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ABSTRACT
An Implantable Cardioverter Defibrillator (ICD) is a medical de-

vice used for the detection of potentially fatal cardiac arrhythmias

and their treatment through the delivery of electrical shocks in-

tended to restore normal heart rhythm. An ICD reprogramming
attack seeks to alter the device’s parameters to induce unnecessary

therapy or prevent required therapy. In this paper, we present a

formal approach for the synthesis of ICD reprogramming attacks

that are both effective, i.e., lead to fundamental changes in the re-

quired therapy, and stealthy, i.e., are hard to detect. We focus on the

discrimination algorithm underlying Boston Scientific devices (one

of the principal ICD manufacturers) and formulate the synthesis

problem as one of multi-objective optimization. Our solution tech-

nique is based on an Optimization Modulo Theories encoding of the

problem and allows us to derive device parameters that are optimal

with respect to the effectiveness-stealthiness tradeoff. Our method

can be tailored to the patient’s current condition, and readily gen-

eralizes to new rhythms. To the best of our knowledge, our work is

the first to derive systematic ICD reprogramming attacks designed

to maximize therapy disruption while minimizing detection.
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1 INTRODUCTION
An Implantable Cardioverter Defibrillator (ICD) is a medical device

for the detection and treatment of potentially fatal arrhythmias

such as ventricular tachycardia (VT) and ventricular fibrillation

(VF). ICDs run embedded software that processes intracardiac sig-

nals, called electrograms (EGMs), to detect arrhythmias and deliver

appropriate therapy in the form of electrical shocks. ICD software

implements so-called discrimination algorithms which comprise

multiple discrimination criteria (discriminators) for the detection

and classification of arrhythmia episodes based on the analysis of

EGM features such as ventricular intervals and signal morphology.

ICD discriminators feature a number of programmable param-

eters that, if adequately configured, ensure minimal rates of ar-

rhythmia mis-classification [17]. In contrast, wrongly configured

parameters can result in unnecessary shocks (false positive classifi-
cation errors), which are painful and damage the cardiac tissue, and

even worse can prevent required therapy (false negatives), leading
to sudden cardiac death.

An ICD reprogramming attack is one that alters the device’s pa-

rameters to induce mis-classification and inappropriate or missed

therapy. Reprogramming attacks can significantly compromise pa-

tient safety, with high-profile patients being obvious targets (e.g.

former US Vice President Cheney had his pacemaker’s wireless

access disabled to prevent assassination attempts [21]). Seminal

work by Halperin et al. [9] demonstrated that ICDs can be accessed

and reprogrammed by unauthorized users using off-the-shelf soft-

ware radios. More recently, over half a million cardiac devices have

been recalled by the FDA for security risks related to wireless

communication [8], and researchers managed to gain control of a

pacemaker/ICD by exploiting vulnerabilities in the device’s remote

monitoring infrastructure [22]. These incidents confirm that vul-

nerabilities in implantable cardiac devices exist, and a thorough

investigation of cyber-attacks on ICDs is needed to improve device

safety and security.

In this paper, we present a formal approach for the automated

synthesis of ICD reprogramming attacks that are both effective,
i.e., lead to fundamental changes in the required therapy, and

stealthy, i.e., involve minimal changes to the nominal ICD param-

eters. Stealthy attacks are therefore difficult to detect and even if

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Overview of our method for synthesis of stealthy repro-
gramming attacks on ICDs.

detected, would most likely be attributed to a clinician’s error in

configuring the device.We follow amodel-based approach, as the at-

tacks are not evaluated on the actual hardware but on a model of the

ICD algorithm. We focus on the Rhythm ID algorithm implemented

in Boston Scientific ICDs (one of the principal ICD manufactur-

ers), which was compiled from device manuals and the medical

literature [6, 28]. Slight variations on the discriminators used and

computations performed by Rhythm ID are also found in the algo-

rithms of the three other major ICD manufacturers. Thus, focusing

on Rhythm ID does not limit the applicability of our approach.

Our method, illustrated in Figure 1, synthesizes device parame-

ters that are optimal with respect to the effectiveness-stealthiness

tradeoff (i.e., lie along the corresponding Pareto front).We formulate

this synthesis problem as one of multi-objective optimization, and

solve it using optimization modulo theories (OMT) techniques [5],

an extension of SMT for finding models that optimize given objec-

tives. OMT is uniquely suited to solve this problem, because the

problem is combinatorial in nature (parameters can be configured

from a finite set of values), and is also constrained by the behavior

of the ICD algorithm, which can be adequately encoded as SMT

constraints. The synthesized reprogramming attacks yield optimal

effectiveness and stealthiness with respect to a set of training EGM
signals. We employ the method of [12] to generate synthetic EGMs

with prescribed arrhythmia. This allows the attacker to synthesize

malicious parameters tailored to the victim’s cardiac condition.

Why optimized attacks? The objective of this paper is to show
that ICDs are vulnerable to stealthy reprogramming attacks. While

it is already known that incorrect parameter values can lead to in-

correct therapy, our work formally establishes to what degree these
parameters need to be manipulated to produce injurious incorrect
therapy, and device designers should be made aware of these results.

We remark that our approach does not provide an exhaustive recipe

for ICD attacks, as the actual algorithms on-board devices usually

contain more decision branches than we have chosen to model, and

indeed more than is described in the open literature. See Section 3

for further details about real-life attacks and countermeasures.

In summary, our main contributions are the following.

• We introduce, to the best of our knowledge, the first method

for deriving systematic reprogramming attacks on cardiac

devices designed to maximize therapy disruption while min-

imizing the likelihood of detection.

• We formulate the problem of synthesizing malicious param-

eters as a multi-objective optimization problem.

• We present a method, based on OMT techniques and an

efficient SMT encoding of the ICD algorithm, for precisely

solving this optimization problem.

• We evaluate our approach by synthesizing attacks for 19

different arrhythmias (i.e., condition-specific attacks), as well
as more generic attacks (condition-agnostic) that are suit-

able when the attacker has little knowledge of the victim’s

condition. Our results demonstrate that some arrhythmias

are particularly vulnerable, as only minor changes to the

detection thresholds are sufficient to prevent the required

therapy.

