℎ + 1, and another service makes its proposal.

During the negotiation, any service 𝑖 knows which service makes

what proposal during any negotiation period ℎ, and the responses

from other 𝑁 −1 services, i.e., acceptance or rejection. However, ser-
vice 𝑖 does not know the opponent services’ objectives. Service 𝑖 can

only observe the behaviors of other services during the negotiation.

3.2 Case study
In this section, we demonstrate the formulation of the negotiation

for addressing the conflict in Example 2.1.

The traffic lights for pedestrian crossing signals or vehicle traffic

coexist in a road intersection. The signals provided by these two

types of traffic lights should be consistent to avoid traffic accidents.

Therefore, we assume that there is a traffic light at the intersection

of two roads. To simplify the notation, north, south, west, and east

are represented by "N", "S", "W", and "E" respectively, and "Green"

and "Red" are used to describe the green and red light. Since two

roads’ traffic cannot pass the intersection at the same time, there

are two states of a traffic light, i.e., (1) Green-WE (Red-NS) and (2)

Red-WE (Green-NS).

In a real-world scenario, such two states exist alternatively,

i.e., 1 → 2 → 1 → ..., meaning the schedule of a traffic light

is a sequence of phases, where a phase represents several consecu-

tive time slots when a traffic light has the same state. In the first

motivating example, each service sets up the length of each traffic

light phase, e.g., the number of seconds of each traffic light phase. To

simplify the problem description, let 𝑡 be the traffic light phase that

a traffic light is within, and services negotiate the configurations of

(𝑡 + 1)-th traffic light phase.

Negotiation agent: A negotiation is organized for resolving a

conflict, and it consists of 𝑁 services whose control decisions result

in a conflict. A negotiation agent represents a service. For Example

2.1, the negotiation is played by three services (𝑁 = 3). These 𝑁

services negotiate the issue under discussion within 𝐻 periods.

State: The three services access data from the deployed sensors

to check the specific state of the city that they are interested in.

Figure 1 shows the specific sensors that three services use to collect

the data of a city. We list the information that the different sensors

can provide as follows: road surveillance camera: videos of traffic

around the road intersections; vehicle loop detector: vehicles count;

air quality sensor: air quality value; noise sensor: noise level; pedes-

trian crossing surveillance camera: videos of pedestrians close to

the pedestrian crossing. Let 𝑠𝑖,𝑘 (𝑡) be the states of the city around

the traffic light 𝑘 at the beginning of phase 𝑡 that service 𝑖 is inter-

ested in, and we assume the above states around a road intersection

are stable during a negotiation. 𝑠𝑖,𝑘 (𝑡) is defined as follows.

4

DeResolver ICCPS ’21, May 19–21, 2021, Nashville, Tennessee, USA

• Intelligent traffic light control service: the state component in-

cludes the number of waiting vehicles, the vehicle arriving rate

in each direction, the vehicle throughput of each direction, the

updated waiting time of vehicles, and the states of the traffic light

in current phase 𝑡 and next phase 𝑡 + 1.

• Pedestrian service: the state component includes the number of

waiting pedestrians, the pedestrian arriving rate, and the pedes-

trian throughput of each direction, the updated waiting time of

pedestrians, and the state of the traffic light in current phase 𝑡

and next phase 𝑡 + 1.

• Environment control service: the state is defined as the combi-

nation of the number of vehicles on the adjacent road segments,

the number of waiting vehicles 𝑉𝑙 ′′ , the vehicle arriving rate and

the throughput of each direction, and the state of the traffic light

in current phase 𝑡 and next phase 𝑡 + 1.

Proposal: The issue under discussion is defined as the configuration

of a traffic light. The proposal is the length of the next traffic light

phase. During a phase 𝑡 , three services negotiate the traffic light

configurations for (𝑡 + 1)-th phase. Service 𝑖 proposes 𝑂ℎ
𝑖,𝑘

(𝑡) ∈ 𝐷
during the negotiation period ℎ to configure the phase 𝑡 of traffic

light 𝑘 . The domain of a traffic light’s phase length is defined as

𝐷 = {𝑑 | 𝑑 ∈ [𝑇𝑚𝑖𝑛,𝑇𝑚𝑎𝑥] and 𝑑 ∈ Z+}, where 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥

correspond to the extreme values of the phase duration.

Agreement: In this example, the agreement means there exists

a proposal, 𝑂ℎ
𝑖,𝑘

(𝑡), of traffic light 𝑘’s configuration, which is ap-

proved by all other services during the negotiation period ℎ.

Utility: Let 𝑟𝑖 (𝑂ℎ
𝑖′,𝑘

(𝑡)) be the immediate utility that service 𝑖 can

get if the proposal 𝑂ℎ
𝑖′,𝑘

(𝑡) is applied to the 𝑡-th traffic light phase.

The utility functions of three services are formulated as follows.

• Intelligent traffic light control service: the objective is to mini-

mize the total waiting time of vehicles around the intersection

𝑘 , where waiting vehicles include taxis, bikes, buses, and private

cars. Let 𝑖 be 1 to represent this service and the immediate utility

function is: 𝑟
1,𝑘 (𝑂ℎ

𝑖′,𝑘
(𝑡)) = −∑𝑂ℎ

𝑖′,𝑘 (𝑡)
𝑡 ′=1

∑
𝑙 ∈𝐼𝑘 𝑊1,𝑙 (𝑡 ′). 𝐼𝑘 is the

set of approaching lanes of intersection 𝑘 . 𝑡 ′ is a time slot of

phase 𝑡 , and a phase consists of several time slots, e.g., a time slot

is one second and there are five time slots in a phase.𝑊
1,𝑙 (𝑡 ′) are

the total waiting time of waiting vehicles in approaching lane 𝑙 at

time slot 𝑡 ′. The inner sum represents all vehicles’ waiting time

by the end of slot 𝑡 ′ and the outer sum is the sum of all vehicles’

waiting time over the phase 𝑡 . To minimize the waiting time,

additive inverse of total waiting time is used when maximizing

the immediate utility.

• Pedestrian service: its objective is similar with that of intelli-

gent traffic light control service, stated as minimizing the wait-

ing time of pedestrians in a road intersection 𝑘 . Then the util-

ity 𝑟2 (𝑂ℎ
𝑖′,𝑘

(𝑡)) of applying configuration 𝑂ℎ
𝑖′,𝑘

(𝑡) at intersec-
tion 𝑘 for pedestrian service is formulated as: 𝑟

2,𝑘 (𝑂ℎ
𝑖′,𝑘

(𝑡)) =

−∑𝑂ℎ
𝑖′,𝑘 (𝑡)

𝑡 ′=1

∑
𝑙 ′∈𝐼 ′

𝑘
𝑊

2,𝑙 ′ (𝑡 ′). 𝐼 ′𝑘 denotes the set of pedestrians’ walk-
ing directions of road intersection 𝑘 and𝑊

2,𝑙 ′ (𝑡 ′) are the total
waiting time of waiting pedestrian in direction 𝑙 ′ at time slot 𝑡 ′.
We also maximize the additive inverse.

• Environment control service: this service aims at minimizing

the weight sum of environment quality, e.g., noise level and

air pollutant emission in all road segments. For given a time

slot 𝑡 ′ during traffic light phase 𝑡 and one road segment 𝑙 ′′,
let 𝑓 (𝑉𝑙 ′′ (𝑡 ′)) denote the value of environment quality, where

𝑉𝑙 ′′ (𝑡 ′) is the number of vehicles on road segment 𝑙 ′′ during
time slot 𝑡 ′ that connects with road intersection 𝑘 . Then the im-

mediate utility of environment control service is formulated as:

𝑟
3,𝑘 (𝑂ℎ

𝑖′,𝑘
(𝑡)) = −∑

𝑙 ′′∈𝐼 ′′
𝑘
𝜔𝑙 ′′ × 𝑓 (𝑉𝑙 ′′ (𝑡 ′)). 𝜔𝑙 ′′ is the weight for

road segment 𝑙 ′′ that can be defined by the environment around

each road segment, e.g., a road segment has high weight if there

are hospitals or schools around it. 𝐼 ′′
𝑘
is the set of adjacent road

segments for intersection 𝑘 and 𝑓 (·) is a function calculating the

environment quality for given number of vehicles.

