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Abstract— In modern taxi networks, large amount of real-
time taxi occupancy and location data are collected from
networked in-vehicle sensors. They provide knowledge of system
models on passenger demand and taxi supply for efficient
dispatch control and coordinating strategies. Such dispatch
approaches face a new challenge: how to deal with future
customer demand uncertainties while fulfilling system’s per-
formance requirements, such as balancing service across the
whole city and minimizing taxis’ total idle cruising distance. To
address this problem, we present a novel robust optimization
method for taxis dispatch problems to consider polytope model
uncertainties of highly spatiotemporally correlated demand and
supply models. An objective function concave over the uncertain
demand parameters and convex over the variables is formulated
according to the design requirements. We transform the robust
optimization problem to an equivalent convex optimization form
by strong duality and minimax theorem, and computational
tractability is guaranteed. By Monte-Carlo simulations, we
show that the robust taxi dispatch solutions in this work are less
probable to get large costs compared with non-robust results.

I. INTRODUCTION

Modern transportation systems equip various sensing
technologies for passenger and vehicle tracking, such as
global positioning system (GPS), radio-frequency identifica-
tion (RFID), and occupancy sensing systems. Sensing data
collected from transportation systems provides us opportuni-
ties for understanding spatiotemporal patterns of passenger
demand. Researchers have developed methods to predict the
probability distribution of taxi passenger demand [14], travel
time [2], [10], [12], [17], and traveling speed [1].

Based on such rich spatiotemporal information about pas-
senger mobility and demand, many control and coordination
solutions have been designed for intelligent transportation
systems, especially taxi networks. Geng and Cassandras
design a smart parking system that allocates resource based
on driver’s cost function [11]. A coverage control and coor-
dination algorithm to allocate groups of vehicles is proposed
by [7]. Pavone et.al propose control methods for mobility-on-
demand systems [15], [18]. Miao et al. show the advantage
of looking-ahead at future demand when making a current
decision, while considering to balance taxi supply throughout
the city and reduce idle cruising cost [13]. These works
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heavily rely on precise passenger demand models to make
dispatch decisions. However, the passenger demand models
have their intrinsic model uncertainties, which are imposed
by many factors, such as weather, working schedule, city
events etc. Algorithms that do not consider these uncertain-
ties can lead to inefficient dispatch services, resulting in
long waiting times of underserved passengers, imbalanced
workloads, and increased idle mileages of taxis. Therefore,
it is essential to address such model uncertainties while
considering performance requirements of the taxi network.

In this work, we formulate taxi dispatch problems consid-
ering polytope uncertainty demand models and two objec-
tives. These objectives are reducing current and future ex-
pected idle cruising distance and balancing workload of taxis
in each region of the entire city. Since considering anticipated
future demand for making current decisions benefits taxi
network performance [13], [18], while demand is affected
by various factors with learnable variance [14], a dispatch
approach robust to demand uncertainties is important. Differ-
ent uncertainty sets for linear robust optimization problems
are constructed and compared [9]. The objective function
we design is convex but nonlinear over the variables and
concave over the uncertain sets, which has not been covered
by previous work [3], [8], [9]. We derive an equivalent
convex optimization form via strong duality and minimax
theorem for the robust problem to guarantee computational
tractability. With the information of model uncertainties,
the cost distribution of robust taxi dispatch solutions has a
shorter tail than non-robust dispatch solutions.

The contributions of this work are several folds. First,
we formulate a robust optimization modeling framework for
studying the problem of balancing taxi supply with least idle
cruising mileage under demand uncertainties. Second, we
show that the multi-stage robust optimization problem has
an explicit computationally tractable form and can be solved
efficiently. Third, we implement the approach designed in
this work and show the advantage of a robust taxi dispatch
framework based on a real data set.

The rest of the paper is organized as follows. The taxi
dispatch problem is described and formulated as robust
optimizations in Section II, followed by equivalent compu-
tationally tractable forms in Section III. Simulation results
based on a real data set is shown in Section IV. Concluding
remarks are provided in Section V.