• We show that our approach is suitable for real-world attacks

as it readily generalizes to unseen signals (i.e., test EGMs),
representing the unknown EGMs of the patient.

2 BACKGROUND
ICDs are battery-powered devices implanted under the pectoral

muscles in the chest and connected to the cardiac muscle through

one (in single-chamber ICDs) or two (dual-chamber) leads that sense

the electrical activity of the heart and deliver electrical defibrilla-

tion shocks when dangerous arrhythmia is detected (see Figure 2).

Shocks are delivered through shocking coils located along the ven-

tricular lead. ICDs also support anti-tachycardia pacing and cardiac

pacing functions [19].

Sensed electrical signals are called intracardiac electrograms
(EGMs), which in a dual-chamber ICD are of three types: atrial
and ventricular EGMs, describing the local, near-field electrical ac-

tivity in the right atrium and ventricle, respectively; and the shock
EGM, a far-field signal that gives a global view of the electrical

activity, measured from the shock coil to the ICD can.

ICD discrimination algorithms are responsible for detecting

tachycardia episodes and initiating adequate therapy based on the

sensed EGMs. These algorithms are embedded in the device and em-

ploy signal-processing methods such as peak detection to identify

cardiac events; viz. electrical activation of the atria and ventricles

(heart beats). Therapy delivery depends on a number of discrimi-

nation criteria to distinguish between potentially fatal Ventricular

Tachy-arrhythmias (VT) and non-fatal Supra-Ventricular Tachy-

arrhythmias (SVTs).

Since an ICD only has three signals, there are a limited number of

features that can be used as discriminators. Atrial rate, ventricular

rate, and far-field ventricular morphology are the core features that

all major ICD manufacturers employ [25]. To generalize to a large

variety of physiological conditions and to avoid “over-fitting” the

algorithm to known conditions, device manufacturers have adopted

simple discriminators and decision tree-like to distinguish between

SVT and VT.

2.1 ICD Discrimination Algorithm
Figure 3 illustrates the Rhythm ID algorithm implemented in Boston

Scientific (BSc) ICDs. The algorithm consists of a number of dis-

criminators arranged in a decision tree-like structure, where each

discriminator depends on one or more programmable parameters.

Leaves of the tree determine whether or not therapy is delivered

during the current cardiac cycle.

The parameters of the algorithm are given in Table 1. We con-

sider the description of the Rhythm ID algorithm by Jiang et al. [12],



Synthesizing Stealthy Reprogramming Attacks on Cardiac Devices Conference’17, July 2017, Washington, DC, USA

Figure 2: Left: illustration of a dual-chamber ICD. Right: sensed
atrial, ventricular and shock electrograms. Event markers label
sensed impulses (AS: atrial, VT: ventricular tachycardia) and corre-
sponding intervals in milliseconds.
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Figure 3:Discrimination tree of the Boston ScientificRhythm ID al-
gorithm.White nodes denote discrimination criteria. Any sequence
of decisions eventually leads to either delivering (red) or not deliv-
ering (green) the therapy.

where the authors provided a MATLAB implementation of the algo-

rithm based on the manufacturer’s manuals and the medical litera-

ture [6, 28]. This implementation faithfully captures the behavior

of the Rhythm ID algorithm, as it was validated by demonstrating

conformance to a BSc commercial ICD device on 11 test cases. The

algorithm and its discriminators, described next, are executed at

each ventricular event, which marks the end of the corresponding

cardiac cycle.

D1, 8/10 faster that VF: this discriminator is true iff at least eight

out of the last ten ventricular intervals (i.e., the time between two

consecutive ventricular beats) are shorter than the programmable

threshold VF
th
.D1 detects the onset of arrhythmia (VF in this case),

as a high ventricular rate is a strong indication of VF. If D1 is

true, therapy is delivered only if the VF episode persists, which is

checked by discriminator D2.
D2, VFduration: when in VF duration mode, the algorithm checks

that at least six out of the last ten ventricular intervals are below

VF
th
, and that the last interval is below VF

th
. If this criterion is not

met, the algorithm exits the VF duration mode as the episode did

Name Description Nominal (Programmable)

VF
th
(BPM) VF detection threshold 200 (110 : 5 : 210, 220 : 10 : 250)

VT
th
(BPM) VT detection threshold 160 (90 : 5 : 210, 220)

AFib
th
(BPM) AFib detection threshold 170 (100 : 10 : 300)

VFdur (s) Sustained VF duration 1.0 (1 : 0.5 : 5, 6 : 1 : 15)
VTdur (s) Sustained VT duration 2.5 (1 : 0.5 : 5, 6 : 1 : 15, 20 : 5 : 30)
NSRcor

th
Rhythm Match score 0.94 (0.7 : 0.01 : 0.96)

stb (ms
2
) Stability score 20 (6 : 2 : 32, 35 : 5 : 60, 70 : 10 : 120)

Table 1: Parameters of the Rhythm ID algorithm, including nomi-
nal and programmable values [6]. AFib: atrial fibrillation. n : k : m
denotes the sequence n, n + k, n + 2k, . . . ,m. Thresholds are pro-
grammed in BPM (beats per minute) but the algorithm employs the
corresponding time duration.

not persist, and thus requires no therapy. If this criterion stays true

for the entire VF duration (parameter VFdur), then therapy is given.

D3, 8/10 faster that VT: this discriminator is analogous to D1,
but uses the VT threshold VT

th
.

D4, VTduration: this discriminator is analogous to D2, but uses
the VT threshold VT

th
and the duration parameter VTdur. The

difference with D2 is that in this case, therapy is not given immedi-

ately at the end of the duration timer; rather, the algorithm ensures

that the episode is not mistaken for SVT, as illustrated below.