Multi-agent negotiation protocol: If these three services have mul-

tiple simultaneous conflicts on the configurations of 𝑛 traffic lights,

then they play 𝑛 negotiations simultaneously, where a negotiation

is organized for resolving a conflict on one traffic light’s config-

urations. Finally, an agreement is achieved for each negotiation,

and multiple simultaneous configurations are agreed among these

services. During a period ℎ of the negotiation for traffic light 𝑘 , a

service proposes its configuration to its opponent services. Then

the other services determine to accept or reject this proposal based

on their own interests. If this proposal is accepted by the other

services, it is an agreement and will be applied to the actuators; oth-

erwise, the negotiation moves to period ℎ + 1, and another service

proposes its configuration again.

Services make the proposals by the round-robin principle during

different negotiation periods. It means that only a service proposes

its solution to the issue under discussion during a negotiation pe-

riod and 𝑁 services make the proposals in a circular order. If a

service makes a proposal during period ℎ, it should make another

proposal during the negotiation period ℎ + 𝑁 as long as neither

an agreement is reached nor the negotiation terminates. If there

exists a negotiation agent that rejects the proposal 𝑂ℎ
𝑖
, the nego-

tiation moves to the period ℎ + 1, and another service makes its

proposal. The negotiation process terminates when an agreement

is reached or the number of negotiation periods is over 𝐻 . We use

an example to demonstrate how to define 𝐻 in traffic light control.

For instance, the configuration of the green light phase duration

of the N-S direction should be determined before the green traffic

light phase of E-W direction ends. Then according to the starting

time of the negotiation and the deadline, the maximum duration of

the negotiation is obtained. 𝐻 is equal to the maximum duration of

the negotiation over the length of a time period, where the denom-

inator can be a static value, e.g., a half seconds. If no agreement

is achieved, the default configurations is applied to traffic light 𝑘 ,

which are determined by city transportation authorities.

4 DESIGN OF A SMART SERVICE UNDER
DERESOLVER FRAMEWORK

It is essential for a service to optimize its negotiation strategy to

maximize its utility decided by the agreement. To address this prob-

lem, we design an automated negotiation agent for each service

that determines the negotiation actions by learning its opponent

5

ICCPS ’21, May 19–21, 2021, Nashville, Tennessee, USA Y. Yuan et al.

!"#$%&

'()*+)%&

!"#$%&'(

)'#*+

!"#$$%&'

(%)*+'

,-.+"-/'

0-12/

3+"#+2)4'$-"'

0#5%.)'6"-7-8#/8

!"#$%&'

(#$)$#*

+,-). 9&&27+#.&2'

3+"#+2)4

32":%&2';

32":%&2'!

32":%&2'"

,
*
-)./+0

"#
)1

2
"0
%
).+).%

#
13
&%
)%
(%
-

!"#$%&

!'$()*'+

4&+55.(16.07)18%#)&%-19"(.$.%#$

!'$()*'&!

:;;%#"#)$<19"(.$.%#$

(2#".2"

-$ <77-.2.+8

!"#$%&"'()*"&%(%+,(

8.)=1

9+)+

,'-.%)#%)./&

0-'/%

Figure 3: Design of a service under DeResolver Framework

services’ acceptable configurations and ranking for different con-

figurations from the past negotiation behaviors.

Definition 4.1 (Automated Negotiation Problem). Given services

with conflicts and the negotiation protocol formulated in Section

3.1, the problem is how any service 𝑖 determines its action at any

negotiation period ℎ, i.e., accepting or rejecting the proposal from

other services, and making its proposal, to maximize its utility.

Figure 3 shows the design of a service with an automated nego-

tiation agent under the DeResolver framework. We take the traffic

light control as an example. Given the data of a city, the traffic light

control model is used to estimate the action-utility table based on

the utility function of service 𝑖 . There are two columns of each

row in the action-utility table, where the first column represents

a possible traffic light configuration (action), and the second col-

umn is the long-run utility that service 𝑖 receives if applying the

action to the traffic light. Then service 𝑖 determines its action at

each negotiation period ℎ according to the estimation that which

configurations are acceptable to service 𝑖 ′ and how an opponent

service 𝑖 ′ ranks the different estimated acceptable configurations.

In detail, the learner of opponents outputs a sequence of accept-

able configurations to each opponent service 𝑖 ′, and this sequence

has the ranking information. The proposal strategy determines the

proposals that service 𝑖 make, and the acceptance strategy decides

to accept or reject opponent services’ proposals.

4.1 Learner of Opponents
Service 𝑖 should have some beliefs of its opponent services through

the negotiation to maximize its utility that negotiation result in-

troduces. We propose a two-levels learner for service 𝑖 to estimate

how any opponent service 𝑖 ′ ranks the acceptable configurations.
In detail, service 𝑖 needs to learn 𝑁 − 1 models, where a model

corresponds to an opponent service 𝑖 ′. The first level of the learner
estimates a set of acceptable configurations to service 𝑖 ′ based on

the current state of the city and negotiation behaviors during the

previous periods of the current negotiation. The second level infers

how service 𝑖 ′ ranks the estimated acceptable configurations.

4.1.1 Estimating acceptable configurations. The task in the first

level of the learner is to learn a function 𝑓 1
𝑖′ (state during a period,

configuration) ∈ [0, 1] showing the probability that opponent ser-

vice 𝑖 ′ accepts configuration 𝑑 ∈ 𝐷 during period ℎ given the state

during period ℎ. The first-level of the learner takes the state during

a negotiation period and a configuration as the input. This function

works as a binary classifier to estimate whether a configuration is

accepted or rejected by service 𝑖 ′.
First, we define the state during a negotiation period ℎ, denoted

as 𝑛𝑠
1,ℎ
𝑖′ . 𝑃ℎ

𝑖′ = {0, 1}1×|𝐷 |
represents whether the configurations

are accepted or not by service 𝑖 ′ before period ℎ. If configuration

𝑑𝑙 is proposed or accepted by service 𝑖 ′ before period ℎ, 𝑃ℎ
𝑖′,𝑙

= 1;

otherwise, it is 0. We define 𝑛𝑠
1,ℎ
𝑖′ = (𝑠𝑖′ (𝑡), 𝑃ℎ𝑖′), which is a concate-

nation of the state of a city that service 𝑖 ′ takes and the indicator

matrix showing whether configurations are accepted or not.

Second, we discuss how to generate the labeled training data

denoted by𝑈 1

𝑖′ with a form of <state, configuration, label> for each

data sample to learn the binary classifier. Given the records of a

past negotiation, we generate 𝑛𝑠
1,ℎ
𝑖′ based on its definition during

each period ℎ. Given 𝑛𝑠
1,ℎ
𝑖′ , if a configuration 𝑑 is accepted, i.e., the

label 𝑦 is 1, we have a data sample, i.e., < 𝑛𝑠
1,ℎ
𝑖′ , 𝑑, 1 >; otherwise,

the data sample is < 𝑛𝑠
1,ℎ
𝑖′ , 𝑑, 0 >, i.e., the label 𝑦 is 0.

We train 𝑓 1
𝑖′ (state during a period, configuration) using the la-

beled data to minimize the following loss function:

L1 = − 1

|𝑈 1

𝑖′ |

∑
<𝑛𝑠

1,ℎ

𝑖′ ,𝑑,𝑦>∈𝑈 1

𝑖′

𝑦 log(𝑓 1
𝑖′ (𝑛𝑠

1,ℎ

𝑖′ , 𝑑))+(1−𝑦) log(1−𝑓 1
𝑖′ (𝑛𝑠

1,ℎ

𝑖′ , 𝑑))

(1)

This cross-entropy loss function is widely used for binary classi-

fication problems. This function calculates a score that summarizes

the average difference between the actual and predicted probability

distributions. If the actual classification value is 0, the correspond-

ing loss value is − log(1 − 𝑓 1
𝑖′ (𝑛𝑠

1,ℎ
𝑖′ , 𝑑)); otherwise, the loss value

is − log(𝑓 1
𝑖′ (𝑛𝑠

1,ℎ
𝑖′ , 𝑑)). The optimal cross-entropy loss value is 0.