II. PROBLEM FORMULATION

A. Problem Overview

The goal of taxi dispatch is to direct vacant taxis to-
wards current and future passengers with minimum total idle



mileage. There are two objectives. One is sending more taxis
for more requests to reduce mismatch between supply and
demand across all regions in the city. The other is to reduce
the total idle driving distance for picking up expected pas-
sengers in order to save cost. Involving predicted customer
demand of the future when making current decisions benefits
to increasing total profits, since drivers are able to travel to
regions with better chances to pick up future passengers.

The main problem we consider in this work is how to
dispatch taxis with uncertainties in the predicted spatiotem-
poral patterns of passenger demand. A typical monitoring
and taxi network control infrastructure is shown in Figure 1.
The dispatch center periodically collects and stores real-time
information such as GPS location, occupancy status and road
conditions. Dispatch solutions are sent to the communication
component of each taxi via cellular radio.

B. Taxi network model

We discretize time and space in problem formulation
for computational efficiency. We assume that the entire
city is divided into n regions, and discrete time slots are
indexed by k = 1, 2, . . . , τ . Typically, it is difficult to
predict a deterministic value of passenger demand of a
region during specific time. With prior knowledge and data
sets,we assume that the passenger demand model is described
by uncertainty vectors belonging to a polytope defined as

rk ∈ ∆ ⊂ Rn+, k = 1, . . . , τ,
where ∆ is a closed set and a convex polytope, and rkj is
the number of total requests within region j during time
k. The number of vacant taxis before dispatching at region
j is provided by real-time GPS position and occupancy
information, and denoted by L1

j , and L1 ∈ Rn+.
The problem is illustrated in Figure 2 for a box type of

polytope ∆, where rkj ∈ [Rk1j , R
k
2j ], j = 1, . . . , n is the

range of requests number within region j during time k. The
edge weight of the graph represents the distance between
two regions. Specifically, each region has a predicted range
of requests and an initial number of vacant taxis provided by
real-time sensing information. The objective is to calculate
the number of taxis dispatched to each region according to
control requirements and constraints.

C. Robust taxi dispatch problem formulation

We define the dispatch order matrix as a non-negative
variable matrix Xk ∈ Rn×n+ , Xk

ij ≥ 0, where Xk
ij is the

number of taxis dispatched from region i to region j. Here we
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Fig. 1. A prototype of the taxi dispatch system
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Fig. 2. Uncertain demand, vacant taxis at different regions and a dispatch
solution. A circle represents a region, with a range of predicted requests ([·]
inside the circle) and a number of vacant taxis ({·} in the circle) before
dispatching.

relax the integer constraint of Xk
ij ∈ N to non negative, since

mixed integer programming is not computational efficient for
a large-scale robust optimization problem.

Estimated across-region idle-driving distance: When
traversing from region i to region j, taxi drivers take the cost
of cruising on the road without picking up a passenger till
the target region. Hence, we consider to minimize this kind
of idle driving distance while dispatching taxis. We define
the weight matrix of the network in Fig. 2 as W ∈ Rn×n,
where Wij is the distance between region i and region j.
The across-region idle driving cost according to Xk is

JD(Xk) =
∑
i

∑
j

Xk
ijWij . (1)

We assume that the region division method is time-invariant
in this work, and W is a constant matrix for the optimization
problem formulation – for instance, the value of Wij repre-
sents the length of shortest path on streets from the center
of region i to the center of region j. For control algorithms
with a dynamic region division method, the distance matrix
can be generalized to a time dependent matrix W k as well.

