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Abstract—MIMO beamforming provides high throughput for
WiFi networks, but it also leads to high computation and
communication overhead due to Channel State Information (CSI)
feedback. Explicit CSI feedback provides high beamforming
gains, but it introduces extremely high overhead. Implicit CSI
feedback has low overhead, but it provides very low beamforming
gains. We propose EliMO to completely Eliminate CSI feedback
from MIMO without sacrificing beamforming gains. EliMO uses
two-way channel estimation to allow WiFi Access Points (AP) to
accurately estimate downlink CSI without explicit CSI feedback.
To measure downlink CSI at the WiFi AP, the WiFi station
(STA) puts the received signal of downlink training symbols into
Feedback Training Field (FTF) and sends it back to the AP. The
AP estimates the two-way channel using the received signal of
FTF. Analysis and experiment results show that EliMO is able to
provide as high beamforming gains as explicit CSI feedback and
as low overhead as implicit CSI feedback. EliMO significantly
reduces computation and communication costs of measuring
and sending CSI feedback for smart devices, like smartphones,
smartwatches, and wireless drones. We evaluate the throughput
and energy consumption of EliMO by experiment measurements
in both static and mobile scenarios. Evaluation results show that
EliMO provides 5× and 4× throughput as implicit and explicit
CSI feedback, respectively. Energy consumption of EliMO is only
85%/30% of that of implicit/explicit CSI feedback.

I. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) is the key technol-
ogy for wireless networks to achieve high throughput. Along
with Orthogonal Frequency-Division Multiplexing (OFDM),
MIMO provides Channel State Information (CSI) per sub-
carrier, so that beamforming can be used to improve Signal-to-
Noise Ratio (SNR) and throughput [1, 2]. MIMO beamforming
provides high throughput by steering the radio energy to the
direction of the target receiver, or sending multiple packets
concurrently to different receivers. This is done by precoding
the transmit signal to different spatial streams and antennas.
Moreover, MIMO is able to select the best transmission
strategies efficiently assisted by CSI, which helps combat
multi-path and frequency-selective fading effects [3, 4].

However, CSI introduces extremely high overhead for
MIMO receivers, especially for smart devices like smart-
phones, smartwatches, and wireless drones. To calculate the
beamforming matrix and select the best transmission strate-
gies, the transmitter needs CSI feedback that introduces a lot
of computation and communication costs for MIMO receivers.
First, MIMO receivers require computation resources to mea-
sure and estimate the CSI matrix. Second, the transmission
time for data packets is dramatically sacrificed due to CSI
feedback. For channel width of 80MHz, the size of CSI matrix

is 1,700 bytes for 3×3 MIMO and 53,000 bytes for 8×8
MIMO [1, 5]. Moreover, multi-user MIMO has even higher
overhead since it needs higher frequency of CSI measurements
and feedback to deal with inter-user interference [1, 6]. Finally,
MIMO receivers consume much energy for sending CSI
feedback, which consumes up to 4 times energy as sending
a data packet for a MIMO receiver. Thus it is crucial to
reduce CSI feedback overhead, especially for smart devices
like smartphones, smartwatches, and wireless drones.

There are many methods on reducing CSI feedback over-
head [7–10], but they are not optimized for smart devices
and still introduce high computation and communication costs
for MIMO receivers. First, MIMO receivers still need to
continually measure and estimate the CSI matrix. Second,
the STA needs to calculate when to send the CSI matrix
and how much feedback is needed, which involves expensive
matrix calculations. Finally, MIMO receivers still need to send
CSI matrices to the transmitter, even though the feedback
frequency and/or feedback size could be reduced. All these
computation and communication costs of CSI feedback con-
sume a lot of energy of the STA. The AP can use implicit
CSI feedback, which uses the transpose of uplink CSI as the
downlink CSI, to reduce feedback overhead [5]. But it has
very low beamforming gains, since real-world MIMO channels
are not reciprocal due to baseband-to-baseband channels and
interferences [2, 5].