D5, V rate > A rate: it is true iff over the last ten cardiac cycles, the

average ventricular rate is at least 10 BPM faster the average atrial

rate. If true, D5 indicates that tachycardia originated in the ventri-

cles and thus must be treated. Otherwise, the algorithm inspects

D6 and D7.
D6, NSR correlation: this criterion, also called Rhythm Match,
compares the morphology of the far-field shock EGM with that

of a pre-computed normal sinus rhythm (NSR) template. The two

signals being similar suggests that the arrhythmia originated in the

atria, indicating SVT (no therapy). In particular, for at least three

out of the last ten cardiac cycles, the two signals should have a so-

called feature correlation coefficient (FCC) greater than parameter

NSRcor
th
. The FCC is computed by looking at the voltages of the

two signals at prescribed time-points. See [6] for more details on

the computation of the FCC.

D7, AFib rate and stable Vrate: if D6 does not hold, D7 makes

the final decision on the therapy. The device diagnoses SVT if at

least six out of the last ten atrial intervals are shorter than threshold

AFib
th

(suggesting that the tachycardia originated in the atria) and

the ventricular rhythm is stable, i.e., the last ten ventricular intervals

have variance below parameter stb. Otherwise, VT is diagnosed

and therapy is delivered.

We reiterate that discriminators D1–D7, or slight variations
thereof, are found in other ICD manufacturers’ algorithms. Thus,

our method apply to other devices as well.

2.2 Generation of Synthetic EGMs
Discrimination algorithms utilize two elements of EGMs for feature

extraction: timing of atrial and ventricular events, and morphology

of far-field ventricular events. Jiang et al. [12] have developed a

heart model that can generate realistic synthetic EGMs that can be

used to evaluate the safety and efficacy of discrimination algorithms.

The timing of heart events is generated by a timed-automata model
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of the electrical conduction system of the heart [13], which allows

simulating cardiac dynamics under different parameter settings.

The morphology of far-field ventricular events is sampled from a

large database of real patient EGM records [1]. EGM signals are

synthesized by overlaying the sampled EGMmorphology templates

on the sequence of cardiac events generated by the timed model.

Finally, different arrhythmias are reproduced by running the

model on different parameters. For example, a generic SVT arrhyth-

mia has ventricular intervals in the range of [280, 530] ms; then,

EGMs for a specific SVT arrhythmia are synthesized by uniformly

sampling parameters from a sub-interval of this range.

Jiang et al. generated synthetic EGMs for the 19 arrhythmias of

the RIGHT clinical trial [3], a trial designed to evaluate the BSc

discrimination algorithm. The validity and faithfulness of these

EGMs were validated by electrophysiologists. In this paper, we

therefore use the same synthetic EGM dataset.

3 ICD ATTACK MODEL
Wepresent amodel-based approach to synthesizing reprogramming

attacks on ICDs, where the attacks are not evaluated on the actual

physical device but on a model of the device. The BSc algorithm

model that we consider faithfully reproduces the behavior of the

real device in terms of arrhythmia discrimination and therapy, as

discussed in Section 2. In an ICD reprogramming attack, the attacker

manipulates the parameter values of the victim’s ICD to cause harm

while going undetected. These two objectives are respectively called

effectiveness and stealthiness, and are formalized in Section 4.

An attack is effective when it compromises the decision of the

discrimination algorithm to introduce false negatives (FN), i.e., pre-

vent a required therapy during VF/VT, or false positives (FP), i.e.,

introduce inappropriate therapy during SVT. These are called FN
attacks and FP attacks, respectively. Our attack model is concerned

with inducing at least one compromised decision, which suffices

to cause adverse or even fatal effects: depriving a patient of treat-

ment for VF can lead to sudden cardiac death, while inappropriate

shocks can result in injurious cardiac tissue remodeling and cause

significant psychological distress [12]. Note that the unaltered pa-

rameters can themselves have a low rate of inappropriate or missed

therapy [23], which is, however, negligible compared to that of

malicious parameters.

In our attackmodel, stealthiness depends on the clinician’s ability

to detect the attack. We are therefore interested in finding malicious

parameters that exhibit small deviations from the clinical settings of

the victim’s ICD, changes that are difficult for the clinician to notice

or that can be mistaken for human error. In fact, deviations from

the default settings are the norm, as ICD parameters are adjusted

by the clinician on a regular basis during follow-up visits. The

victim has no means to monitor their ICD parameters outside of

clinic, and upon experiencing unusual activity by the ICD, s/he will

likely seek medical aid rather than suspect a cyber-attack. Hence,

the in-clinic setting is of primary interest. Moreover, the victim will

likely be unable detect the attacker on the spot, because an ICD

attack does not typically induce adverse outcomes immediately

but with some delay, depending on the frequency that the victim

experiences arrhythmia and the probability that the reprogrammed

parameters mis-classify that arrhythmia.

Reprogramming attacks are synthesized in an offline training
phase, which allows the attacker to obtain malicious parameters

with optimal effectiveness and stealthiness with respect to a set

of training EGM signals. Such parameters are derived by solving

a multi-objective optimization problem over a set of logical con-

straints describing the behavior of the discrimination algorithm

over the training signals. We solve the problem using SMT-based

techniques that are guaranteed to find optimal parameter values

along the effectiveness-stealthiness Pareto front (see Sections 4

and 5). This is a computationally intensive task, better performed

offline.

To evaluate how the attack generalizes with previously unseen

signals, which mimic the unknown EGM of the victim, we validate
the parameters synthesized in the training phase using a disjoint
test dataset.

We assume that the attacker has no knowledge of the victim’s

ICD parameters, and thus their best strategy is to train the attack

by assuming that the default parameters correspond to the nominal

values (Table 1). Therefore, the stealthiness computed under nomi-

nal parameters might deviate from that under the actual victim’s

parameters. This discrepancy, however, is limited by the fact that

condition- or patient-specific parameters tend to be close to the

nominal ones, which are generally considered safe [17].

Due to limited availability of real patient signals, we choose to

work with synthetic EGMs, even though our approach supports

both. The EGM generation method of Section 2.2 gives the attacker

a crucial advantage. If the attacker knows the victim’s specific

arrhythmia, then they can generate a training dataset of synthetic

signals for that arrhythmia. We call such attacks condition-specific.
We will also consider more generic datasets that include signals for

different arrhythmias (condition-agnostic attacks), suitable when
the attacker has little knowledge of the victim’s condition. Our

method, however, supports any choice of training EGMs, e.g., EGMs

reproducing a desired level of inter-patient variability.