The distance every taxi can drive should be bounded
by a threshold parameter m ∈ R+ during limited time

Xk
ij = 0 if Wij > m,

which is equivalent to

Xk
ij > 0, Xk

ijWij ≤ mXk
ij , ∀i, j ∈ {1, . . . , n}. (2)

To explain this, assume the constraint (2) holds. If Wij > m
and Xk

ij > 0, we have Xk
ijWij > mXk

ij , which contradicts
to (2). The threshold m is related to the length of time slot
and traffic conditions on streets. For instance, with the same
average speed of cars in one city, the value of m for 20
minutes can be one third of the value of m for one hour.

Metric of serving quality: We design the metric of service
quality as a function JE(Xk, rk) concave in rk and convex
in Xk in this work for computational efficiency [3]. Besides
vacant taxis traverse to region j according to matrix Xk, we
define Lkj ∈ R+ as the number of vacant taxis at region j
before dispatching at the beginning of time k, and Lk ∈ Rn+.
The total number of vacant taxis at region i during time k is

1TnX
k
·i −Xk

i·1n + Lki > 0, i = 1, . . . , n, (3)

where Xk
·i is the i-th column of Xk and Xk

i· is the i-th
row of Xk. One service metric is fairness at every region,
or the demand and supply ratio of each region equals to
that of the whole city. With balanced distribution of vacant



Parameters Description
n the number of regions
τ model predicting time horizon

rk ∈ ∆ ⊂ Rn+,∆ is a polytope the total number of requests at each region during time k
W ∈ Rn×n weight matrix, wij is the distance from region i to region j

Pk ∈ [0, 1]n×n probability matrix that describes taxi mobility patterns during one time slot
L1 ∈ Nn the initial number of vacant taxis at each region provided by GPS and occupancy status data
m ∈ R+ the upper bound of distance each taxi can drive idly for picking up a passenger
α ∈ R+ the power on the denominator of the cost function
β ∈ R+ the weight factor of the objective function
Variables Description
Xk
ij ∈ R+ the number of taxis dispatched from region i to region j during time k
Lk ∈ Rn+ the number of vacant taxis at each region before dispatching at the beginning of time k

TABLE I
PARAMETERS AND VARIABLES OF TAXI DISPATCH PROBLEM (9).

taxis, system performance is good from the perspective that
a customer’s expected waiting time is small as shown by a
queueing theoretic model in [18]. Intuitively, the objective
of balanced demand and supply ratio is to minimize

τ∑
k=1

n∑
i=1

∣∣∣∣∣ rki
1TnX

k
·i −Xk

i·1n + Lki
−

1Tn r
k

N

∣∣∣∣∣ . (4)

However, function (4) is not concave of rk, a robust opti-
mization problem with uncertain parameter rk is not able
to be converted to an equivalent computationally tractable
convex form. Hence, we design a surrogate function for (4)

JE(Xk, rk) =
∑
i

rki
(1TnX

k
·i −Xk

i·1n + Lki )α
, (5)

with α→ 0. The function JE(Xk, rk) is affine in rk for any
Xk, and convex in Xk for any rk, since 1TnX

k
·i −Xk

i·1n +
Lki > 0. Now we explain why function JE (5) with α → 0
is a surrogate function of (4) when we consider to minimize
the value of (4) under certain constraints.

Let N be the total number of vacant taxis in the whole city
before dispatching for time k. The number does not change
after dispatching before taxis picking up passengers, i.e.∑

i(1
T
nX

k
·i −Xk

i·1n + Lki ) =
∑
i L

k
i = N.

Consider the following problem

minimize
b>0,

∑
i bi=c

∑
i

ai
bαi
, c is a constant. (6)

Substitute bn = c − b1 · · · − bn−1 into (6), and take partial
derivatives of

∑
i
ai
bαi

over bi, i = 1, . . . , n − 1. To get
the minimum, each partial derivative should be 0, namely

−α ai
bα+1
i

− α(−1) an
(c−b1···−bn−1)α+1 = 0,

which is equivalent to
a1
bα+1
1

= · · · = an−1

bα+1
n−1

= an
bα+1
n

.

