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ABSTRACT We present a new method for the automated synthesis of digital controllers with formal safety
guarantees for systems with nonlinear dynamics, noisy output measurements, and stochastic disturbances.
Our method derives digital controllers such that the corresponding closed-loop system, modeled as a
sampled-data stochastic control system, satisfies a safety specification with probability above a given
threshold. Our technique uses a fast solver and an optimization method to search for candidate controllers,
which are then formally evaluated in closed-loop with the system in question by a verified solver. Unstable
candidate controllers are discarded by efficiently checking a sufficient condition for Lyapunov stability of
sampled-data nonlinear systems. We evaluate our technique on three case studies: an artificial pancreas
model, a powertrain control model, and a quadruple-tank process.

INDEX TERMS Formal controller synthesis, parameter synthesis, probabilistic guarantees, safety verifica-
tion, sampled-data nonlinear systems, satisfiability modulo theories, statistical model checking, stochastic
systems.

I. INTRODUCTION
Due to its superior flexibility, scalability, and lower cost,
digital control is used in many cyber-physical and embed-
ded systems applications, ranging from aircraft autopilots
to biomedical devices. The synthesis of digital controllers
for linear systems is well-studied [34], but its extension to
nonlinear and stochastic systems has proven much more
challenging [3], [17], [24]. The digital-control problem is
further complicated by, e.g., time discretization and signal
quantization. Yet another issue is the lack of automated
synthesis techniques with provable guarantees, especially
for properties beyond stability (e.g., safety) for nonlinear
stochastic systems.

In this article, we introduce a new method for the synthesis
of probabilistically safe digital controllers for a large class
of stochastic nonlinear systems, viz. sampled-data stochastic
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control systems (SDSSs). In an SDSS, the plant is modeled
by a set of nonlinear differential equations subject to ran-
dom input disturbances, and the digital controller samples
the noisy plant output, generating the control input with a
fixed frequency. This class of systems is general enough
to describe, for instance, numerical solutions of stochas-
tic differential equations [39]. By a probabilistically safe
system, we mean a system that has a small probability
of entering a forbidden (unsafe) subset of its state space.
Note that we are not concerned with safety from external
attacks.

Controllers are usually designed to ensure stability of the
closed-loop system [24]. Given a possibly nonlinear SDSS S
and a linearization S ′ of S, previous work [32] provides
sufficient conditions on S ′ that ensure the stability of S.
Unfortunately, it is difficult to verify these conditions algo-
rithmically. Lawrence [26] provides a necessary and suffi-
cient condition for exponential stability of SDSS based on
its linearized version.
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FIGURE 1. Overview of our synthesis approach for safe digital controllers.

In this article, we focus onLyapunov stability of SDSSs and
use the condition provided in [26] as a sufficient criterion for
Lyapunov stability. This condition is easy to verify, and we
use it to restrict the controller synthesis domain. Note that
even if the SDSS is stable, it is not necessarily safe since
during the transient, the system might reach an unsafe state.
The synthesis approach that we propose derives controllers
that render the closed-loop SDSS provably probabilistically
safe and Lyapunov-stable.

Given an invariant φ (i.e., a correctness specification), and
a nonlinear plant with stochastic disturbances and noisy out-
puts, our method synthesizes a digital controller such that the
corresponding closed-loop system satisfiesφ with probability
above a given threshold ϑ . An overview of the synthesis algo-
rithm (presented in detail in Section V) is given in Figure 1.
It works by alternating between two steps: generation of a
candidate controller pc, and its verification.
The candidate controller pc is generated via the optimize

procedure (see Algorithm 2), which maximizes a Monte
Carlo estimate of the satisfaction probability by simu-
lating a discrete-time approximation of the system with
a non-validated ordinary differential equation (ODE)
solver. Such a candidate is therefore sub-optimal, but can be
generated very rapidly. To rule out unstable candidate con-
trollers, we use an easy-to-check condition that is sufficient
to guarantee Lyapunov stability of the closed-loop SDSS.
Along with pc, procedure optimize returns an approximate
confidence interval (CI) [a, b] for the satisfaction probability.
Next, in the verification step (procedure verify), we use

a validated solver based on SMT (Satisfiability Modulo
Theories) to compute a numerically and statistically valid
CI [a′, b′] for the satisfaction probability of pc. If the devi-
ation between the approximate CI [a, b] and the precise
CI [a′, b′] is too large, indicating that the candidate gener-
ated by optimize is not sufficiently accurate, we increase
the precision of the non-validated, fast solver (procedure
update_discretization). If instead a′ is not above the
threshold ϑ , we expand the search space for candidates by
increasing the controller complexity.