We propose EliMO to completely Eliminate CSI feedback
from MIMO without sacrificing beamforming gains. EliMO
completely eliminates the communication costs of sending
the CSI matrix for MIMO receivers. In addition, the com-
putation costs for MIMO receivers are significantly reduced.
The challenge is how the WiFi AP could accurately estimate
the downlink CSI without explicit CSI feedback. The EliMO
protocol works as follows. The AP sends Long Training Field
(LTF) in the packet header to the STA. The STA inserts the
received signal of downlink LTF as Feedback Training Field
(FTF) into the packet header and sends it back to the AP. The
AP is able to estimate the downlink CSI based on the received
signal of FTF, combined with the uplink CSI that is estimated
by uplink LTF sent from the STA. In summary, we make the
following contributions.
• We present two-way channel estimation allowing the AP

to accurately estimate downlink CSI without explicit CSI
feedback.

• We propose Feedback Training Field to completely elimi-
nate CSI feedback without sacrificing beamforming gains.
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Fig. 1. MAC-layer operations for implicit and explicit CSI feedback. Dashed
timeline is the transmission time of control frames. The STA spends much
time and energy for transmitting control frames for explicit CSI feedback.

We evaluate EliMO by experiment measurements in both
static and mobile scenarios. Evaluation results show that
EliMO is able to provide as low overhead as implicit CSI
feedback and comparable SNR as explicit CSI feedback. The
average throughput of EliMO is 5× and 4× of that of implicit
and explicit CSI feedback, respectively, in static scenarios. In
mobile scenarios, EliMO provides 3.6×/4.5× throughput as
implicit/explicit CSI feedback. Energy consumption of EliMO
is 85%/91% of that of implicit CSI feedback in static/mobile
scenarios. The average energy consumption of EliMO is only
30% and 17% of that of explicit CSI feedback, in static and
mobile scenarios, respectively.

The rest of the paper is organized as follows. Section II
shows the key idea of EliMO and compares it with exist-
ing CSI feedback schemes in terms of SNR and overhead.
Section III presents the EliMO protocol design, including
frame format, two-way channel estimation, and MAC-layer
operations. Experiment setup and evaluation results of EliMO
for both static and mobile scenarios are given in Section IV.
Section V summaries related works. Section VI concludes the
paper and discusses future work.

II. ELIMINATING CSI FEEDBACK FROM MIMO

This section presents the background and limitations of
existing CSI feedback schemes. The key idea of EliMO
is introduced to eliminate CSI feedback without scarifying
beamforming gains. SNR and overhead analysis results are
presented to show the effectiveness of EliMO.

A. MIMO Background

The received signal of beamforming at each sub-carrier is

Y = HQX +N, (1)

where H is the CSI matrix, Q is the beamforming matrix,
X is the transmit signal, and N is the noise signal. The
beamforming matrix Q, which is usually a function of H , is
used for mapping spatial streams to antennas. For Zero-Force
BeamForming (ZFBF), which is a widely used beamforming
algorithm, the beamforming matrix is Q = H∗(HH∗)−1,
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Fig. 2. Downlink/uplink CSI estimation separately and two-way CSI estima-
tion. Hd and Hu are baseband-to-baseband channels, and Ȟd and Ȟu are
over-the-air channels. Implicit CSI feedback has low beamforming gains since
Hd and Hu are not reciprocal in real-world MIMO systems.

where (·)∗ is the conjugate transpose operation. Due to power
constraint of each transmit antenna, the beamforming signal
must satisfy E[|[QX]j |2] ≤ Pj , where Pj is the power con-
straint for the jth transmit antenna [11]. Since the transmitter
does not know H , it needs CSI feedback from the receiver.

IEEE 802.11n defines two CSI feedback methods, i.e.,
implicit and explicit [5], as shown in Fig. 1. The CSI matrix
is estimated using Long Training Field (LTF), which is part of
the packet header. The transmitter sends LTF, which contains
predefined signal X , to the receiver. The receiver estimates
downlink/uplink CSI Hd/Hu using received signal Yd/Yu. For
implicit CSI feedback, the AP uses the transpose of Hu as Hd.
This is based on the assumption that Hd and Hu are reciprocal.
As shown in Fig. 1a, the AP measures Hu by the previous
ACK packet, and Hu is used to calculate the beamforming
matrix for the following data packet. Fig. 1b shows MAC-
layer operations for explicit CSI feedback. The AP first sends
Null Data Packet (NDP) to the STA to measure the downlink
CSI. The STA estimates Hd and sends it in the CSI packet
back to the AP. The AP calculates the beamforming matrix
based on Hd for transmitting the data packet.