There are multiple binary classifiers widely used in the related

work, e.g., neural network, K-nearest neighbors and support vector

machines. In the evaluation, we set their loss functions as Equa-

tion (1), and then evaluate their performance. The classifier that

generates the best results empirically is used in the data-driven

evaluation. The set of acceptable configurations to an opponent

service 𝑖 ′ may change under the different state of the city, e.g., dy-

namic traffic volume in each direction, and our training function

adapts to such changes since the state of a city is a part of its input.

4.1.2 Estimating ranking of acceptable configurations. Given the

set of acceptable configurations to service 𝑖 ′, service 𝑖 still needs
to estimate how service 𝑖 ′ ranks these estimated acceptable con-

figurations. An intuition is that the opponent service 𝑖 ′ ranks the
configurations based on the utility that they introduce. The task

of the second level of the learner is to learn a function 𝑓 2
𝑖′ (state,

configuration) that ranks the estimated acceptable configurations.

We assume that the ranking function assigns a score 𝑓 2
𝑖′ (·) to each

configuration, where a large score represents a high ranking. The

inputs to this learner are the state of the city that service 𝑖 ′ is
interested in and a configuration.

To learning the above score function, we first generate our train-

ing data including data with ranking information 𝑈 2

𝑖′ and data

without ranking information 𝐿2
𝑖′ of service 𝑖

′
. During any past nego-

tiation, service 𝑖 ′ may propose multiple configurations. We assume

that for any two configurations, service 𝑖 ′ proposes the one with
higher utility at first. Suppose a past negotiation is associated with

a stable state of the city, denoted as 𝑛𝑠2
𝑖′ . In a negotiation, if any

two configurations 𝑑1 and 𝑑2 are proposed by service 𝑖 ′ during two
different periods and 𝑑1 is proposed earlier, we add a data sample,

i.e., < 𝑙1 ≻ 𝑙2 > where 𝑙1 =< 𝑛𝑠2
𝑖′, 𝑑1 > and 𝑙2 =< 𝑛𝑠2

𝑖′, 𝑑2 > to 𝑈 2

𝑖′ .

In the same negotiation, if any two configurations 𝑑1 and 𝑑2 are

not proposed by service 𝑖 ′, we add a data sample < 𝑙1, 𝑙2 > to 𝐿2
𝑖′ .

6

DeResolver ICCPS ’21, May 19–21, 2021, Nashville, Tennessee, USA

The ranking information is included in any sample in𝑈 2

𝑖′ . However,

it is not contained in 𝐿2
𝑖′ .

We use a semi-supervised learning method to train the function

𝑓 2
𝑖′ (·) by these two datasets. For the training dataset𝑈

2

𝑖′ , we consider

the probabilitymodels that assign a probability of < 𝑙1 ≻ 𝑙2 >, based

on the score difference 𝑓 2
𝑖′ (𝑙2) − 𝑓

2

𝑖′ (𝑙1).
Bradley-Terry model [17, 35] is widely used to estimate the prob-

ability 𝑃 (< 𝑙1 ≻ 𝑙2 >) that < 𝑙1 ≻ 𝑙2 > is true given a pair of

individuals 𝑙1 and 𝑙2. This model associates a score 𝑓 2
𝑖′ (𝑙1) with each

individual configuration, 𝑙1. Then it defines the probability that 𝑙1
is preferred to 𝑙2 as the logistic function of their score difference:

𝑃 (< 𝑙1 ≻ 𝑙2 >) = 1

1 + 𝑒 𝑓
2

𝑖′ (𝑙2)−𝑓
2

𝑖′ (𝑙1)

Therefore, the objective of training dataset 𝑈 2

𝑖′ is to maximize the

following likelihood function:

∑
<𝑙1≻𝑙2>∈𝑈 2

𝑖′

log(𝑃 (< 𝑙1 ≻ 𝑙2 >)) =
∑

<𝑙1≻𝑙2>∈𝑈 2

𝑖′

log

1

1 + 𝑒
𝑓 2
𝑖′ (𝑙2)−𝑓

2

𝑖′ (𝑙1)
(2)

Since ranking information is not included in 𝐿2
𝑖′ , we would like

to tie the similarity of configurations to the score similarity. Let

𝑟𝑙1,𝑙2 represent the similarity between 𝑙1 and 𝑙2, defined as 𝑟𝑙1,𝑙2 =
|𝑑1−𝑑2 |

𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛
. Then we would like to penalize the function 𝑓 2

𝑖′ (·) if
similar configurations have quite different scores, formulated as:∑

<𝑙1,𝑙2>∈𝐿2
𝑖′

−𝑟𝑙1,𝑙2 log
(
𝑃 (< 𝑙1 ⊁ 𝑙2 >)𝑃 (< 𝑙2 ⊁ 𝑙1 >)

)
=

∑
<𝑙1,𝑙2>∈𝐿2

𝑖′

−𝑟𝑙1,𝑙2 log
(
(1−𝑃 (< 𝑙1 ≻ 𝑙2 >)) ∗ (1−𝑃 (< 𝑙2 ≻ 𝑙1 >))

)
=

∑
<𝑙1,𝑙2>∈𝐿2

𝑖′

−𝑙1, 𝑙2 log
0.5

1 + 𝑐𝑜𝑠ℎ(𝑓 2
𝑖′ (𝑙1) − 𝑓

2

𝑖′ (𝑙2))

The intuition of the above equation is that for two configurations

without preference information, the probability function of prefer-

ence should not show that < 𝑙1 ⊁ 𝑙2 > or < 𝑙2 ⊁ 𝑙1 >. The first part

of the above equation ensures that if there is no preference between

𝑙1 and 𝑙2, the penalty is minimized when 𝑃 (< 𝑙1 ≻ 𝑙2 >) = 0.5. If

𝑃 (< 𝑙1 ≻ 𝑙2 >) is close to 0 or 1, the penalty is maximized. Then

we apply the Bradley-Terry model to generate the right side.

In summary, we would like to train the function 𝑓 2
𝑖′ (·) to maxi-

mize following function with a negative weight 𝛽 to balance the

importance of fitting two datasets:

L2 =
∑

<𝑙1≻𝑙2>∈𝑈 2

𝑖′

log

1

1 + 𝑒 𝑓
2

𝑖′ (𝑙2)−𝑓
2

𝑖′ (𝑙1)
+

𝛽
∑

<𝑙1,𝑙2>∈𝐿2
𝑖′

−𝑟𝑙1,𝑙2 log
0.5

1 + 𝑐𝑜𝑠ℎ(𝑓 2
𝑖′ (𝑙1) − 𝑓

2

𝑖′ (𝑙2))
(3)

The trained function 𝑓 2
𝑖′ (·) assigns a score to these estimated

acceptable configurations, and then service 𝑖 estimates how service

𝑖 ′ ranks them. We do not assume that the ranking of configurations

is stable for service 𝑖 ′ since the ranking may change with the state

of a city, e.g., dynamic number of waiting vehicles or pedestrians

in each direction. Our learning functions take the dynamic state of

a city as a part of its input, so they can estimate the new ranking

of configurations for service 𝑖 ′ when the state of a city changes.

4.2 Strategy for Making Proposals
In this part, we introduce our strategy for making proposals de-

signed for service 𝑖 . This strategy takes the action-utility table, past

negotiation behaviors of current negotiation, and the estimation

that how opponent services rank the estimated acceptable configu-

rations as input to determine the proposal.

A service wants to achieve an agreement to get as much utility

as possible. To achieve this goal, the service can use a strategy

to propose a configuration which not only introduces the highest

utility to itself but also is acceptable to the other services based on

the estimation of opponents. If such a configuration does not exist,

the service lowers its lowest acceptable utility to make a proposal,

and the amount of utility that is given up depends on its opponent

services’ last two proposals.