In summary, the contributions of this article are:

• We present a novel algorithm for the synthesis of digital
controllers with stability and probabilistic safety guar-
antees.

• Weutilize Lyapunov’s indirect method to derive an easy-
to-check condition for Lyapunov stability of nonlinear
systems in closed-loop with digital controllers.

• We restrict the synthesis domain based on the stability
test and use a verified solver to check the safety of
sampled trajectories of the system.

• We conduct an extensive experimental evaluation of the
algorithm based on three significant case studies.

Related Work: Advanced controller synthesis techniques
for nonlinear systems are studied extensively in the litera-
ture. Recent examples of such techniques include [6], [7],
[30], [31], [41]. The paper [30] represents the nonlinear
plant as a Takagi-Sugeno fuzzy system and designs a static
output feedback tracking controller to achieve dissipative
tracking performance subject to quantization effects. The
paper [6] assumes a similar representation of the nonlinear
plant and studies networked nonlinear systems with multi-
path data packet dropouts. State estimation of Markovian
coupled networks with nonlinear dynamics is studied in [41].
The analyses of these papers are conducted for discrete-time
dynamics while our work studies nonlinear systems with
continuous-time dynamics. The paper [7] considers a class
of switched stochastic nonlinear systems and provides an
output-feedback tracking control scheme based on fuzzy
observers and fuzzy logic approximations of the unknown
nonlinear functions. The paper [31] studies adaptive neural
tracking control of nonlinear systems with multiple inputs
and outputs.

The problem of controller synthesis under safety require-
ments has been investigated mainly in the context of Model
Predictive Control (MPC) [4], the goal of which is to find
the control input that optimizes the predicted performance
of the closed-loop system up to a finite horizon. The works
of [14], [23], [25], [29], [35], [36], [40], [50] consider safety
requirements expressed as temporal logic formulas, and syn-
thesize MPC controllers that optimize the robust satisfaction
of the formulas [10] (i.e., a quantitative measure of satisfac-
tion). MPC is an online method that often requires solving
at runtime computationally expensive optimization problems.
In contrast, our approach performs controller synthesis at
design time.

Another approach to the stochastic synthesis problem
with safety requirements is to directly maximize the safety
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FIGURE 2. Architecture of a sampled-data stochastic control system.

probability under all classes of policies [48]. The related
computational techniques generally rely on abstraction meth-
ods [18], [47]. A set-based computation approach to con-
troller synthesis with safety guarantees is proposed in [8].
Reach-avoid specification on linear systems is studied in [13].
It is shown in [11] that the reach-avoid probability can be
formulated as a solution of partial differential equations for
continuous-time systems. Another research line related to
our work involves randomized methods [5], [12] that find a
solution for a chanced-constrained optimization. Our work
tackles an orthogonal aspect of the optimization, which is
evaluating sampled constraints that depend on the solutions
of ODEs. This task is generally undecidable and requires
verified solvers as used in our approach.

Due to its alternation between candidate controller gener-
ation and candidate verification, our synthesis method shares
features with Counterexample-Guided Inductive Synthesis
(CEGIS) [45]. The main difference with our method is that
in CEGIS, the candidate-generation step actively uses the
counterexamples found by the verifier by attempting to gen-
eralize the counterexamples to larger regions of the search
domain. This aspect, however, is not relevant to our method,
where there is no notion of counterexample. CEGIS-based
approaches to controller synthesis include [1], [37], but,
unlike our method, these approaches do not support nonlinear
and stochastic dynamics.

The closest paper to our own is [42], where the authors pro-
pose a method to synthesize continuous-time PID controllers
for satisfying bounded reachability properties. That method
works under the assumption that the system can measure the
output of the plant continuously and without sensing noise.
This assumption, however, is unrealistic for the majority
of embedded systems whose operations are governed by a
discrete-time clock and where sensor noise is unavoidable.

This article is organized as follows. Section II pro-
vides a formal definition of sampled-data stochastic systems
(SDSSs), while Section III defines digital controllers for
SDSSs and describes the problem of stability of a closed-loop
system. Section IV discusses synthesis of digital controllers
for SDSSs that satisfy a given safety property. Section V
introduces our digital controller synthesis algorithm, and
Section VI discusses the challenges of implementing digital
controllers on finite-precision hardware. Section VII presents
our case studies (artificial pancreas, powertrain system and

quadruple-tank process) while Section VIII offers our con-
cluding remarks and directions for future work.