Hence, when α → 0, α + 1 → 1, the optimal solution of
minimizing JE over Xk satisfies

rj
1TnX

k
·j−Xkj·1n+Lkj

=
1Tn r

k

N .
The number of initial vacant taxis at time k + 1 de-

pends on the mobility patterns of passengers during time k,
which we do not directly control. Similarly as a queueing
theoretic model, we define P kij as the probability that a
vacant taxi traverses from region i to region j during
time k and turns to an available supply for time k +
1. One example of P kij based on a data set is the taxi

mability pattern defined in work [13]. Then the number
of vacant taxis within region j by the end of time k is(

1TnX
k − (Xk1n)T + (Lk)T

)
P k·j ,

where P k·j is the j-th column of P k, and

(Lk+1)T = (1TnX
k − (Xk1n)T + (Lk)T )P k. (7)

Multi-objective function: Since there exists a trade-off
between two objectives, we define a weight parameter β
of wo objectives JD(Xk) in (1) and JE(Xk, rk) in (5).
Without considering model uncertainties corresponding to
rk, a convex optimization form of taxi dispatch problem is

min.
X1,...,Xτ ,L2,...,Lτ

J =
τ∑
k=1

(JD(Xk) + βJE(Xk, rk))

=
τ∑
k=1

∑
i

∑
j

Xk
ijWij +

βrki
(1TnX

k
·i −Xk

i·1n + Lki )α


s.t. (2), (3), (7).

(8)

Robust taxi dispatch problem formulation: We aim to
find out a dispatch solution robust to disturbance factors
of demand model in this work. While considering future
demand benefits for reducing idle driving distance as shown
in [13], model uncertainties affect the decisions and we
consider to minimize the cost of the worst-case scenario.
For time k = 1, . . . , τ , uncertain demand rk only affects
the dispatch solutions of k + 1, . . . , τ , similar to the multi-
stage robust optimization problem in [5]. Hence, with a list of
parameters and variables shown in Table I, when considering
profits of future picking up decisions, a multi-stage robust
taxi dispatch problem is defined as following

min.
X1

max
r1∈∆

min
X2,L2

max
r2∈∆

. . . min
Xτ ,Lτ

max
rτ∈∆

J =

τ∑
k=1

(JD(Xk) + βJE(Xk, rk))

=

τ∑
k=1

∑
i

∑
j

Xk
ijWij +

βrki
(1TnX

k
·i −Xk

i·1n + Lki )α


s.t. (Lk+1)T = (1TnX

k − (Xk1n)T + (Lk)T )P k,

1TnX
k − (Xk1n)T + (Lk)T > 0,

Xk
ijWij ≤ mXk

ij ,

Xk
ij ≥ 0, i, j ∈ {1, 2, . . . , n}.

(9)



After getting an optimal solution X1 of (9), we adjust the so-
lution by rounding methods to get an integer number of taxis
to be dispatched towards corresponding regions. A feasible
integer solution of (9) always exists, since Xk

ij = 0, ∀i, j, k
is feasible. For a special case τ = 1, the constraint (7) does
not exist any more, other constraints and objective of (9) are
adjusted to the form of τ = 1.

III. COMPUTATIONALLY TRACTABLE FORMULATIONS

We build equivalent convex optimization formulations of
problem (9) with different definitions of polytope uncertainty
sets in this section, and show that the robust taxi dispatch
problem in this work is computationally tractable. Robust
linear programming problems with ellipsoid uncertainties are
discussed in [3]. The authors reformulate constraints of the
original problem to equivalent convex constraints that must
hold for the uncertainty sets. The form of nonlinear objective
function designed in problem (9) is not covered by previous
work like [3].

We derive the computationally tractable form of one-stage
robust optimization (9) in the following theorem.