When the learner of opponents is used by service 𝑖 to estimate

how service 𝑖 ′ ranks the estimated acceptable configurations during

period ℎ, let 𝐴ℎ
𝑖,𝑖′ denote the output of learner and it is a sequence

of acceptable configurations.

Since service 𝑖’s last proposal is rejected by at least one of other

𝑁 − 1 services, service 𝑖 should concede its lowest acceptable util-

ity to make its proposal be acceptable to other services. We use

the reactive concession strategy for service 𝑖 to update its lowest

acceptable configuration based on the previous proposals of other

𝑁 − 1 services. Service 𝑖 computes the ranking difference, which

represents how much any opponent service 𝑖 ′ concedes between
its last two proposals, denoted as Δ𝑢ℎ

𝑖,𝑖′ based on the estimation of

how service 𝑖 ′ ranks the configurations. The maximum ranking dif-

ference that service 𝑖 can decrease is equal to min1≤𝑖′≤𝑁,𝑖′≠𝑖 Δ𝑢
ℎ
𝑖,𝑖′ .

Thus, based on service 𝑖’s last proposal, maximum ranking decrease,

and its action-utility table, service 𝑖 updates its list of the acceptable

configurations during period ℎ, denoted as 𝐴ℎ
𝑖,𝑖
. It is noted that

service 𝑖 only concedes during the negotiation periods when this

service makes the proposal. We assume that 𝐴ℎ
𝑖,𝑖

only includes the

configuration with the highest utility when service 𝑖 makes the first

proposal of current negotiation.

Proposal generation: Since the negotiation may terminate with

different agreements, we use the Pareto-optimal agreement to mea-

sure them and the definition is shown as follows:

Definition 4.2 (Pareto-optimal agreement). One agreement 𝑑 is

Pareto-optimal if there is no other agreement 𝑑 ′ such that for util-

ity function 𝑈𝑖 for agent 𝑖 , ∀𝑖 ∈ {1, ..., 𝑁 },𝑈𝑖 (𝑑 ′) ≥ 𝑈𝑖 (𝑑) and
∃ 𝑖,𝑈𝑖 (𝑑 ′) > 𝑈𝑖 (𝑑).

In other words, a Pareto-optimal agreement is able to make

any individual service’s performance better off without making at

least one individual service’s performance worse off. There may

be multiple Pareto-optimal agreements of a negotiation, and we do

not measure which one is the best. The reason is that no Pareto-

optimal agreement can improve the performance of at least a service

without sacrificing other services’ performance compared with

another Pareto-optimal agreement. Service 𝑖 also wants to reach

a Pareto-optimal agreement since such a result can maximize its

performance, and it does not make opponents miss any benefit.

During period ℎ, if service 𝑖 makes its first or second proposal, it

can choose the configuration with the highest or (𝑆 + 1)-th highest

utility respectively, where 𝑆 is the initial concession rate. Otherwise,

7

ICCPS ’21, May 19–21, 2021, Nashville, Tennessee, USA Y. Yuan et al.

it first lowers its lowest acceptable utility using the reactive conces-

sion strategy to get the new list of acceptable configurations, 𝐴ℎ
𝑖,𝑖
.

Let Iℎ
𝑖

be the set of configurations that exist in all configuration

lists 𝐴ℎ
𝑖,𝑖′ (1 ≤ 𝑖 ′ ≤ 𝑁). If the set Iℎ

𝑖
is not empty, service 𝑖 s the fol-

lowing configuration during period ℎ: 𝑑 = argmax
𝑑∈Iℎ

𝑖
∩ 𝑃𝑒

𝑈𝑖 (𝑑),
where 𝑃𝑒 is the set of Pareto-optimal agreements calculated by

service 𝑖 based on its estimation of other services’ ranking of con-

figurations. Although service 𝑖 does not know the actual utility

functions of opponent services, the estimated ranking of configura-

tions is enough to compute the set of Pareto-optimal solutions. If

𝐼ℎ
𝑖
is empty, meaning there is no configurations that are acceptable

to all services, service 𝑖 proposes the configuration introducing

the lowest acceptable utility since it has already conceded when

updating the set of acceptable configurations, and the proposed

configuration is defined as argmin
𝑑 in 𝐴ℎ

𝑖,𝑖
𝑈𝑖 (𝑑),

4.3 Acceptance Strategy
In this part, we describe the strategy that service 𝑖 uses to determine

acceptance or rejection of a proposal from an opponent service 𝑖 ′

during period ℎ. Our negotiation agent uses a utility-based condi-

tion to make the decisions. Given the proposal from another service

𝑖 ′ during period ℎ denoted by 𝑂ℎ
𝑖′,𝑘

, service 𝑖 first checks whether

𝑂ℎ
𝑖′,𝑘

is an element of 𝐴ℎ
𝑖,𝑖′ . If not, service 𝑖 rejects this . Otherwise,

this service detects whether 𝑂ℎ
𝑖′,𝑘

can be improved, meaning there

is another configuration 𝑑 which can improve the utility of service

𝑖 and does not decrease the performance of service 𝑖 ′ according to

𝐴ℎ
𝑖,𝑖′ and the action-utility table of service 𝑖 . If 𝑂ℎ

𝑖′ can be improved,

service 𝑖 should reject it since its utility can be improved while not

sacrificing other services’ performance. Otherwise, it is accepted.

4.4 Negotiation Agent Design
According to the strategy for making proposals and the acceptance

strategy described in the previous parts, we summarize the au-

tomated negotiation agent as follows: if it is service 𝑖’s turn to

make a proposal during period ℎ, service 𝑖 will use strategy for

making proposals to determine its proposal; otherwise, service 𝑖

decides to accept or reject a proposal from another service using

the acceptance strategy.

Theorem 4.1. Consider 𝑁 services in a negotiation, they negoti-
ate to determine a configuration from the configuration space 𝐷 =

{𝑇𝑚𝑖𝑛,𝑇𝑚𝑖𝑛 + 1, · · · ,𝑇𝑚𝑎𝑥 }. If all 𝑁 services use our negotiation al-
gorithm, and the estimation of acceptable configurations and their
ranking to any service 𝑖 is accurate, the result of our algorithm is
guaranteed to reach a Pareto-optimal agreement.

Proof. Please refer to Appendix A.1. □

4.5 Action-utility Table Computation
It is essential for any service 𝑖 to know the utility that different

configurations can introduce. Even without conflicts, each service

also needs to compute such a table to choose the optimal configu-

ration for optimizing the quality of service. The action-utility table

computation is beyond the scope of this study, i.e., addressing the

conflicts across services.

For the traffic light control example, determining optimal control

actions has already been well studied in the previous work, classi-

fied into two categories: conventional methods and reinforcement

learning based solutions. Conventional methods [6, 38] configure

fixed schedule or changing rules according to previous knowledge,

which are vulnerable to the dynamic traffic condition. Reinforce-

ment learning based methods [16, 40, 41] take real-time traffic

conditions as input, and aim at selecting the action resulting in

the maximum reward. Based on the related work [40], we design a

reinforcement learning based agent to control any traffic light 𝑘 .

The state, action and reward (utility) of a RL agent for three

services are defined in Section 3.1 respectively. Given the real-time

state, the task of an agent is to find the action (length of the next traf-

fic light phase) that maximizes the long-term reward, following the

Bellman Equation [33]:𝑈𝑖,𝑘 (𝑠𝑖,𝑘 (𝑡), 𝑎) = 𝑟𝑖 (𝑎) + 𝛾 max𝑈𝑖,𝑘 (𝑠𝑖,𝑘 (𝑡 +
1), 𝑎′). 𝑠𝑡 is the state of the city used by service 𝑖 at the beginning of
traffic light phase 𝑡 . The long-term action reward is the summation

of the reward of the next traffic light phase 𝑡 + 1 and the maximum

potential future reward.