Both implicit and explicit CSI feedback have limitations
that influence the performance and efficiency of WiFi STAs.
The reason is that they estimate downlink and uplink CSI
separately, leading to either low beamforming gains or high
overhead. For implicit CSI feedback, the transpose of Hu

is not an accurate estimation of Hd, since Hd and Hu are
not reciprocal in real-world MIMO systems. As shown in
Fig. 2a, baseband-to-baseband channels Hd and Hu are not
reciprocal, even though over-the-air channels Ȟd and Ȟu are
reciprocal [5]. Besides, downlink and uplink interferences are
usually not reciprocal [2]. The channel reciprocity of multi-
user beamforming is even worse due to inter-user interference.
For explicit CSI feedback, the STA has very high communi-
cation and energy overhead. Since the STA needs to send the
CSI matrix to the AP, the STA spends much time and energy
for transmitting none-data frames, as shown in Fig. 1b. The
communication costs of CSI feedback is very high, since the
size of CSI is very large and it grows rapidly as the number
of antennas and channel width increase [1, 8].



B. Key Idea of EliMO

We EliMO to completely Eliminate CSI feedback from
MIMO without sacrificing beamforming gains. The goal of
EliMO is to provide as high beamforming gains as explicit CSI
feedback and as low overhead as implicit CSI feedback. EliMO
significantly reduces computation, communication, and energy
overhead for STAs without sacrificing beamforming gains.
Fig. 2b shows the procedure of two-way channel estimation.
The AP sends the training signal X to the STA, and the
STA sends the received signal Yd, in a amplify-and-forward
way, back to the AP. The received signal of Yd at the AP is
Yf , and the AP estimates the two-way channel based on X
and Yf . The STA does not need to demodulate Yd. Besides,
the STA does not need to calculate when and how to send
CSI feedback. Thus the computation overhead of the STA is
significantly reduced. Moreover, the STA does not need to
send CSI back to the AP, so the communication overhead of
sending CSI packets for the STA is completely eliminated.
The only extra overhead of EliMO compared with implicit
CSI feedback for the STA is sending Yd, which is only 8µs.
Finally, the energy consumption of sending CSI packets for the
STA is also eliminated. In the following we show SNR and
overhead analysis to show that two-way channel estimation is
able provide high SNR with low overhead.

C. SNR Analysis

Since the transmit signal after using beamforming is QX ,
the effective MIMO channel is Heff = HQ [4]. In practical
MIMO systems, there is always a time delay between when
downlink CSI is measured and when the measured CSI is used
to send the data packet. In this case, the effective CSI is

Heff = HddQ = HddĤ
∗
d (ĤdĤ

∗
d )−1, (2)

where Hdd is the downlink CSI of the data packet, and Ĥd is
the measured downlink CSI. Both Hdd and Ĥd are baseband-
to-baseband channels, which consist of digital baseband and
over-the-air channels. For over-the-air channels with multiple
paths, the CSI value from the ith transmit antenna to the jth
receive antenna at the kth sub-carrier is

ȟijk =
N∑
n

ane
−j2πdijn/λk , (3)

where an is the attenuation along the nth path, dijn is the
distance between the ith transmit and the jth receive antenna
along the nth path, λk is the wavelength of the kth sub-carrier,
and N is the number of paths [12]. For baseband signal x(t),
the corresponding RF signal is xrf (t) = Re{x(t)e−j2πfct},
where fc is the carrier frequency, and Re{·} returns the real
part of the input [5].

The STA uses Minimum Mean Square Error (MMSE) [3,
4, 13] to decode the received signal. The SNR of the kth sub-
carrier of the jth spatial stream is snrk,j = 1/Yjj − 1, where
Y = (Heff,k

∗Heff,k + IS)−1, Heff,k is the effective CSI of
the kth sub-carrier, and IS is an S×S identity matrix with S =
min(Nt, Nr) as the maximum number of streams supported by
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Fig. 3. SNR and communication overhead analysis. EliMO provides as high
SNR as explicit CSI feedback and as low overhead as implicit CSI feedback.

the MIMO channel [3, 4]. The difference between Hdd and Ĥd

introduces beamforming errors and influences the receiving
SNR. The receiving SNR is

snr = dB(
∑

snrk,j/
√
S), (4)

where
√
S is the scaling factor [3, 4].