Open-loop (i.e., fixed) EGM signals are adequate for our purposes

because successful attacks do not affect the signals in a significant

way: when the attack prevents a required shock for an EGM with

arrhythmia, the arrhythmia persists and the EGM is unaffected;

when it introduces inappropriate shocks during an already normal

rhythm, the EGM is also unaffected, as shocks restore the electrical

activity of the heart to normal.

Real-world attacks.We discuss additional assumptions that would

make our model-based method suitable to real-world attacks using

radio signals via software-defined radios. First, the attacker must

know the ICD model of the victim, so that it can select the appropri-

ate discrimination algorithm to use in the training phase. The ICD

model can be revealed by sending discovery signals to the device

(as shown in [9]), or from the victim’s medical records. To change

the parameter settings, the attacker also must know the commu-

nication protocol of the ICD, which can be reverse-engineered as

also shown in [9]. In our work, we focus on a single discrimination

algorithm. Due, however, to the universality of discriminators, our

approach can be easily adapted to other algorithms.

Second, the radio antenna transmitting the attack signals must be

physically close to the victim. To do so, the attacker could approach
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the victim (e.g., in a crowded space) or hide the transmitter and

leave it running in proximity of the victim.

Countermeasures. A possible countermeasure is to store a copy of

the physician-programmed values both in a hospital database and in

a secure memory location on the device. The currently programmed

values are regularly checked against the stored, golden values. Any

discrepancy leads to an alarm. A more general countermeasure

is to secure device access through an authentication token (smart

card, NFC device, etc.) that shares a secret key with the device [27].

Finally, a simple attack detection method would be to alert the

patient (e.g., with a beep) whenever a communication happens

with the device [9].

4 ICD ATTACK SYNTHESIS PROBLEM
We formalize the problem of synthesizing ICD reprogramming

attacks as a multi-objective optimization problem that seeks to find

ICD parameters optimizing two contrasting objectives: effectiveness,
in terms of maximizing therapy disruption; and stealthiness, in
terms of making the attack difficult to detect.

For a setX , letX ∗
denote the Kleene closure ofX . For a sequence

x ∈ X ∗
, |x| denotes its length and, for k = 0, . . . , |σ | − 1, x[k] ∈

X denotes its k + 1-st element. Let Sig ⊆ Rm∗
be the set of m-

dimensional, finite-length, discrete-time cardiac signals. For signal
s ∈ Sig, s[k] gives the values of the atrial, ventricular and shock

EGMs (m = 3) at the k + 1-st sample of the signal.

ICD parameters are tuples p = (p1, . . . ,pn ), where pi ∈ Pi is the
value of the i-th parameter, and Pi is its finite domain. For each

parameter, there is a finite set of programmable values; see Table 1.

We denote with P =
>n

i=1 Pi the set of possible parameterizations.

A discrimination algorithm is a function d : P −→ (Sig −→ B∗),
where B∗ is the set of Boolean sequences. For parameters p ∈ P
and signal s ∈ Sig, d(p)(s) is a Boolean-valued sequence, called a

therapy signal, with as many elements as the number of cardiac

cycles in s. For k < |d(p)(s)|, d(p)(s)[k] is true if the ICD decides

to deliver therapy at the k-th cycle, and is false otherwise. Recall

from Section 2 that the discrimination algorithm is only invoked at

each ventricular event (corresponding to the end of a cardiac cycle),

and thus intermediate time points between two ventricular events

are not relevant. Note that we do not consider ICD parameters that

affect the detection of ventricular events, meaning that the length

of a therapy signal d(p)(s) is constant for any p ∈ P.

Effectiveness. Let p∗ = (p∗
1
, . . . ,p∗n ) ∈ P be the default parameters

of ICD algorithm d , and p = (p1, . . . ,pn ) ∈ P be particular attack
parameters. The effectiveness of p is evaluated over a (training or

test) dataset of signals S ⊆ Sig, and is denoted by fe (p, S).
Per our description of the attack model (Section 3), we define

effectiveness as the proportion of signals in S where an FN attack

(preventing required therapy) or an FP attack (delivering inappro-

priate therapy) occurs:

fe (p, S) =
1

|S |
·
∑
s∈S

I
(
Rth (d, p, s) , Rth (d, p

∗, s)
)
, (1)

where I is the indicator function andRth (d, p, s) is the therapy reach-
ability value, describing whether or not therapy is administered at

any point in signal s for parameters p:

Rth (d, p, s) =
|d (p)(s) |−1∨

k=0

d(p)(s)[k]. (2)

Therapy reachability is motivated by the fact that we employ

synthetic EGMs reflecting a number of arrhythmogenic (VF/VT-

like) and non-arrhythmogenic (SVT-like) situations, with the former

requiring therapy and the latter requiring that such therapy not

be delivered. We deem an attack successful on an EGM if the EGM

is mis-classified in this manner. In practice, FN attacks during VF

or VT can be fatal (these arrhythmias can lead to sudden cardiac

death [12]) and thus, are more dangerous than FP attacks during

SVT. Nevertheless, in our definition of effectiveness, we do not

need to assign different weights to these two attacks because the

datasets that we consider contain either VT/VF-like EGMs (subject

to FN attacks only) or SVT-like EGMs (subject to FP attacks only).

Stealthiness. An attack is considered stealthy when the deviation

between the reprogrammed p and the default parameters p∗ is small.

To capture this deviation, we introduce a measure of parameter
distance to minimize for optimal stealthiness. Since ICD parameters

can be only programmed to a finite set of values, we quantify the

distance between two parameters as the number of programmable

values separating them.