5 VALIDATION
5.1 Methodology
The experiments are conducted using SUMO, a simulation plat-

form providing APIs to model traffic systems including vehicles,

pedestrians, environment measurement, and traffic light control.

Specifically, SUMO can simulate vehicles and pedestrian mobility

for given routes and traffic light control policies.

We collect the real-world vehicle mobility data by 246 surveil-

lance cameras in Shenzhen, China over the time period from 05/01/2017

to 05/20/2017. A record is generated when a vehicle is captured by

the camera, and each record consists of captured time, camera ID,

and other information. We also have the city map to show each

road intersection’s GPS data and a table to map each camera ID

to the actual GPS location. The size of the dataset is 55.0 GB. We

use five-days data for the experiment and the remaining data is

imported into SUMO for training. We import a 3 𝑘𝑚 × 2 𝑘𝑚 region

of Shenzhen and the corresponding vehicle traffic as the city envi-

ronment to SUMO, including nine traffic lights that three services

want to control. We also generate pedestrian traffic with the setting

that one person per four seconds or five seconds for the different

directions of a intersection. A traffic light is configured as an integer

between 1 and 60, representing the duration of a traffic light phase.

To show the performance of DeResolver, we compare it with four

conflict resolutions. The related works propose several centralized

based method to address conflicts across services, e.g., priority-

based solution [25] and weight-based solution [24]. By applying

the main ideas of the related works to our application scenario, we

define two centralized methods, i.e., priority-based solution and

weight-based solution as baselines. (i) The priority-based solution

always selects the requested action from the intelligent traffic light

control service if there exist conflicts. (ii) The weight-based solution

selects the action maximizing the weighted sum of three services’

utility ratio. The utility ratio of a service is defined as the ratio

between the utility of an action and the maximum utility. This solu-

tion represents the related work that resolves conflicts by assigning

weights to services and then solving a centralized optimization

problem. In the previous work, the weight is determined by city

managers according to their understanding of services. Therefore,

we assume that city managers put more weight on the performance

8

torrence_yuan
Sticky Note
- The various methods presented in Section 5.1, page 7 (priority-based, etc.) -- why choose these? Are they from related work? If so, which ones? Also what about comparisons with state of the art (CityGuard)?

DeResolver ICCPS ’21, May 19–21, 2021, Nashville, Tennessee, USA

Intell. PedestrianEnvironment0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

SVM LR RDT KNN NN

Figure 4: Performance of
classifying acceptance or
rejection

Intell. Pedestrian Environment0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

SL W. Partial SS SL W. Full

Figure 5: Performance of
learning opponents’ prefer-
ence

of environment service and set them as 1, 2, and 10. (iii) The round-

robin solution applies the requested actions from three services

by cyclic execution if there are conflicts. (iv) Pareto-efficient so-

lution assumes that there is a centralized resolver, knowing the

action-utility tables of all services and selecting the Pareto-efficient

configuration that maximizes the minimum service utility ratio of

all services. It is noted that all four compared solutions rely on a

centralized resolver.

Taking the Example 2.1, we define the metrics to measure three

services’ performance. Average waiting time of a vehicle: for a

vehicle, we calculate its waiting time (speed less than 0.1𝑚/𝑠) and
report the average value. Average waiting time of each pedestrian:

we calculate the waiting time of each pedestrian and report the

average value. The weighted sum of air pollutant emission per

hour: we assign a weight for different road segments based on the

nearby environment, e.g., large weight for hospitals and schools,

and then report the weighted sum of air pollutant emission of all

road segments. The measurement unit of waiting time is second,

and that of environment control service is kilogram per hour.

5.2 Performance of learner of opponents
First, we describe how we collect the data used to train the learners

that are proposed in Section 4.1. We simulate that three services op-

erate to control nine traffic lights by feeding the fifteen-day traffic

data into SUMO, and we set up that they play a negotiation if con-

flicts exist. During the negotiation, each service uses the proposed

negotiation agent to play the negotiation, and services also collect

the data that is generated from services’ negotiation behaviors. In

each period of a negotiation, a data sample is generated for each

service following the process described in the third paragraph of

Section 4.1.1. The data samples collected over all periods of all nego-

tiations, are used to train the binary classifier. Two datasets, i.e., one

with ranking information and the other one without ranking infor-

mation, are generated when a negotiation ends with the process

described in the second paragraph of Section 4.1.2. Two datasets

are used to train the learner that is for inferring the ranking.

Second, we define the estimation accuracy as themainmetrics for

evaluating the learning based algorithm. The accuracy of estimating

the acceptable or unacceptable configurations to service 𝑖 is used to

measure the performance of the first level of the learner. The metric

is defined as: 𝐴𝑐𝑐1
𝑖
=
∑𝑀
𝑚=1

∑𝐻𝑚

ℎ=1
𝑁𝐶𝑖,𝑚,ℎ/

∑𝑀
𝑚=1

∑𝐻𝑚

ℎ=1
𝐶𝑖,𝑚,ℎ .𝑀 is

the number of negotiations that are organized during the evalua-

tion. 𝐻𝑚 is the number of periods that last in the negotiation𝑚.

𝑁𝐶𝑖,𝑚,ℎ is the number of configurations that are correctly classi-

fied as acceptable or unacceptable to service 𝑖 in the period ℎ of

𝑚-th negotiation. 𝐶𝑖,𝑚,ℎ is the number of configurations that are

classified as acceptable or unacceptable to service 𝑖 in the period

ℎ of𝑚-th negotiation. The accuracy of estimating how service 𝑖

ranks the acceptable configurations is used to measure the per-

formance of the second level of the learner. The metric is defined

as: 𝐴𝑐𝑐2
𝑖
=

∑𝑀
𝑚=1

∑𝐻𝑚

ℎ=1
𝑁𝑃𝑖,𝑚,ℎ/

∑𝑀
𝑚=1

∑𝐻𝑚

ℎ=1
𝑃𝑖,𝑚,ℎ . 𝑁𝑃𝑖,𝑚,ℎ is the

number of pairs of configurations, whose ranking order is estimated

correctly in the period ℎ of𝑚-th negotiation. 𝑃𝑖,𝑚,ℎ is the number

of pairs of configurations, whose ranking order is estimated in the

period ℎ of𝑚-th negotiation. The accuracy of a learner shows how

often a service correctly estimates its opponent services’ behaviors,

which is useful for the service to conduct negotiation efficiently.

Finally, we report the evaluation results. We measure the perfor-

mance of five widely used binary classifiers, and then select the one

with the best performance. Support vector machine (SVM): a classi-

cal algorithm to find a hyperplane for classifying the data. Logistic

regression (LR) [14]: a statistical model estimating the parameters

of a logistic model. Random decision tree (RDT) [9]: a method that

constructs multiple trees in randomly selected subspaces of the

feature space and uses the combined predictions of the individ-

ual trees as the output. K-nearest neighbors (KNN) [1]: a type of

instance-based learning, where the classification of a data point is

the same as the class most common among its 𝐾 nearest neighbors.

In this evaluation, we empirically test the value of 𝐾 , and set 𝐾 as

10 because 𝐾 = 10 has the best results in our tests. Neural network

(NN) [7]: it uses a NN to learn the linear or non-linear combination.

Figure 4 shows the classification accuracy using five different

classifiers to estimate whether any one of three services accepts a

configuration or not. It can be observed that the neural network

based learner outperforms all other four solutions with more than

90.0% accuracy for all three services, which means that more than

90.0% of configurations are correctly classified as acceptable or

unacceptable to an opponent service. The reason is that a neural

network can approximate both linear and non-linear hyperplane

to partition the feature space. It is also observed that KNN also

achieves the second best performance with accuracy more than

80.0% since any two close configurations have a high possibility

to receive the same acceptance or rejection decisions. In conclu-

sion, we use a neural network based classifier to estimate whether

configurations can be accepted by a service.