Fig. 3a shows the Cumulative Distribution Function (CDF)
of SNR using implicit/explicit CSI feedback and two-way
channel estimation. The initial distance between the AP and
STA is 5 meters, and the STA moves away from the AP at
the speed of 1.2 meters/second. The size of the CSI packet is
3 ∗ 3 ∗ 52 ∗ 32/8 = 1, 872 bytes for a 20MHz WiFi channel
with 3/3 transmitting/receiving antennas, 52 sub-carriers, and
32 bits of data for each CSI value. The size of the data packet
is 1,500 bytes. EliMO has 7dB higher SNR than implicit
CSI feedback, and only 0.8dB lower SNR than explicit CSI
feedback. SNR analysis results in Fig. 3a demonstrate that
EliMO provides as high SNR as explicit CSI feedback. This is
validated by CSI traces from real-world experiments, which
will be shown later in Section IV.

D. Overhead Analysis

For each data packet, control packets are needed for MAC-
layer coordinations and beamforming matrix calculations, as
shown in Fig. 1. Sending and receiving these control packets
introduce computation and communication overhead for the
STA. The communication overhead is defined as

τ =
tcontrol

tcontrol + tdata
, (5)

where tcontrol is the transmission time for control frames, and
tdata is for data frames. Control frames are always transmitted
using the lowest data rate, while data frames can use higher
data rates. For a certain CSI feedback scheme, tcontrol is
relatively stable. When the data rate for data frames is much
higher than that of control frames, which is the common case
for 802.11n/ac, tdata is much smaller than tcontrol. In this
case, the communication overhead is extremely high.

Fig. 3b shows the results of communication overhead of
implicit/explicit CSI feedback and EliMO. The channel width
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is 20MHz, and the data rate for data frames is in the range of
6.5-195Mbps for up to 3/3 transmitting/receiving antennas [5].
The communication overhead of EliMO is comparable as that
of implicit CSI feedback, and is only 40% to 90% lower than
that of explicit CSI feedback. Fig. 3b demonstrates that EliMO
introduces as low overhead as implicit CSI feedback.

To sum up, FTF has comparable SNR as explicit CSI
feedback and much higher SNR than implicit CSI feedback,
as shown in Fig. 3a. The communication overhead of FTF is
similar to that of implicit CSI feedback, and it is much lower
than that of explicit CSI feedback, as shown in Fig. 3b.

III. ELIMO PROTOCOL DESIGN

This section presents the EliMO protocol design including
frame format, two-way channel estimation, and MAC-layer
operations. There are two challenges for EliMO to get high
beamforming performance.
• The AP needs to accurately estimate the downlink CSI in

the presence of two-way channel propagations and interfer-
ences.

• The AP needs to determine whether the measured downlink
CSI is stale and when to request feedback training.

A. Frame Format

EliMO reuses the frame format of 802.11n/ac packet head-
ers. Fig. 4 shows the frame format of EliMO for 802.11n
mixed mode and 802.11ac packets. Two new fields, i.e.,
Feedback Training Request/Response (FTR) and Feedback
Training Field (FTF), are inserted after 802.11n/ac packet
headers. FTR indicates whether feedback training is requested
or not and whether FTF is sent back or not. FTR is inserted
right after the 802.11n/ac preamble. If the request field of FTR
is 1, the AP sets the response field to 0, which means there
is no FTF sent after FTR. When the STA receives the request
of feedback training, it sets the response field of FTR to 1
and sends FTF following FTR. FTF is in corresponding with
each HT/VHT-LTF. The length of FTR and FTF are both 4µs.
If there is only one HT-LTF or VHT-LTF, the length of FTR
plus FTF is 8µs. Comparing with implicit CSI feedback that
typically has 150µs of control overhead, EliMO introduces
only 8µs extra overhead.

B. Two-way Channel Estimation

The AP estimates the downlink CSI using the received
signal of FTF, i.e., the received signal of downlink LTF that
goes through both the downlink and uplink MIMO channel.
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Fig. 5. Block diagram of two-way channel estimation using FTF. Two-way
channel estimation includes the impact of digital baseband of both the AP
and STA. Blocks in blue color are added by EliMO.