Theorem 1: (Next Step Dispatch) When τ = 1, and the
uncertain parameter set r ∈ ∆ of problem (9) is defined
as a polytope with the form ∆ := {r ≥ 0, Ar ≤ b},
problem (9) with τ = 1 is equivalent to the following
convex optimization problem (we omit the superscripts k for
variables and parameters without confusion)

minimize
X≥0,λ≥0

∑
i

∑
j

XijWij + bTλ

subject to ATλ− β


1

(1TnX·1−X1·1n+L1)α

...
1

(1TnX·n−Xn·1n+Ln)α

 ≥ 0,

(2), (3).

(10)

Proof: For any fixed X , the maximum part of the
objective function is equivalent to

max
r∈∆

f(X, r) + d(X) = cT (X)r + d(X)

=β
∑
i

ri

(1TnX·i −Xi·1n + Li)α
+
∑
i

∑
j

XijWij ,

c(X)i =β
1

(1TnX·i −Xi·1n + Li)α
, d(X) =

∑
i

∑
j

XijWij .

(11)

The Lagrangian of problem (11) with the Lagrangian multi-
pliers λ ≥ 0, v ≥ 0 is

L(X, r, λ, v) = cT (X)r + d(X)− λT (Ar − b) + vT r,

= d(X) + bTλ− (ATλ− c(X)− v)T r,
(12)

where (ATλ−c(X)−v)T r is linear of r, and the upper bound
exists only when ATλ− c(X)−v = 0, or ATλ− c(X) > 0.
The objective function of the dual problem is

g(X,λ, v) = sup
r∈∆
L(X, r, λ, v)

=

{
d(X) + bTλ if ATλ− c(X) > 0.

∞ otherwise

(13)

Strong duality holds for problem of (11) since it is convex,
and its dual problem is

minimize
λ≥0

d(X) + bTλ

subject to ATλ− c(X) ≥ 0.
(14)

Hence, problem (9) with τ = 1 can be solved as the convex
optimization problem defined in (10).

For the multi-stage robust optimization problem (9), the
computationally tractable convex form depends on the def-
inition of uncertainty sets. An approximated semidefinite
programming form for calculating time dependent control
input of linear dynamical systems affected by uncertainty is
proposed in [5]. We consider both time independent and time
dependent polytope uncertainties exist in this work.

When the demand uncertainty sets during k = 1, . . . , τ are
independent, the process of converting (9) to an equivalent
convex form is similar to that of the one-stage robust
optimization problem and described as the following lemma.

Lemma 1: If the uncertain parameter sets for rk, k =
1, . . . , τ are independent, defined as polytopes with the form

∆k := {rk ≥ 0, Akr
k ≤ bk}, k = 1, . . . , τ, (15)

problem (9) is equivalent to the following convex optimiza-
tion problem

min.
Xk,Lk,λk≥0

τ∑
k=1

(
∑
i

∑
j

Xk
ijWij + bTk λ

k)

subject to ATk λ
k − β


1

(1TnX
k
·1−Xk1·1n+Lk1 )α

...
1

(1TnX
k
·n−Xkn·1n+Lkn)α

 ≥ 0,

other constraints of (9), k = 1, . . . , τ

(16)

Proof: When the uncertainty set for each rk are inde-
pendent defined as (15), the objective function and constraint
of problem (9) are separable over k, except the constraint of
Lk+1 (7). Noting that Lk+1 in (7) is irrelevant to rk given
X1, . . . , Xk−1 and L1, . . . , Lk−1, and it does not affect
the process of deriving the dual problem of maximize the
objective function over rk. The objective function of multi-
stage problem (9) is then equivalent to

min.
X1

max
r1∈∆1

J1 +

τ∑
k=2

min.
Xk,Lk

max
rk∈∆k

Jk = min.
Xk,Lk

max
rk∈∆k

τ∑
k=1

Jk

(17)

The Lagrangian of (17) with multipliers λk ≥ 0, vk ≥ 0 is

L(Xk, rk, λk, vk)

=
τ∑
k=1

(d(Xk) + bTk λ
k − (ATk λ

k − c(Xk)− vk)T rk),
(18)

Based on the proof of Theorem 1, we take partial derivative
of the Lagrangian (18) for every rk ∈ ∆k, group all the other
constraints and get the dual form defined as (16).