When measuring the semi-supervised learning algorithm (SS),

we design two other methods for comparison: supervised learning

with partial order information (SL W. Partial) and supervised learn-

ing with full order information (SL W. Full). The first method learns

the opponent ranking model only using the collected data with

partial order information and aiming at only minimizing logistic

loss function, i.e., Equation (2). The second comparison method

assumes that given the state of the city, the full order information

of all configurations is known, and this method conducts super-

vised learning to minimize Equation (2). We use TF-Ranking [30] to

implement our semi-supervised learning method, which optimizes

the weighted sum of two objectives simultaneously.

Figure 5 shows the estimation accuracy of order between any

two configurations by three methods. It is observed that our semi-

supervised learning method can achieve more than 86.0% accuracy

for estimating the preference of all three services. For pedestrian

9

ICCPS ’21, May 19–21, 2021, Nashville, Tennessee, USA Y. Yuan et al.

Table 1: Performances of different conflicts resolutions.
(Heavy traffic means the rush hours of one day and light
traffic means non-rush hours of one day. The measurement
unit of both intelligent service and pedestrian service is sec-
onds, and that of environment control service is kilogram
per hour.)

Intell. Environment Pedestrian
Light Heavy Light Heavy Light Heavy

Priority-based 161.48 300.56 22.93 33.75 565.20 3085.20

Weight-based 293.74 530.86 18.40 26.17 309.60 1613.88

Round-robin 289.74 518.65 20.05 30.62 334.08 2177.64

DeResolver 172.39 412.59 20.15 31.11 378.00 1890.31

Pareto-efficient 172.61 381.96 20.18 29.01 345.20 1701.72

service, our semi-supervised learning algorithm increases the esti-

mation accuracy by 17.6% compared with the supervised learning

method with only partial order information. But it decreases the

performance by 7.2% compared with the supervised learning algo-

rithm with full order information. This observation is normal since

our solution takes full use of the distance between two configu-

rations without order information to penalize generating a large

score difference for two close configurations. However, a dataset

with full order provides the most information.

5.3 Performance of DeResolver
5.3.1 Comparison of resolutions to eliminate conflicts. Table 1

shows the performance of three services when using different solu-

tions to resolve conflicts across them under the light and heavy traf-

fic. We set up that all three services using our negotiation method

under the DeResolver framework. There are two observations. The

first one is priority or weight based resolution can improve the

performance of one service greatly, meanwhile degrading the other

two services’ performance significantly. By comparing priority

and round-robin solutions, we can see that changing the subjec-

tive weight on different services could reduce the weighted sum

of air pollutant emission by 40.9% while increasing the average

vehicle waiting time by 79.4% with light traffic. The second one

is our solution can achieve close performance compared with the

Pareto-efficient solution. Compared with applying a Pareto-efficient

solution which is generated from the actual action-utility table of

three services, DeResolver can achieve close vehicles and pedes-

trian waiting time, meanwhile increasing the air pollutant emission

by 9.5% with light traffic. Meanwhile, with heavy traffic, the per-

formance of three services by DeResolver decreases less than 10%

compared with that of three services by Pareto-efficient solution.

It is because DeResolver misses the action which can maintain

the performance of two services and improve that of environment

control service due to estimation error.

5.3.2 Comparison of DeResolver’s variations. Weevaluatewhether

learning services’ ranking is useful for improving the performance

of one service. We consider two variations The first one is DeRe-

solver w. perfect opponent learning. Suppose one service knows the

acceptable configurations to opponent services and the correspond-

ing ranking. The second variation is DeResolver w/o opponent

learning. Suppose one service does not learn opponent services’

acceptable configurations and preference of different actions. It just

proposes the configurations from the one with the highest utility

to the one with the lowest utility one by one. In this experiment,

we assume that the intelligent traffic light control service uses the

variations of our negotiation method, and the other two services

always use the negotiation method designed in this work.

Table 2: Performances comparison of applying DeResolver’s
variations to one service

Solution Intell. Pedestrian Environment
DeResolver w/o

opponent learning 426.61 10.83 338.90

DeResolver 172.39 20.15 378.00

DeResolver w. perfect
opponent learning 164.32 20.18 565.49

The results are shown in Table 2 and there are two observations.

The first one is learning the opponent services’ ranking can help

the service to get more benefit from the service that does not learn

this information. When intelligent traffic light control service has

little information on two opponent services, the other two services

can reduce the average pedestrian waiting time by 46.3% and the

weighted air pollutant emission by 11.5%. The second observation

is perfect learning can help the service to find a more beneficial

agreement, while it will decrease the performance of other services.

Table 3: Performance of DeResolver with different setting of
service types

Intell. Pedestrian Environment

Type Perf. Type Perf. Type Perf.

DeResolver 160.58 Dedicated 23.17 Dedicated 397.04

DeResolver 172.39 DeResolver 20.15 DeResolver 378.00

DeResolver 185.68 Selfish 18.23 Selfish 367.93

5.3.3 Performance of DeResolver with different types of services.
We show the performance of DeResolver when negotiating with

different types of services in this part. First of all, we propose the

definitions of service types. Selfish agent: a selfish negotiation agent

is not willing to concede during the negotiation. In this experiment,

we set up that a selfish agent decreases its worst acceptable config-

uration ranking by one every two proposing periods. For example,

a selfish agent makes an proposal with ranking 𝑞 at its first propos-

ing period. It will propose another proposal with ranking 𝑞 − 1 at

its third proposing period. This agent only accepts configurations

with ranking no less than 𝑞 at the periods between its first and

third proposing period and still proposals the configuration with

ranking 𝑞 in its second proposing period. Dedicated agent: an agent

is willing to reduce its lowest acceptable configuration ranking by

two between its two consecutive proposing periods. DeResolver:

the agent uses the negotiation algorithm designed in this study.

Table 3 shows the performance of DeResolver with different sets

of opponent services’ types. The observation is that the perfor-

mance of DeResolver is stable with different opponent services’

types, i.e., DeResolver increases or decreases the performance by

6.9% and 7.7% with dedicated and selfish opponent services, re-

spectively. With dedicated opponent services, DeResolver can take

advantage of learning opponent services’ acceptable configurations

and propose the configuration which is acceptable to all services

and introduces the most benefit to itself. When negotiating with

selfish agents, the reactive recession strategy makes sure that the

DeResolver agent does not miss too much utility according to its

estimation and observation of opponents.

10

DeResolver ICCPS ’21, May 19–21, 2021, Nashville, Tennessee, USA

Table 4: Convergence analysis

Service type Average # of periods to

reach an agreementIntell. Pedestrian Environment

Dedicated Dedicated Dedicated 14.00

DeResolver Dedicated Dedicated 16.90

DeResolver DeResolver DeResolver 17.56

DeResolver Selfish Dedicated 22.06

DeResolver Selfish Selfish 28.15

5.3.4 Convergence analysis with different types of services. In
this part, we show the average number of periods needed to reach

an agreement for three services with different sets of service types

in Table 4. There are multiple observations. The first one is that this

negotiation converges quickly when all agents use our negotiation

method, e.g., averagely costing 17.56 periods (0.053 milliseconds

on a PC) to reach an agreement with 60 possible configurations

among three agents. The second one is that DeResolver is willing

to concede the lowest acceptable ranking if its opponent services

also concede. The third observation is if all agents use our nego-

tiation method, each agent will concede step by step in any two

consecutive proposing periods which is kind of slower compared

with the case that all opponent services are dedicated agents. The

last observation is that the selfish agent increases the time cost

to reach an agreement since DeResolver is not willing to concede

when observing selfish behaviors.

Discussion: The action conflicts across services result in a trade-

off among these services’ performance when determining the con-

figurations of shared actuators. Therefore, it is hard to optimize all

the services’ performance at the same time. Although our solution

does not achieve the best performance of each service compared

with the baselines, it does provide the balanced performance as

shown in Table 1, which is a benefit of our solution. Meanwhile, our

decentralized design can avoid single point of failure and reduce the

cost of computation resource when many simultaneous conflicts

happen.

6 RELATEDWORK
We organize the related work into three categories, i.e., resolving

conflicts across services, automated negotiation agent design, and

opponent modeling.