For i = 1, . . . ,n, let Pi =
{
pi
1
, . . . ,pini

}
be the programmable

values for the i-th ICD parameters. W.l.o.g. assume that the values

pi
1
, . . . ,pini are ordered. Rewrite the default parameters as p∗ =(
p1I ∗

1

, . . . ,pnI ∗n

)
and the attack parameters as p =

(
p1I1
, . . . ,pnIn

)
, i.e.,

I∗i is the index of the element of Pi corresponding to the value of
the i-th parameter in p∗. Ii is defined in an analogous way for p.
Then, the distance between p and p∗ is defined as:

fs (p) = max

i=1, ...,n

��Ii − I∗i
�� . (3)

We explain (3) with an example. Suppose that the i-th parameter

is VTdur from Table 1, which can be programmed to any value

in the set Pi = {1, 1.5, . . . , 5, 6, . . . , 15, 20, . . . , 30}. We set p∗ us-
ing the nominal value of 2.5 for VTdur, which corresponds to the

4-th element of Pi . Hence, I
∗
i = 4. Consider attack parameters p

where VTdur is set to 4.5, i.e., the 8-th value of Pi (Ii = 8). The

distance relative to VTdur is the number of programmable values

separating the default setting (2.5) and the attack (4.5), which is

given by

��Ii − I∗i
�� = |8 − 4| = 4. Indeed, the two are separated by

four programmable values (3, 3.5, 4, 4.5). The overall distance is the

maximum separation over all ICD parameters.

This notion of distance assumes that parameters admit a linear

order, which is the case for all numeric parameters of the BSc ICD

algorithm. For categorical parameters, one could either assign the

same distance to all categories different from the nominal one, or

repeat the synthesis for each category.

Optimal stealthy attacks. We formulate the synthesis of stealthy

reprogramming attacks as a multi-objective optimization problem

where we seek to optimize effectiveness and stealthiness (maximize

fe and minimize fs ) of the parameters w.r.t. a set of training EGMs.

Multi-objective optimization allows one to derive the optimal trade-

off between multiple, possibly contrasting objectives, implying that

we do not need to assume any weight or priority ordering for the
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objectives. The result of this analysis is a so-called Pareto front, i.e.,
a set of non-dominated points in the objective space of possible

effectiveness and parameter distance values.

Problem 1 (Reprogramming attack synthesis). For effective-
ness objective fe and distance objective fs , training set of signals
S ⊆ Sig, find the set P of Pareto-optimal parameters, i.e.:

P = {p ∈ P | ∄p′ ∈ P. (fe (p′, S) > fe (p, S) ∧ fs (p′) ≤ fs (p)) ∨

(fe (p′, S) ≥ fe (p, S) ∧ fs (p′) < fs (p))}. (4)

Consider for instance two parameters p1 and p2, such that for

some S , fe (p1, S) = 0.5, fe (p2, S) = 0.7, fs (p1) = 5, and fs (p2) =
5. p2 has better effectiveness than p1 and same distance, so p2
dominates p1, meaning that p1 cannot be in the Pareto-optimal

front. p2 is in the Pareto-optimal front if there are no parameters

that dominate it.

To quantify how well the attacks generalize to unseen data, we

introduce a validation score defined as the average deviation of the

attack effectiveness between training and test data.

Given a training set S , a set of Pareto-optimal parameters P
with respect to S , and a test set S ′, we define the validation score

as:

∑
p∈P(fe (p, S ′) − fe (p, S))/|P|. Positive values indicate that the

parameters P have better performance with unseen data than with

training data, whereas negative values imply the opposite. Note

that the validation score need not consider stealthiness because

this is independent of the signals.

5 OMT ENCODING
In this section, we present a solutionmethod for the reprogramming

attack synthesis problem (Problem 1). We formalize the behavior

of the BSc discrimination algorithm in the framework of Satisfiabil-

ity Modulo Theories (SMT) [2], within which the ICD algorithm

is described as a set of first-order formulas over some (decidable)

background theory. Parameters are represented as uninterpreted

constants in the SMT encoding, and parameter synthesis corre-

sponds to finding a satisfiable assignment to those constants, i.e., a

so-called model. In particular, we formulate Problem 1 as an Op-

timization Modulo Theories (OMT) problem, i.e., an extension of

SMT for finding models that optimize given objectives [5].

The synthesis of optimal reprogramming attacks is difficult, as it

entails solving a combinatorial multi-objective optimization prob-

lem (non-continuous, non-convex) constrained by the behavior of

the discrimination algorithm, which cannot be captured by simple

(in)equality constraints. Therefore, classical optimization methods

such as linear or convex programming are not suitable, while non-

linear optimization techniques such as genetic algorithms would

provide only sub-optimal solutions. In contrast, OMT is uniquely

suited to solve this problem, as the ICD algorithm can be adequately

encoded as SMT constraints and the parameters found by OMT are

guaranteed to be optimal.

Since we are interested in analyzing the behavior of the algo-

rithm offline over a fixed set of EGM signals, we can pre-compute

for each signal the non-linear operations underlying some of the

discriminators, such as the Rhythm Match score. This allows us

to encode the problem over the decidable theory of quantifier-free

linear integer real arithmetic (SMT QF_LIRA). Importantly, we

pre-compute only the operations that are not affected by the ICD

parameters, meaning that our encoding accounts for all possible

behaviors induced by different parametrizations.

W.l.o.g. assume that the training dataset S is indexed. The behav-

ior of the algorithm for the j-th signal is described by a sequence

of symbolic states sj,0, . . . sj,Nj , one for each cardiac cycle, where

Nj is the number of cycles in the j-th signal. The evolution of the

discrimination algorithm over the training signals is characterized

by the following formula (inspired by bounded model checking [4]):

paramRanges ∧
|S |∧
j=1

©­«Init(sj,0) ∧
Nj−1∧
k=0

T (k, sj,k , sj,k+1)
ª®¬ (5)

where paramRanges is a predicate describing the programmable val-

ues of the ICD parameters (see Table 1); Init(sj,0) is the predicate for
constraining the initial state of the algorithm, and T (k, sj,k , sj,k+1)
is the transition relation determining from the current state and

cardiac cycle, the admissible states of the algorithm at the next

cycle. In our case, T is deterministic, i.e., for fixed sj,k and k , there
exists only one state sj,k+1 such that T (k, sj,k , sj,k+1) holds. The
transition relation describes the behavior of the discrimination al-

gorithm presented in Section 2, see [19] for its full SMT QF_LIRA

encoding. In (5), states sj,k are implicitly existentially quantified.