The AP needs to accurately estimate the downlink CSI in the
presence of two-way channel propagations and interferences.
To address this issue, the STA amplifies the received signal of
downlink LTF and sends duplicated FTFs back to the AP.

Fig. 5 shows the block diagram of two-way channel esti-
mation. White blocks are components in existing 802.11n/ac
systems, and blue blocks are added in EliMO. The AP sends
LTF to the STA, which performs FFT on the received signal.
The STA performs analogy/RF, Guard Interval (GI) removal,
and FFT to include the impact of digital baseband of both
the AP and STA. Since the STA does not need to demodulate
the received signal, it has lower computation overhead. The
STA amplifies the received signal and sends it back to the
AP in FTF. The AP estimates the two-way channel, i.e.,
Htw := HuHd, by the received signal and the original LTF
signal. The AP also estimate the uplink CSI Ĥu by the
received signal of uplink LTF from the STA. We use the
pseudo-inverse of Ĥu and two-way channel Htw to estimate
the downlink CSI Ĥd, i.e.,

Ĥd = Ĥ+
u Htw = (Ĥ∗uĤu)−1Ĥ∗uHtw = (Ĥ∗uĤu)−1Ĥ∗uHuHd,

(6)
where Ĥ+

u = (Ĥ∗uĤu)−1Ĥ∗u is the pseudo-inverse of Ĥu.
The estimation accuracy of Ĥd is impacted by two-way

channel propagations and interferences. The received signal
of FTF at the AP is

Yf = HuYd +Nu = Hu(HdX +Nd) +Nu, (7)

where Nd and Nu are downlink and uplink noise signals,
respectively. The power of Yf is impacted by two-way channel
propagations, so the CSI estimation accuracy could be signif-
icantly influenced by the power of Nu. The STA sends the
amplified signal αYd, instead of Yd, to the AP to improve
estimation accuracy. The amplify factor α is constrainted by
E[|[αYd]i|2] ≤ Pi, where Pi is the power constraint for the
ith transmit antenna of the STA [11]. To reduce the impact
of two-way channel interferences, the AP sends duplicated
LTFs to the STA, and correspondingly the STA also sends
duplicated FTFs to the AP. The received signals for the kth
sub-carrier at the AP are Yf (k, 1) and Yf (k, 2). The AP
first estimates uplink noise by N̂u =

∑Ns

k=1 |(Yf (k, 1) −
Yf (k, 2))(Yf (k, 1) − Yf (k, 2))∗| [8]. The AP estimates two-
way channel Htw and uplink channel Ĥu based on N̂u, and
finally estimates downlink channel Ĥd using Ĥu and Htw.
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CSI calculates the beamforming matrix for the following data packet.

C. MAC-layer Operations

Timeline of MAC-layer operations of EliMO is shown in
Fig. 7. The AP sends downlink LTF to the STA, and the
STA puts the received downlink LTF signal Yd in FTF. The
STA sends FTF, along with uplink LTF, back to the AP. The
received signal of uplink LTF is Yu, and the received signal
of FTF is Yf . The AP estimates uplink CSI Ĥd using Yu and
two-way CSI using Yf .

The beamforming performance of EliMO is influenced
by the difference between Ĥd and Hdd. The AP needs to
determine whether the measured downlink CSI is stale and
when to request feedback training to reduce beamforming
errors. EliMO addresses this issue by sending feedback request
when the AP detects that the previous measured downlink
CSI is stale. If Ĥd is stale, the AP needs to send Null Data
Packet (NDP) with FTR to measure the current downlink CSI.
The AP uses two metrics, CSI similarity and estimation delay,
to determine whether Ĥd is stale or not. CSI similarity is
calculated by

ρ =

∑Ns

k=1(h(k, 1)− h̄1)(h(k, 2)− h̄2)√∑Ns

k=1(h(k, 1)− h̄1)2
√∑Ns

k=1(h(k, 2)− h̄2)2
, (8)

where h(k, 1) and h(k, 2) are the CSI magnitude of the kth
sub-carrier, and h̄1 and h̄2 are the average CSI magnitude
across Ns sub-carriers of two CSI measurements [4, 14]. When