The following theorem describes the equivalent computa-
tionally tractable form of (9) for a more general case when
demand uncertainty sets are spatial temporal correlated.

Theorem 2: When the uncertainty set for r1, . . . , rτ are
correlated, each rk belongs to a compact set, and ∆ satisfies

∆ := {A1r
1 + · · ·+Aτ r

τ ≤ b, rk ≥ 0}, (19)

problem (9) is equivalent to a convex optimization problem

min.
Xk,Lk,λ≥0

τ∑
k=1

(
∑
i

∑
j

Xk
ijWij) + bTλ

subject to ATk λ− β


1

(1TnX
k
·1−Xk1·1n+Lk1 )α

...
1

(1TnX
k
·n−Xkn·1n+Lkn)α

 ≥ 0,

constraints of (9), k = 1, . . . , τ.

(20)

Proof: With uncertain set defined as (19), r1, . . . , rτ

are not independent, and we first derive the Lagrangian and
dual of the maximum part of the objective function (9) with
constraint λ ≥ 0, vτ ≥ 0 for the last stage τ

Lτ (Xk, rk, λ, vτ )

=
τ∑
k=1

(cT (Xk)rk + d(Xk)) + vTτ r
τ − λT (A1r

1 + · · ·+Aτ r
τ − b),

=bTλ−
τ∑
k=1

((ATk λ− c(X
k))T rk − d(Xk))− vTτ rτ ,

Taking the partial derivative of the above equation over rτ ,
similarly as the proof of Theorem 1, the objective function
of the dual problem is

gτ (Xk, λ, r1, . . . , rτ−1) = sup
rT∈∆

Lτ (Xk, rk, λ, vτ )

=

∞ if ATτ λ− c(Xτ ) < 0,
τ−1∑
k=1

−(ATk λ− c(Xk))T rk +
τ∑
k=1

d(Xk) + bTλ o.w.

Problem (9) is equivalent to the following form without rτ

min.
X1

max
r1∈∆

min
X2,L2

max
r2∈∆

. . . max
rτ−1∈∆

min
Xτ ,Lτ ,λ

τ−1∑
k=1

−(ATk λ− c(Xk))T rk +

τ∑
k=1

d(Xk) + bTλ

s.t. ATτ λ− c(Xτ ) ≥ 0 and constraints of (9).

Now consider the minimax problem over stage τ − 1 and
τ of the above problem

max
rτ−1∈∆

min
Xτ ,Lτ ,λ

τ−1∑
k=1

−(ATk λ− c(Xk))T rk +

τ∑
k=1

d(Xk) + bTλ

s.t. ATτ λ− c(Xτ ) ≥ 0 and constraints of (9).

(21)

The Domain of problem (21) satisfies that Xτ , Lτ , λ is
compact (convex and closed), rτ−1 is compact. The objective
function is a closed function convex over Xτ , Lτ , λ and
concave over rτ−1. According to Proposition 2.6.9 with
condition (1) of book [4], the set of saddle points of (21)

is nonempty, and we can exchange the order of max and
min without changing the optimal solution:

max
rτ−1∈∆

min
Xτ ,Lτ ,λ

gτ = min
Xτ ,Lτ ,λ

max
rτ−1∈∆

gτ

Then we derive the dual form for stage τ −1 with respect
to maximum over rτ−1, and only one additional constraint
rτ−1 ≥ 0 with corresponding multiplier vτ−1 is added to
the Lagrangian of stage τ − 1 based on gτ :

Lτ−1(X1, r1, . . . , Xτ−1, rτ−1, λ, vτ−1)

=

τ−1∑
k=1

(c(Xk)−ATk λ)T rk +

τ∑
k=1

d(Xk) + bTλ− vTτ−1r
τ−1.