In the BSc algorithm, the state sj,k for the j-th signal and k-th
cardiac cycle is represented by

sj,k
def
= (VFdj,k,VTdj,k, tVFj,k, tVTj,k) ∈ B × B × Z≥ × Z≥,

where VFdj,k and VTdj,k tell whether or not the algorithm is, respec-

tively, in the VF duration and VT duration mode, with tVFj,k, tVTj,k
being the clocks that keep track of time spent in the respective

modes. The clocks are digital (∈ Z≥) and measure the time in mil-

liseconds.

For any signal j , the initial state of the algorithm is given by the

following Init predicate

Init(sj,0) = ¬VFdj,k ∧ ¬VTdj,k ∧ tVFj,k = 0 ∧ tVTj,k = 0,

indicating that the algorithm is in neither duration mode and that

the clocks are set to zeros.

The value of the therapy signal is not part of the state but is

encoded by the state predicate Thj,k (see [19] for its SMT encoding),

describing whether or not therapy is given at the k-th cycle in the

j-th signal. Thus, for signal sj and fixed parameters p, Thj,k is a

symbolic representation of d(p)(sj )[k].
An example path of the BSc algorithm encoding is given below.

s
k
−→ s ′ denotes a transition between states s and s ′ at the k-th

cardiac cycle, i.e., such that T (k, s, s ′) holds.

. . . (⊥,⊥, 0, 0)
13

−−→ (⊥,⊤, 0, 0)
14

−−→ (⊥,⊤, 0, 309) . . .

25

−−→ (⊥,⊤, 0, 2317)
26

−−→ (⊥,⊥, 0, 0)

The transition at k = 13 marks the start of VT duration (VTd passes

from ⊥ to ⊤). The algorithm stays in VT duration for 13 more

cardiac cycles during which the episode persists, until it reaches

the end of the timer: at the start of the 26-th cycle the VT clock

evaluates to tVF = 2317, but at the end of the cycle, the clock would
exceed the VT duration parameter which, in this example, is set

to the nominal value VTdur = 2500 milliseconds.
1
At this point,

1
To have a concrete path, we fixed an interpretation for the ICD parameters.
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it delivers therapy and resets the VT clock, going back to state

(⊥,⊥, 0, 0).

Effectiveness and stealthiness encoding. We show how to encode

effectiveness maximization as a MaxSMT problem. For each signal

j, we define the following soft constraint:

effectivej =
©­«Rth∗j = ¬

Nj−1∨
k=0

Thj,k
ª®¬ , (6)

where Rth∗j is the therapy reachability value (telling whether or

not therapy is administered at any point) for signal j and default

parameters. Rth∗j can be pre-computed for efficiency.

∨Nj−1

k=0 Thk
is the therapy reachability for the attack parameters, and thus,

effectivej is true if the attack disrupts the default therapy. Note

that maximizing the effectiveness fe defined in (1) is equivalent to

maximizing the number of effectivej constraints satisfied. Hence
the MaxSMT formulation.

Parameter distance is encoded as an uninterpreted integer con-

stant to minimize, dist. Recall that we measure distance between

two parameters as the number of programmable values separating

them, and that in BSc ICDs, any parameter has a finite number

of numeric programmable values. It follows that dist has a finite
domain, i.e. dist ∈ {0, 1, . . . , distmax}.

2

We encode dist in an implicit way, that is, we do not add con-

straints for (3) but we restrict the parameter domains conditioned

on the distance value as follows:

distmax∧
s=0

dist ≤ s ⇒

( n∧
i=1

piL ≤ Pi ≤ piU

)
, (7)

where Pi is the SMT encoding of the i-th parameter,L = max

{
I∗i − s, 1

}
,

and U = min

{
I∗i + s,ni

}
. In other words, piL is the s-th closest left

neighbor of Pi ’s default value, piU is its s-th closest right neighbor.

Therefore, piL ≤ Pi ≤ piU restricts the domain of Pi to values with

distance at most s , from which the correctness of (7) follows. Below

we show part of the concrete instantiation of (7) relative to VTdur:

(dist ≤ 0 ⇒ (. . . ∧ 2500 ≤ VTdur ≤ 2500 ∧ . . .)) ∧

(dist ≤ 1 ⇒ (. . . ∧ 2000 ≤ VTdur ≤ 3000 ∧ . . .)) ∧

(dist ≤ 2 ⇒ (. . . ∧ 1500 ≤ VTdur ≤ 3500 ∧ . . .)) ∧ . . .

Synthesis of Pareto-optimal attacks. The OMT solver returns the set

of Pareto-optimal objective values, i.e., the set of all (s, e) pairs such
that s = fs (p) and e = fe (p, S) for some Pareto-optimal parameter

p ∈ P w.r.t. training set S . For each (s, e), the solver computes a

witness p′ yielding that Pareto-optimal objective value. The syn-

thesized parameters is the set of all such p′. This implies that we

synthesize a subset of P since the witness might not be unique, but

do not exclude any (s, e) in the space of Pareto-optimal objectives.

6 RESULTS AND DISCUSSION
For the synthesis of condition-specific attacks, we employ synthetic

EGMs for 19 different arrhythmias, generated as per Section 2.2,

and apply our method to synthesize Pareto-optimal parameters

using a training set of 100 signals for each arrhythmia. We validate

2distmax = maxi=1, . . .,n max

{
ni − I ∗i , I

∗
i − 1

}
, where ni is the number of pro-

grammable values for the i-th parameter and I ∗i is the index of its default value.