CSI similarity of either downlink or uplink CSI is larger than
the threshold Thrρ, the AP sends NDP with FTR to the STA
to measure the current downlink CSI. Based on experiment
measurements, which will be shown in the next section, we
find that Thrρ = 0.98 is able to distinguish whether the STA
is moving or not. This is also in consistent with measurement
results in [14]. Thus we use Thrρ = 0.98 as the CSI similarity
threshold. Estimation delay δ is the time interval between
when the previous downlink CSI is estimated and when the
next data packet is transmitted. The AP also sends NDP when
the estimation delay is larger than the threshold Thrδ . Based
on experiment results in both static and mobile scenarios, we
choose Thrδ = 100ms as the threshold of estimation delay.
Note that all calculations of detecting whether Ĥd is stale no
not are done by the AP. No extra computation overhead is
introduced for the STA.

Fig. 6 shows the flow chart of EliMO for the AP and
STA. For each data packet to be sent, the AP checks whether
the previous downlink CSI Ĥd is stale or not based on CSI
similarity ρ and estimation delay δ. If Ĥd is stale, the AP sends
NDP with FTR to the STA to measure the current downlink
CSI. If Ĥd is not stale, the AP calculates the beamforming
matrix based on Ĥd and sends the data packet to the STA. In
the packet header of the data packet, the AP sets the request
field of FTR to 1. This is for estimating the downlink CSI
for the next data packet. For each received packet, the AP
estimates the uplink CSI Ĥu by uplink LTF and two-way CSI
Htw by FTF. The downlink CSI Ĥd is estimated by Ĥu and
Htw. At the STA side, each received packet is checked whether
it contains data payload or not. If the received packet has no
data payload, demodulation is not needed. If the packet has
data payload, the STA demodulates and decodes the received
signal to get the data bits. The STA checks correctness of
the data packet and adds ACK payload to the packet to be
sent to the AP. If feedback training is requested, the STA gets
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Fig. 8. Experiment Validation

the received signal of downlink LTF, puts it in FTF, and sets
the response field of FTR to 1. Finally, the STA adds packet
header with FTR and FTF, and sends the packet, either with
or without ACK payload, to the AP.

IV. EVALUATION

This section presents evaluation results, including through-
put and energy consumption, of EliMO by experiment mea-
surements in both static and mobile scenarios.

A. Experiment Setup

We conduct experiment measurements in indoor environ-
ments for both static and mobile scenarios. The AP is static,
and the STA is either static or moving at the speed of about
1.2m/s. The AP and STA operate at 5GHz, and the channel
width is 20MHz. The AP has 3 external antennas, and the STA
has 3 internal antennas spaced 2.4 inches apart. The transmit-
ting power of the AP/STA is fixed at 17/15dBm. The AP and
STA are two laptops with Intel WiFi Link 5300 installed. Since
we cannot program the power signal of the WiFi chipset, we
are not able to implement EliMO in real-time. Thus we employ
trace-driven evaluation by collecting CSI traces and evaluates
EliMO off-line by Matlab implementations using the collected
CSI traces.

Downlink and uplink CSI measurements are collected using
openrf [15], which is based on 802.11n CSI tool [16]. Note
that 802.11n CSI tool only provides CSI values of 30 sub-
carriers even though a 20MHz WiFi channel has 52 sub-
carriers [1, 2, 5, 6]. Two performance metrics, throughput
and energy consumption, are evaluated in different scenarios
comparing EliMO with implicit and explicit CSI feedback.
The AP uses ZFBF as the transmit beamforming algorithm and
the STA uses the MMSE receiving algorithm. The MCS index
can be selected from 0 to 23 with the data rate ranging from
6.5 to 195Mbps [5]. We compare EliMO with implicit and
explicit CSI feedback. There are two options for explicit CSI
feedback: non-compressed, i.e., 1 CSI packet per data packet,
and compressed, i.e., 1 CSI packet per 10 data packets.