II. SAMPLED-DATA STOCHASTIC SYSTEMS
We consider sampled-data stochastic control systems
(SDSSs), a rich class of control systems where the plant is
specified as a nonlinear system subject to random distur-
bances. The controller periodically samples the plant output,
which is subject to random noise, and generates a control
input which depends on the history of past plant outputs and
control inputs and which is kept constant during the sampling
period with a zero-order hold; see Figure 2. The controller is
characterized by a number of unknown parameters, which are
the target of our synthesis algorithm.
Definition 1 (Sampled-data Stochastic Control System):

An SDSS is described in the following state-space notation:

d
dt
x(t) = f (x(t), u(t), d(t)), x(0) = x0

y(tk )= o(x(tk ))+ η(tk ), tk = k · τ, k ∈ Z≥0

u(t)= h(y(t0), . . . , y(tk ), u(t0), . . . , u(tk ),p),∀t∈[tk , tk+1),

(1)

where

• x(t) ∈ Rn is the state of the plant at time t;
• x0 is the initial state at time t = 0;
• d(t) ∈ Rq is the disturbance at time t;
• y(t) ∈ Ro is the plant output at time t , which is a function
of the state with additive noise η;

• h(·) is the digital controller (defined in Section III);
• u(t) ∈ Rm is the control input at time t , updated at every
sampling period τ > 0 by the digital controller h;

• p ∈ P ⊂ Rp is the vector of unknown controller
parameters, where P is a hyperbox (i.e., a product of
closed intervals);

• f (·) is the vector field governing the dynamics of the
plant (we assume f ∈ C1, hence Lipschitz-continuous);

• o : Rn
→ Ro is the output map and is in C1.

Assumption 1: The additive measurement noises η(tk ) are
i.i.d. random variables with probability density function fη.
The disturbance d(·) is random with realizations that are
piecewise-continuous with a finite number of discontinuities
for a given time horizon T . We assume d(·) can be defined
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in terms of a finite number of random parameters δ1, . . . , δd
having a joint density function fδ .

Note that these assumptions on d(·) are reasonably mild
and allow us to define very general classes of systems, which
subsume, for instance, numerical solutions of stochastic dif-
ferential equations [39]. Such numerical solutions indeed rely
on computing the value of theWiener process at discrete time
points, which makes it a special case of our disturbances.

We denote with 2T the joint distribution of the measure-
ment noises and the disturbances up to time T . The density fθ
of θ ∼ 2T can be written as

fθ (g1, . . . , gd, e0, . . . , ek ′) = fδ(g1, . . . , gd)
k ′∏
i=0

fη(ei) (2)

with k ′ = bT/τc. We use 2T with density function fθ as the
underlying probability space for assigning probability to state
trajectories of the SDSS.

III. DIGITAL CONTROLLERS
The operation of a digital controller is succinctly indicated
in Equation (1). These computations are generally performed
using current and past output samples and past input samples.
Definition 2 (Digital Controller for SDSS): Given an

SDSS, we denote y[k] = y(tk ) and u[k] = u(tk ) and define
the tracking error as

e[k] = r − y[k], k ∈ Z≥0 (3)

where r is a constant reference signal. The output of the
controller is u[·] ∈ Rm defined by

u[k] = −
L∑
i=1

aiu[k − i]+
L∑
i=0

bie[k − i], (4)

where u[j] = e[j] = 0 for j < 0,1 L is the controller degree,
and ai ∈ Rm

×Rm and bi ∈ Rm
×Ro are coefficient matrices

of the controllers.
Controller design amounts to finding a degree L and coeffi-

cientmatrices {ai}Li=1, {bi}
L
i=0 that ensure the desired behavior

of the closed-loop system. The vector of parameters p defined
in (1) is recovered by setting p as a vector containing all
the entries of the coefficient matrices ai, bi. In the following
we use an alternative description of the controller using the
state-space representation

z[k + 1] = Gcz[k]+ Hce[k], z[0] = z0
u[k] = Ccz[k]+ Dce[k], k ∈ Z≥0, (5)

where z[k] ∈ Rz is the state of the controller and matrices
(Gc,Hc,Cc,Dc) need to be designed. The above two repre-
sentations are equivalent. Given a controller in the form of (4),
one can transform it to the representation (5), for instance by
taking states as memories that store previous values of inputs
and outputs. Given matrices (Gc,Hc,Cc,Dc), one can easily
compute the coefficient matrices {ai}Li=1, {bi}

L
i=0 in (4) using

matrix multiplication [34].

1Note that if the controller has been previously deployed, i.e., it starts from
a non-empty history, then u[j], e[j] may be nonzero for j < 0.