Arrhythmia Effectiveness Distance |P | V. score Time |σ |

1 SVT 0.338 [0.02,0.87] 15.5 [13,18] 6 -0.0217 776 57.59

2 SVT 0.397 [0.04,0.92] 15.5 [13,18] 6 -0.0433 459 58.19

3 VT 0.497 [0.01,1.00] 6.583 [1,13] 12 -0.0033 4776 90.48

4 VT 0.561 [0.01,1.00] 9.583 [4,16] 12 0.0025 8208 84.64

5 SVT 0.505 [0.01,1.00] 9.154 [1,17] 13 -0.0523 1894 64.3

6 SVT 0.298 [0.03,0.55] 10 [4,18] 9 0.02 455 61.03

7 VT 0.504 [0.01,1.00] 9.357 [2,16] 14 -0.0593 5270 84.36

8 SVT 0.170 [0.01,0.48] 9.5 [7,12] 6 -0.05 460 48.64

9 SVT 0 [0,0] 0 [0,0] 1 0 279 47.72

10 VT 0.565 [0.01,1.00] 7.091 [2,13] 11 -0.0518 4739 89.34

11 SVT 0.033 [0.01,0.06] 11 [10,12] 3 -0.0267 343 45.87

12 SVT 0.326 [0.01,0.75] 11.385 [3,18] 13 -0.0077 876 59.39

13 SVT 0.084 [0.01,0.20] 16 [14,18] 5 -0.036 363 50.38

14 SVT 0.067 [0.01,0.16] 15.333 [12,18] 6 -0.01 539 52.01

15 SVT 0.498 [0.01,0.92] 13.5 [11,16] 6 0.0083 374 51.23

16 VT 0.468 [0.02,0.99] 6 [1,11] 11 -0.0064 4419 89.06

17 VT 0.490 [0.05,1.00] 10.6 [6,16] 10 -0.004 2699 84.82

18 VT 0.517 [0.04,1.00] 10.7 [6,16] 10 -0.009 2489 84.45

19 VT 0.506 [0.04,1.00] 10.6 [6,16] 10 -0.02 2812 84.87

Table 2: Statistics for Pareto-optimal condition-specific attacks. Ef-
fectiveness and parameter distance are in the form µ[m, M ] (mean
µ , minimumm, maximum M objective function value for all solu-
tions). |P | is the number of Pareto-optimal solutions. V. score is the
validation score. Time is the runtime in seconds. |σ | is the average
length of the training signals.

the attacks with test sets of 50 signals per arrhythmia (disjoint from

the training sets). Experiments suggested that 100 training signals

provide a sufficiently complete representation of the signal space, as

the performance with unseen test signals stays relatively constant

for any training set size larger than 40. All EGMs have a duration

of 30 seconds, but their lengths – given by the number of cardiac

cycles – vary depending on the ventricular interval duration.

We classify these 19 arrhythmias into two categories, VT and

SVT, depending on whether or not the corresponding signals re-

quire ICD therapy under nominal parameters. In particular, we have

8 VT arrhythmias (subject to FN attacks) and 11 SVT arrhythmias

(subject to FP attacks).

We also synthesize condition-agnostic attacks, suitable when

the attacker has little knowledge of the victim’s arrhythmia. We

consider two attacks for generic VT and SVT arrhythmias, using

training sets of 200 EGMs randomly sampled among the 8 VT-like

arrhythmias and the 11 SVT arrhythmias, respectively. We validate

the two attacks with disjoint test sets of 100 signals.

The method for synthetic EGMs was implemented in MATLAB.

For parameter synthesis, we used the z3 SMT solver [5].

Condition-specific attacks. Table 2 provides statistics on the synthe-

sized Pareto-optimal attacks. Figure 4 shows the Pareto-optimal

fronts for a selection of representative arrhythmias (see [19] for the

full set of plots and synthesized parameters).

The synthesized attacks attain validation scores that are either

positive or very close to zero, indicating that the attacks generalize

well with unseen data and, thus, would have comparable effective-

ness on the unknown EGM of the victim.

As visible in Table 2, our method can derive effective FN attacks

for all VT arrhythmias, since the corresponding Pareto fronts al-

ways contain a parametrization able to disrupt the therapy of all

training signals (effectiveness 1), with the exception of arrhythmia

16 where the maximum effectiveness is 0.99. Not all attacks on VT
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(a) Cond. 2 (SVT)
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(b) Cond. 5 (SVT)
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(c) Cond. 10 (VT)
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(d) Cond. 11 (SVT)
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(e) Cond. 17 (VT)

Figure 4: Pareto fronts for a selection of condition-specific reprogramming attacks (see [19] for the full set of arrhythmias). Blue dots: Pareto
front obtained with training signals. Green crosses: effectiveness of the synthesized parameters on the test signals.

arrhythmias are, however, comparably stealthy (see Figure 4). For

instance, for arrhythmia 10 a parameter distance of 7 ensures that

the attack is effective with half of the training signals, while for

arrhythmia 17, the same effectiveness level is obtained only at a

distance of 11 from the nominal parameters (worse stealthiness).

In contrast, FP attacks on SVT arrhythmias are not all equally

successful. For arrhythmia 5 we can find parameters with 100%

effectiveness as well as stealthy attacks that e.g. are able to affect

almost 40% of the signals with a distance of only 5. For arrhythmias

2 and 15 we obtain parameters with nearly 100% effectiveness but

with poor stealthiness (the minimal distance of a Pareto-optimal

attack is 13 and 11, respectively). Some EGMs turned out to be

difficult to attack: for arrhythmia 11 the strongest attack affects

only 6% of the signals and, for arrhythmia 9, no Pareto-optimal

attacks exist but the trivial one that leaves the nominal parameters

unchanged.

The reason why VT arrhythmias are easier to attack is that it

takes only a minor increase to the VT and VF detection thresh-

olds (parameters VF
th

and VT
th
) to make the ICD mis-classify a

tachyarrhythmia episode. On the other hand, VF
th

and VT
th

must

be reprogrammed to very low values in order for the ICD to clas-

sify a slow heart rate as VT/VF and induce unnecessary therapy.

This is not always possible because in SVT arrhythmias, the heart

rate is often below the lowest programmable values for VF
th
(110

BPM) and VT
th

(90 BPM), which explains why, for instance, no

attack parameters exist that can affect arrhythmia 9. We remark

that these results are provably correct because OMT is guaranteed
to find Pareto-optimal attack parameters, when they exist.

Besides increasing VF
th

and VT
th
, the attacks on VT arrhyth-

mias synthesized by our method tend to increase the VF and VT

durations (VFdur and VTdur) thus reducing the probability that

the ICD classifies an episode as sustained, which is a necessary

condition for delivering therapy. For instance, the most effective

attack for arrhythmia 10 has VF
th
= 250 BPM, VT

th
= 205 BPM,

VFdur = 10 s, and VTdur = 13 s, against nominal values of 200,

160, 1, and 2.5, respectively. For some VT arrhythmias, the attacks

also affect the VT zone-related parameters to make discriminators

D6 and D7 more likely to be satisfied, thus tricking the ICD into

classifying the episode as SVT.