B. Experiment Validation

We first validate the effectiveness of two-way channel
estimation by experiments in real-world MIMO systems. Fig. 8
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Fig. 9. Evaluation Results of Average Throughput

shows the CDF of SNR of experiment measurements in the
mobile scenario. The SNR of EliMO is 1.5dB higher than
that of implicit CSI feedback, and 1dB lower than that of
explicit CSI feedback, as shown in Fig. 8a. EliMO is able to
provide comparable SNR as explicit CSI feedback in real-
world mobile environments. We also check the impact of
beamforming delay, as shown in Fig. 8b. The average SNR of
implicit CSI feedback does not change much as beamforming
delay increases. The reason is that channel reciprocity has
more impact on the accuracy of downlink CSI estimation
than mobility. The average SNR of EliMO and explicit CSI
feedback decreases when beamforming delay increases. This is
because that the difference between the estimated CSI and data
packet CSI increases as beamforming delay increases when
the STA is moving. For beamforming delay of 1,000ms, the
SNR decrease is 1dB for EliMO and 2.8dB for explicit CSI
feedback. EliMO has lower SNR decrease since the time delay
between uplink CSI and data packet CSI is very small and two-
way channel estimation helps reduce the impact of mobility.

C. Throughput

The effective throughput is calculated by

tpt =

∑N ′

i=1 size(pkti)

tcontrol + tdata
, (9)

where pkti is the ith data packet, and N ′ is the number
of received packets. Implicit CSI feedback has low accuracy
of downlink CSI estimation, so it provides low beamform-
ing gains. This reduces the number of received packets N ′

and leads to low throughput for implicit CSI feedback. The
transmission time of control frames tcontrol is extremely high,
which results in low throughput, for explicit CSI feedback.
EliMO provides high throughput by reducing tcontrol signifi-
cantly while N ′ is not seriously influenced.

Fig. 9a shows the average throughput for data packets
of different sizes and data rates. The average throughput
of EliMO is 5×, 4×, and 1.7× of that of implicit, non-
compressed explicit, and compressed explicit CSI feedback,
respectively. The average throughput of the mobile scenario is
lower than that of static scenarios for all feedback schemes.
In the mobile scenario, EliMO still provides the highest
throughput. The average throughput of EliMO is 3.6×/4.5×
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Fig. 10. Evaluation Results of Energy Consumption

of that of implicit/explicit CSI feedback. Fig. 9b shows the
average throughput as the size of data packets changes. For
data size of 1,024 bytes, the average throughput of EliMO is
6Mbps, 7Mbps, and 5Mbps higher than that of implicit, non-
compressed explicit, and compressed explicit CSI feedback.
For data size of 16,384 bytes, EliMO has 6Mbps, 5Mbps,
and 1Mbps higher throughput than the other three feedback
schemes.

D. Energy Efficiency

Energy efficiency of the STA is evaluated by energy con-
sumption per data bit

eb =

∑N
i=1 (er(0) ∗ size(ctri) + et(0) ∗ size(csii))∑N ′

i=1 size(pkti)
+∑N

i=1 er(mi) ∗ size(pkti)∑N ′

i=1 size(pkti)
,

(10)

where et(m) and er(m) stand for energy consumption per
bit for transmitting and receiving, respectively, as using MCS
index m [17, 18]. Energy consumption parameters, et(mi) and
er(mi), for the Intel 5300 WiFi chipset are from [17]. For data
packet of size(pkti) = 1, 500 bytes and mi = 23, explicit
CSI feedback accounts 80% of the total energy consump-
tion. Besides, et(mi)|mi=0 for CSI packets is much larger
than er(mi)|mi≥0 for data packets [17, 18], so explicit CSI
feedback consumes a lot of energy for the STA. For implicit
CSI feedback, the number of received packets is smaller than
EliMO due to low accuracy of downlink CSI estimation. This
reduces the energy efficiency of the STA for implicit CSI
feedback. EliMO remarkably improves the energy efficiency
of the STA by eliminating explicit CSI feedback without
sacrificing beamforming gains.

Energy consumption results are shown in Fig. 10. As shown
in Fig. 10a, EliMO has slightly lower energy consumption
as implicit CSI feedback in both static and mobile scenarios.
For the static scenario, the average energy consumption of
EliMO is only 30% and 50% of that of non-compressed
and compressed explicit CSI feedback, respectively. For the
mobile scenario, the average energy consumption of EliMO
is 17%/57% of that of non-compressed/compressed explicit
CSI feedback. Fig. 10b shows average energy consumption

in terms of the size of data packets. For data packets of less
than 2,048 bytes, EliMO consumes slightly higher energy than
implicit CSI feedback. As packet size increases, energy con-
sumption of EliMO is lower than that of implicit CSI feedback.
For packet size of 16,384 bytes, EliMO has comparable energy
consumption as compressed explicit CSI feedback. EliMO
consumes much less energy than both non-compressed and
compressed explicit CSI feedback when packet size is less
than 16,384 bytes.