Resolving conflicts across services: There exist several papers on
resolving conflicts across services [18, 20, 24, 25, 36]. [3] blocks the

unsafe state of the target application by forcing monitor code into

the app. [24], [18] and [25] resolve conflicts by assigning weight or

priority to different services based on their domain and managers’

understanding of each smart service. [20] suggests that alternative

realizations of users’ expected applications can be selected to avoid

the conflicts in Internet-of-Things. These centralized solutions may

experience "single point of failure" and they require city managers

to have abundant knowledge of services [18, 20, 25] for determining

the weight of each service [22, 24, 36]. Whereas, our decentralized

negotiation-based solution does not rely on city managers or a

central agent to resolve the conflicts.

Automated negotiation agent design: Multi-agent negotiation has

already been widely studied in game theory [5, 8, 12]. However,

they cannot be applied to solve our problem directly due to making

impractical assumptions, e.g., agents’ utility functions have some

specified properties [15, 21], agents know complete knowledge of

opponents’ preference [6, 26], and there exist mediators computing

agents’ offers [12, 15, 21]. [15] considers finding a Pareto-efficiency

solution for multi-attribute negotiation with the assumption that

one mediator applies query learning to find near Pareto-efficiency

solution and each agent’s preference is monotonic. Our work does

not rely on these assumptions to conduct negotiation automatically,

which are impractical for smart city services.

Opponent modeling: Modeling opponents is essential to improve

the performance of negotiation results. The closest related work

to this study is learning the acceptance strategy or the preference

profile of opponents [2]. To learn the acceptance strategy, exist-

ing methods focus on estimating the reservation values or the

acceptance probability of different offers. An approach learns op-

ponents’ reservation value by anticipating opponents’ behaviors

with Bayesian learning [34] or non-linear regression [10]. Several

methods are proposed to learn the preference profile. [19] uses

Bayesian learning to determine the opponent types for given nego-

tiation actions and opponent groups. [32] assumes that opponents’

evaluation of a bundle is the sum of the evaluation of its cluster

and each cluster has a certain evaluation for the buyer. All these

methods make some assumptions of opponents that do not hold

in this work or require some detailed information of opponents.

Whereas, our solution does not make such assumptions to improve

the performance of a service under negotiation.

7 CONCLUSION
Conflicts across services directly affect users’ mobility and health

in modern cities. To achieve dynamic resolution, we propose a de-

centralized negotiation and conflict resolution framework called

DeResolver. Under such a framework, a learning-based solution is

designed to guide how a service negotiates with other services to

maximize its utility. Trace-driven simulations show that our solu-

tion achieves much more balanced results, i.e., only increasing the

average vehicles’ waiting time measured for intelligent traffic light

control service by 6.8% while reducing the weighted air pollutant

emission measured for environment control service and the pedes-

trian waiting time measured for pedestrian service by 12.1% and

33.1%, compared to priority-based solutions.

REFERENCES
[1] N. S Altman. 1992. An introduction to kernel and nearest-neighbor nonparametric

regression. The American Statistician (1992).

[2] T. Baarslag, M. JC Hendrikx, K. V Hindriks, and C. M Jonker. 2016. Learning

about the opponent in automated bilateral negotiation: a comprehensive survey

of opponent modeling techniques. Autonomous Agents and Multi-Agent Systems
(2016).

[3] Z B. Celik, G. Tan, and P. D McDaniel. 2019. IoTGuard: Dynamic Enforcement of

Security and Safety Policy in Commodity IoT. In NDSS.
[4] F. V Cespedes, A. M Ciechanover, and M. Eiran. 2018. BreezoMeter: Making Air

Pollution Data Actionable. (2018).

[5] R. M. Coehoorn and N. R. Jennings. 2004. Learning on Opponent’s Preferences

to Make Effective Multi-Issue Negotiation Trade-Offs. In ICEC ’04. ACM.

[6] U. Endriss. 2006. Monotonic Concession Protocols for Multilateral Negotiation.

In AAMAS ’06. ACM.

[7] J. Friedman, T. Hastie, and R. Tibshirani. 2001. The elements of statistical learning.
Vol. 1. Springer series in statistics New York.

[8] K. Hindriks and D. Tykhonov. 2008. Opponent Modelling in Automated Multi-

issue Negotiation Using Bayesian Learning. In AAMAS.
[9] T. K. Ho. 1995. Random decision forests. In Proceedings of 3rd international

conference on document analysis and recognition. IEEE.

11

torrence_yuan
Sticky Note
- DeResolver seems to have some of the worst performances, yet there is no discussion about how the benefits (air pollution reduction mentioned in the abstract) anywhere in the main paper

ICCPS ’21, May 19–21, 2021, Nashville, Tennessee, USA Y. Yuan et al.

[10] C. Hou. 2004. Predicting agents tactics in automated negotiation. In

IEEE/WIC/ACM IAT ’04.
[11] Intel. 2019. Intelligent traffic management system. https://solutionsdirectory.intel.

com/solutions-directory/Intelligent_Traffic_Management_System

[12] T. Ito, H. Hattori, and M. Klein. 2007. Multi-issue Negotiation Protocol for Agents:

Exploring Nonlinear Utility Spaces.. In IJCAI.
[13] S. Ji, Y. Zheng, Z. Wang, and T. Li. 2019. A Deep Reinforcement Learning-Enabled

Dynamic Redeployment System for Mobile Ambulances. ACM IMWUT (2019).

[14] D. G Kleinbaum, K Dietz, M Gail, M. Klein, and M. Klein. 2002. Logistic regression.
[15] G. Lai, C. Li, and K. Sycara. 2006. Efficient multi-attribute negotiation with

incomplete information. Group Decision and Negotiation (2006).

[16] L. Li, Y. Lv, and F. Wang. 2016. Traffic signal timing via deep reinforcement

learning. IEEE/CAA Journal of Automatica Sinica (2016).
[17] M. Li, H. Li, and Z. Zhou. 2009. Semi-supervised document retrieval. Information

Processing & Management 45, 3 (2009), 341–355.
[18] C. Mike Liang, B. F. Karlsson, N. D. Lane, F. Zhao, J. Zhang, Z. Pan, Z. Li, and Y.

Yu. 2015. SIFT: Building an Internet of Safe Things. In IPSN ’15. ACM.

[19] R. Lin, S. Kraus, J. Wilkenfeld, and J. Barry. 2008. Negotiating with bounded

rational agents in environments with incomplete information using an automated

agent. Artificial Intelligence 172, 6-7 (2008), 823–851.
[20] R. Liu, Z. Wang, L. Garcia, and M. Srivastava. 2019. RemedioT: Remedial Actions

for Internet-of-Things Conflicts. In BuildSys ’19. ACM.

[21] Y. Lou and S. Wang. 2016. Approximate representation of the Pareto frontier

in multiparty negotiations: Decentralized methods and privacy preservation.

European Journal of Operational Research 254, 3 (2016), 968–976.

[22] M. Ma, S. M. Preum, and J. A Stankovic. 2017. Cityguard: A watchdog for safety-

aware conflict detection in smart cities. In IoTDI. ACM.

[23] M. Ma, S M. Preum, W Tarneberg, M. Ahmed, M. Ruiters, and J. Stankovic. 2016.

Detection of runtime conflicts among services in smart cities. In SMARTCOMP.
[24] M. Ma, J. A Stankovic, and L. Feng. 2018. Cityresolver: a decision support system

for conflict resolution in smart cities. In ICCPS ’18.
[25] S. Munir and J. A Stankovic. 2014. Depsys: Dependency aware integration of

cyber-physical systems for smart homes. In ICCPS ’14.
[26] J. F Nash Jr. 1950. The bargaining problem. Econometrica: Journal of the Econo-

metric Society (1950), 155–162.