Similarly, we calculate partial derivative of Lτ−1 over rτ−1

to get gτ−1, and exchange the order of max and min in
the objective function. By induction to k = 1, we have the
following convex optimization form of the objective function
for formulation (9)

minimize
Xk≥0,Lk≥0,λ≥0

τ∑
k=1

(
∑
i

∑
j

Xk
ijWij) + bTλ.

Hence, with all the constraints, problem (20) is the compu-
tationally tractable convex optimization form of problem (9)
under dependent uncertain set (19).

With equivalent convex optimization forms under different
uncertainty sets, robust taxi dispatch problem (9) is compu-
tationally tractable and solved efficiently.

IV. SIMULATIONS

We conduct simulations based on a San Francisco taxi data
set [16]. Information for each individual taxi includes three
components: the Unix epoch time, the geometric position
(latitude and longitude), and a binary indicator of whether the
taxi is vacant or with passengers. We show the motivation to
find robust dispatch solutions with model uncertainties, and
compare the optimal cost of robust dispatch (9) with convex
optimization form (8) in this section.

Estimate uncertainty sets for demand rk:
A boxplot of total number of requests (pick up events)

during one hour (5 : 00 − 6 : 00 pm) in different regions
is shown in Figure 3. The mean and standard deviation of
the model are calculated via bootstrap [6]. Figure 3 shows
a motivation of this work — a robust dispatch algorithm to
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Fig. 3. Boxplot of total number of equests at each region during one hour.
The red line in the middle shows the median value of all samples, the box
shows the distribution of data, with range first quartile and third quartile.
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Fig. 5. Cost distribution comparison of robust optimization (9) so-
lutions in this work and non-robust optimization (8) solutions. The
lines show the number of experiments with cost falling in intervals
[12, 14], (14, 16], . . . , (48, 50] of two methods applying Monte-Carlo
experiments based on the historical data set. Robust optimization solutions
in this work has a shorter tail than non-robust solutions.

balance the number of taxis according to the demand from
the perspective of system-level optimal performance.

How vacant taxis are balanced across regions with dif-
ferent α values: Figure 4 shows mismatch between supply
and demand defined as equation (4) for different optimal
solutions of minimizing JE defined in (5) for α ∈ (0, 1].
With α closer to 0, the optimal value of (4) is smaller.
We choose α = 0.1 for calculating optimal solutions of (9)
and (8) in this section.

Compare robust solutions with non-robust solutions:
We compare the cost distribution of 200 Monte-Carlo sim-
ulations based on the data set of robust optimization solu-
tions (9) and convex optimization solutions (8) in Figure 5.
The customer demand models applied in the two algorithms
are different. For the objective function (8), the nominated
demand prediction rk is a deterministic value, for instance
— the average or mean of the bootstrap model which is
constructed based on the historical data set. For the robust
problem formulation (9) considered in this work, the un-
certainty set is a box defined according to the mean and
covariance matrix of the bootstrap model.

Figure 5 shows that the robust dispatch solutions result
in 35.5% fewer experiments with a cost greater than 37,
compared with non-robust solutions. It means the cost dis-
tribution of the robust optimization (9) in this work has a
shorter tail than that of the deterministic convex optimiza-
tion formulation (8). With model uncertainty information in
decision making, system performance is improved compared
with solutions only based on the nominal demand model.

V. CONCLUSION

In this paper, we propose a novel robust optimization
formulation to deal with demand model uncertainties in

taxi dispatch solutions. The robust optimization problem
formulation is constructed based on polytopic type of model
uncertainties, considering multiple objectives and practical
constraints. Transformed to an equivalent convex optimiza-
tion form, the problem is solvable in polynomial time. By
experimenting the method in this work on a real historical
GPS and occupancy record data set, we show that robust
dispatch solutions are less probably to have relatively large
costs. In the future, we will enhance problem formulation
considering more uncertain characteristics of taxi network
model, like passenger destinations and road congestions.
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