V. RELATED WORK

There are many papers on reducing the overhead of CSI
feedback. IEEE 802.11n/ac protocols allow feedback com-
pression to share the same CSI for multiple data packets or
multiple sub-carriers [5, 6]. CSI-SF [19] uses CSI values of
one antenna to estimate CSI values of other antennas, which
reduces overhead of CSI measurements and feedback. The
STA can also use less bits of data for each CSI value [8, 9]
to reduce the size of CSI matrix. AFC [8] adaptively selects
feedback compression levels to reduce feedback overhead
in different scenarios. Some papers use CSI similarity to
detect whether the STA is moving or not, and adjust the
frequency of CSI measurements accordingly [14, 20]. This
helps to reduce feedback overhead if the STA is not moving.
However, all these feedback compression schemes still need
CSI feedback from the STA. It introduces high computation
and communication overhead for the STA to calculate and send
the CSI matrix. Besides, the STA needs to calculate when to
send the CSI matrix and how much feedback is needed. This
introduces computation overhead for the STA. The calculation
and transmission of the CSI matrix consumes a lot of energy
for the STA. EliMO completely eliminates CSI feedback and
significantly improves the energy efficiency for the STA.

IEEE 802.11n allows implicit CSI feedback [5] to reduce
the overhead of explicit CSI feedback. This is based on the
assumption that downlink and uplink channels of the same
carrier frequency are reciprocal. But this assumption does not
hold in real-world MIMO systems wherein digital baseband
channels [2, 5] and interferences are not reciprocal [2]. R2-
F2 eliminates CSI feedback for cellular networks [21]. It
estimates downlink CSI using uplink CSI at different carrier
frequencies. But it does not consider the impact of digital
baseband channels, which reduces CSI estimation accuracy
seriously. Signpost [22] eliminates CSI feedback for uplink
multi-user MIMO. It allows each user to predict its orthogo-
nality to other users by its own CSI. But it only works in the
uplink and eliminates CSI feedback from the AP for multi-
user MIMO communications. EliMO eliminates CSI feedback
in the downlink and reduces computation and communication
overhead for the STA. Similar to EliMO, Echo-MIMO [23]
also employs two-way channel estimation to eliminate down-
link CSI feedback. But it is designed for narrow-band MIMO
channels without frequency-selective effects, while WiFi has
wide-band MIMO-OFDM channels with frequency-selective
effects. It does not consider the impact of digital baseband
channels. Besides, Echo-MIMO only focuses on theoretical



analysis but does not test with real-world MIMO devices.
EliMO is tested with real-world WiFi devices with the impact
of wide-band channels, frequency-selective effectives, and
baseband-to-baseband channels.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we show that implicit CSI feedback has
low beamforming gains and explicit CSI feedback has high
computation and communication overhead. We propose EliMO
to completely eliminate CSI feedback without sacrificing
beamforming gains. We propose Feedback Training Field and
two-way channel estimation to enable the AP to accurately
estimate downlink CSI without explicit CSI feedback. Based
on both theoretical analysis and experiment measurements,
EliMO provides as low overhead as implicit CSI feedback and
as high SNR as explicit CSI feedback. Experiment evaluation
results show that EliMO provides much higher throughput
and lower energy consumption for the STA than implicit and
explicit CSI feedback.

Currently EliMO is evaluated by CSI measurement traces
and off-line Matlab implementations. We plan to implement
EliMO on real-world MIMO systems and evaluate it in real-
time. We also want to make the EliMO protocol compatible
with multi-user MIMO systems in the future. EliMO can also
be used by other applications, such as motion tracking [24],
activity recognition [25], and localization [26–28], using off-
the-shelf WiFi chipsets. For example, existing CSI-based lo-
calization methods require extensive CSI measurements from
multiple APs [26] or across multiple channels [27, 28], which
introduce very high overhead for MIMO receivers. EliMO can
help reduce both computation and communication costs for
MIMO receivers, like smartwatches and drones, for these CSI-
based localization approaches.
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