[27] NYC. 2020. NYC Open Data. https://opendata.cityofnewyork.us/

[28] City of Newark. 2020. City of Newark Open Data. http://data.ci.newark.nj.us/

[29] Graz University of Technology. 2019. New traffic light system automatically
recognizes pedestrians’ intent to cross the road. Retrieved Nov 24, 2019 from https:

//phys.org/news/2019-05-traffic-automatically-pedestrians-intent-road.html

[30] R. K. Pasumarthi, S. Bruch, X. Wang, C. Li, M. Bendersky, Ma. Najork, J. Pfeifer,

N. Golbandi, R. Anil, and S. Wolf. 2019. TF-Ranking: Scalable TensorFlow Library

for Learning-to-Rank. In KDD ’19. ACM.

[31] A. Piscitello, F. Paduano, A. A Nacci, M. D Noferi, D.and Santambrogio, and D.

Sciuto. 2015. Danger-system: Exploring new ways to manage occupants safety

in smart building. In 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT).
[32] V. Robu, D. J. A. Somefun, and J. A. La Poutré. 2005. Modeling Complex Multi-

Issue Negotiations Using Utility Graphs. In AAMAS ’05.
[33] R. S Sutton and A. G Barto. [n.d.]. Reinforcement learning: An introduction.
[34] K. Sycara and D. Zeng. 1997. Benefits of learning in negotiation. In AAAI ’97.
[35] M. Szummer and E. Yilmaz. 2011. Semi-supervised learning to rank with prefer-

ence regularization. In CIKM ’11. ACM.

[36] R. M. B. S. Thais, B. R. Linnyer, and A. F. L. Antonio. 2010. How to conciliate

conflicting users’ interests for different collective, ubiquitous and context-aware

applications?. In IEEE Local Computer Network Conference. 288–291.
[37] S. Wang, T. He, D. Zhang, Y. Shu, Y. Liu, Y. Gu, C. Liu, H. Lee, and S. H. Son. 2018.

BRAVO: Improving the Rebalancing Operation in Bike Sharing with Rebalancing

Range Prediction. ACM IMWUT (2018).

[38] F. V. Webster. 1958. Traffic signal settings. Technical Report.
[39] H. Wei, N. Xu, H. Zhang, G. Zheng, X. Zang, C. Chen, W. Zhang, Y. Zhu, K. Xu,

and Z. Li. 2019. Colight: Learning network-level cooperation for traffic signal

control. In CIKM ’19.
[40] H. Wei, G. Zheng, H. Yao, and Z. Li. 2018. IntelliLight: A Reinforcement Learning

Approach for Intelligent Traffic Light Control. In KDD.
[41] M. Wiering. 2000. Multi-agent reinforcement learning for traffic light control. In

ICML’2000. 1151–1158.
[42] H. Yang, S. Tsai, K. Liu, S. Lin, and J. Gao. 2019. Patrol Scheduling Against

Adversaries with Varying Attack Durations. In AAMAS ’19.
[43] D. Zhang, Y. Li, F. Zhang, M. Lu, Y. Liu, and T. He. 2013. CoRide: Carpool Service

with a Win-Win Fare Model for Large-Scale Taxicab Networks. In SenSys ’13.

A APPENDIX
A.1 Proof of Theorem 4.1

Theorem A.1. Consider 𝑁 services in a negotiation, they ne-
gotiate to determine a configuration from the configuration space

𝐷 = {𝑇𝑚𝑖𝑛,𝑇𝑚𝑖𝑛 + 1, · · · ,𝑇𝑚𝑎𝑥 }. If all 𝑁 services use our negotiation
algorithm, and the estimation of acceptable configurations and their
ranking to any service 𝑖 is accurate, the result of our algorithm is
guaranteed to reach a Pareto-optimal agreement.

Proof. Suppose there are 𝑁 services playing a negotiation dur-

ing period 1, 2, · · · , 𝐻 . The period from 𝑁 (𝑟 − 1) + 1 to 𝑟𝑁 is called

round 𝑟 . All services take turns to propose an action in each round

until they reach an agreement. Let 𝐴𝑟
𝑖,𝑖′ be the set of acceptable

configurations of service 𝑖 ′ that is estimated by service 𝑖 in round

𝑟 . Specially, 𝐴𝑟
𝑖,𝑖

is service 𝑖’s true acceptable configuration when

𝑖 = 𝑖 ′.
According to our algorithm, at any round 𝑟 service 𝑖 first expands

its acceptable configuration 𝐴𝑟
𝑖,𝑖

with a lower utility, that is to say,

𝐴𝑟𝑖,𝑖 = 𝐴
𝑟−1
𝑖,𝑖 ∪ 𝑐𝑟𝑖 , (4)

where 𝑐𝑟
𝑖
< 𝑚𝑖𝑛{𝐴𝑟−1

𝑖,𝑖
}. Then it computes

𝐶 =

𝑁⋂
𝑖=1

𝐴𝑟𝑖,𝑖 . (5)

If𝐶 ≠ ∅, then service 𝑖 selects the candidate introducing the largest

utility from 𝐶 ∩ 𝑃𝑒 , where 𝑃𝑒 is the set of Pareto-optimal solutions

that are calculated by the estimated ranking of configurations for

other services 𝑖 ′; if 𝐶 = ∅, then 𝑐𝑟
𝑖
is service 𝑖’s proposal at round 𝑟 .

Notice that |𝐴𝑟
𝑖,𝑖
| > |𝐴𝑟−1

𝑖,𝑖
| based on (4), also we have |𝐴𝑟

𝑖, 𝑗
| >

|𝐴𝑟−1
𝑖, 𝑗

| because all services use our negotiation algorithm. Therefore,

∃𝑟∀𝑗, |𝐴𝑟
𝑖, 𝑗
| = |𝐷 |. In this case,𝐶 ≠ ∅, because ∀𝑗, 𝐴𝑟

𝑖, 𝑗
= 𝐷 . In other

words, all services must reach an agreement at round 𝑟 .

Finally, we show that the agreement is a Pareto-optimal solu-

tion. Under the assumption that both the estimation of acceptable

configurations and ranking of configurations are accurate, the pro-

posal determined by argmin𝑑∈𝐴𝑟
𝑖,𝑖
𝑈𝑖 (𝑑) is not accepted by the other

𝑁 − 1 services. The reason is 𝐶 = ∅. Only the proposal generated

by 𝑑 = argmax𝑑∈𝐶 ∩ 𝑃𝑒𝑈𝑖 (𝑑) can be an agreement, and the agreed

proposal is Pareto-optimal since it is an element of the set of Pareto-

optimal agreements according to 𝑑 ∈ 𝐶 ∩ 𝑃𝑒 . □

The convergence of reaching an agreement depends on how

much utility every service sacrifices during each negotiation pe-

riod. Under the assumption that all services using our negotiation

algorithm, it costs at most 𝑁 ⌊|𝐷 |/𝑆⌋ periods to reach an agree-

ment, since every agent reduces its lowest acceptable ranking by

one between any two consecutive proposing periods. Under our

negotiation based design, there is an incentive for services during

each period to reduce the lowest acceptable ranking for reaching

an agreement. Because if there is no agreement, the traffic light

controller may use some default configurations which introduces

much worse performance.

12

https://solutionsdirectory.intel.com/solutions-directory/Intelligent_Traffic_Management_System
https://solutionsdirectory.intel.com/solutions-directory/Intelligent_Traffic_Management_System
https://opendata.cityofnewyork.us/
http://data.ci.newark.nj.us/
https://phys.org/news/2019-05-traffic-automatically-pedestrians-intent-road.html
https://phys.org/news/2019-05-traffic-automatically-pedestrians-intent-road.html

	Abstract
	1 Introduction
	2 Conflicts Across City Services
	2.1 Motivating Example
	2.2 DeResolver Framework

	3 DeResolver Framework Design
	3.1 Formulation of DeResolver
	3.2 blackCase study

	4 Design of a Smart Service under DeResolver Framework
	4.1 Learner of Opponents
	4.2 Strategy for Making Proposals
	4.3 Acceptance Strategy
	4.4 Negotiation Agent Design
	4.5 blackAction-utility Table Computation

	5 Validation
	5.1 Methodology
	5.2 Performance of learner of opponents
	5.3 Performance of DeResolver

	6 Related Work
	7 Conclusion
	References
	A Appendix
	A.1 Proof of Theorem 4.1