Figure 5 compares nominal and reprogrammed parameters over

an execution of the BSc algorithm at the start of a VF episode, using

an EGM from arrhythmia 10. With nominal parameters, VF dura-

tion starts after the last 8/10 ventricular intervals faster than VF

(see marker 1 in Fig. 5) and ends after an interval is found below

8/10 faster than VF
VF duration VF duration
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VT duration VT duration
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Figure 5: Execution of BSc ICD algorithmwith nominal and attack
parameters on atrial (A), ventricular (V), and shock EGMs from ar-
rhythmia 10. Markers are: VF – sensed ventricular fibrillation, VT
– tachycardia, and VS – normal rate. Intervals are in milliseconds.
See text for a detailed explanation.

the VF threshold (see marker 2). A new VF duration can start right

away, ending this time with a therapy (marker T). Here, the repro-

gramming attack sets VF
th
= 240 BPM (250 ms), VF

th
= 185 BPM

(325 ms), and VTdur = 7 s. With the higher VF threshold, the attack

leads to marking the VF episode as VT, triggering VT duration

(marker 3). VT duration ends with one interval found below the

reprogrammed VT threshold (marker 4). A new VT duration can

start right away, but therapy is prevented due to the long VTdur.

Attacks on SVT arrhythmias follow the opposite strategy. All

attacks tend to keep VF
th
, VT

th
, VFdur and VTdur to the minimum

programmable values, thereby increasing the probability that slow

heart rhythms are classified as sustained tachyarrhythmia. For some

SVT arrhythmias the attacks also need to increase the Rhythm

Match threshold, while the parameters of discriminator D7, AFib
th

and stb, appear to have little effect.

Condition-agnostic attacks. Pareto fronts for the condition-agnostic

attacks on VT and SVT, hereafter referred to as VT attack and SVT

attack, are shown in Figure 6. The corresponding parameters are

available in Tables 22 and 23 of [19]. These attacks attain very good

validation scores, comparable to the condition-specific case, sug-

gesting that our method can generalize well also when trained with

heterogeneous arrhythmias. The Pareto front for the VT attack has

a similar profile to the condition-specific ones: the effectiveness is

poor for parameter distance below 5, it has a sharp increase between

distance 5 and 10, growing slowly after that up to reaching 100%

success at distance 16. The attack strategy is the same discussed

for the condition-specific case, yielding high values of VF
th
, VT

th
,

VFdur, VTdur and stb, and low values of NSRcor
th
and Afib

th
.
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(a) VT. V. score: -0.0032
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(b) SVT. V. score: 0.0179

Figure 6: Pareto fronts for condition-agnostic reprogramming at-
tacks. Legend is as in Figure 4.

On the other hand, the parameters for the SVT attack reach

a maximum effectiveness of 49% at distance 18, compatibly with

the fact that condition-specific attacks are reasonably successful

only for a subset of SVT arrhythmias. The attack strategy confirms

our previous discussion, with the synthesized parameters having

minimal values of VF
th
, VT

th
, VFdur and VTdur.

Performance and adequacy. The results of Table 2 show that synthe-

sis for VT arrhythmias has a higher computational cost than for

SVT, with runtimes ranging from 2489 to 8208 seconds against a

range of 279 to 1894 seconds for SVT. The reason is that VT arrhyth-

mias are characterized by shorter ventricular intervals, leading to

more heart beats for the same EGM duration and thus, to longer sig-

nals. The path length and the number of training EGMs are indeed

the main factors affecting the complexity of OMT-based synthesis.

Our approach is adequate in that the parameters found by OMT

outperform those found by random search (RS). We ran RS for each

arrhythmia and for the same runtime of OMT, and compared the

area under the curve (AUC) of the Pareto fronts obtained with OMT

and RS, with both training and test EGMs. Higher AUC values

imply better performance. We remark that the parameters found by

OMT are guaranteed to be Pareto-optimal with respect to training

EGMs, and thus RS (or any other search method) cannot perform

better on the training data. Indeed, RS yields AUC values strictly

smaller than OMT for all arrhythmias but 18 and 19, for which RS

and OMT produced the same Pareto fronts (see Table 24 of [19]).

With test data, OMT outperforms RS on 11 arrhythmias, while the

opposite happens only for three arrhythmias. These results confirm

that OMT has superior performance also with unseen signals.

7 RELATEDWORK
The work of Halperin and colleagues [9] was the first to show that

ICDs can be accessed and reprogrammed by unauthorized users

using off-the-shelf hardware. As such, they demonstrate the physi-

cal feasibility of the attacks that we derive systematically in this

work. Other attack examples from the cardiac domain include [15]

and [7].

Our work leverages [12] for the generation of synthetic EGMs

and the modeling of the ICD algorithm, but tackles the fundamen-

tally different problem of designing stealthy attacks on ICDs, and

uses formal (SMT-based) methods for solving it. The work in [16]

synthesizes pacemaker parameters to ensure a safe rhythm and

maximize robustness to parameter deviations. We tackle a differ-

ent class of algorithms (found in ICDs), and study the problem of

compromising device operation, as opposed to making it robust to

parameter deviations.

Our work is complementary to methods for attack detection and

identification in cyber-physical systems [10, 20, 26], state estimation

from attack-prone sensor measurements [18, 24], and spoofing

attack synthesis on general control systems [11].

8 CONCLUSIONS
We presented the first framework for systematically synthesizing

reprogramming attacks on ICDs designed to maximize therapy

disruption while minimizing detection. Such attacks can therefore

be tailored to the victim’s physiology and they readily generalize

to unseen signals. This makes our approach suitable for real-world

attacks.

For future work, we plan to evaluate synthesized attacks on a

real ICD device, building on the hardware testbed for cardiac pace-

makers of [14]. We will also investigate making ICD discrimination

algorithms more resilient to such attacks.
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