A. STABILITY OF THE CLOSED-LOOP SYSTEM
In the remainder of this section, we consider a version of the
SDSS (1) controlled by (5) without any external inputs, i.e.,
when d and η are identically zero.We call this the closed-loop
SDSS and define its augmented state via

xa(t) =
[
x(t)
z[k]

]
, ∀t ∈ [tk , tk+1), k ∈ Z≥0. (6)

An essential requirement in the design of any controller is sta-
bility of the closed-loop systemwith respect to an equilibrium
point.
Definition 3 (Equilibrium Point): Any vector xae ∈ Rn

×

Rz with xae = [xTe , z
T
e ]
T is called an equilibrium point of the

closed-loop SDSS if ze = Gcze, o(xe) = r , and f (xe, ue, 0) =
0 with ue := Ccze.
The above definition implies that if the SDSS starts at

equilibrium x(0) = xe, the controller starts at z[0] = ze, and
the input is kept constant at u(t) = ue for all t ≥ 0, then the
augmented state remains constant xa(t) = xae for all t ≥ 0
and the output is the reference signal y(t) = r .
Different notions of stability exist in the literature [46] that

require different limiting behavior from the trajectories of the
system. We focus on local Lyapunov stability, which is the
very first notion that addresses the behavior of the closed-loop
system with respect to the effect of initial states without
considering external inputs d and η. The precise definition
is stated next. Since only local stability is discussed in this
article, stability in the rest of this article means local stability.
Definition 4: The equilibrium point xae of the system (1)

controlled by (5) and without any external inputs is called
Lyapunov stable if for every ε > 0 there exists a δ > 0 such
that for all augmented initial state xa(0) with ‖xa(0)− xae‖ ≤
δ, we have ‖xa(t)− xae‖ ≤ ε for all t ≥ 0.

The following theorem is partly due to Lawrence [26], [27].
Theorem 1: Suppose f and o are continuously differen-

tiable. The equilibrium point xae = [xTe , z
T
e ]
T of the sys-

tem (1) is Lyapunov stable if all the eigenvalues of the matrix

Ĝ :=
[
G−HDcC −HCc
−HcC Gc

]
, (7)

are inside the unit circle, where G := eAτ , H :=
∫ τ
0 e

AλBdλ
with

A :=
∂f
∂x

(xe, ue, 0), B :=
∂f
∂u

(xe, ue, 0), C :=
∂o
∂x

(xe). (8)

Moreover, xae is Lyapunov unstable if at least one of the
eigenvalues of the matrix (7) is outside of the unit circle.

Note that the matrix (7) is obtained by first linearizing the
nonlinear dynamics of the augmented state (6) around xae and
then discretizing it in time.

Proof: It is shown by Lawrence [26], [27] that the
equilibrium point xae is exponentially stable if and only if
all eigenvalues of the matrix Ĝ in (7) are inside the unit
circle. Since exponential stability implies Lyapunov stability,
the first part of the theorem holds, i.e., xae is Lyapunov stable
if all eigenvalues of Ĝ are inside the unit circle. The second
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part of the theorem cannot be derived from [26], [27] since
exponential stability is a stronger notion than Lyapunov sta-
bility. For the sake of completeness, the proof of the second
part is presented in the appendix and is based on Lyapunov’s
indirect method.

We acknowledge that similar theorems exist in the liter-
ature separately for both cases of linearization of systems
and time-discretization of systems. However, we have been
unable to find a proof of Lyapunov instability of sampled-data
systems based on their linearized time-discretized ver-
sions. Therefore, a proof of this is provided in the
appendix.

Stability test. The characteristic polynomial P(s) of matrix
Ĝ in (7) is

P(s) = det(sI − Ĝ) = 0,

which is a polynomial whose coefficients depend on the
choice of parameters p for the digital controller (1) in either of
the representations (4)-(5). As we have shown in Theorem 1,
if this polynomial has a root s outside unit circle, i.e., ‖s‖ > 1,
then the closed-loop SDSS is Lyapunov unstable, so we can
eliminate that controller from the synthesis domain. If all
the roots are inside the unit circle, the closed-loop SDSS
is Lyapunov stable, so we keep that controller for further
analysis. Note that if the polynomial does not have any roots
outside unit circle but have roots on the unit circle, we still
discard the controller since it lies at the boundary of the
stability domain and its stability cannot be decided using the
above general test.
Remark 1: The assumption of a constant reference sig-

nal r made in this article can be generalized by having a
‘reference model’ that has known dynamics and a bounded
input (see e.g., [30]). The output of the reference model gives
a time-varying reference signal for tracking purposes. In this
case, the dynamics of the reference model can be included
in our analysis and other stronger notions of stability can be
utilized. Here we assume constant reference signal to provide
a succinct presentation of our results.

IV. DIGITAL CONTROLLER SYNTHESIS
In this section, we define the digital controller synthesis
problem for SDSS using the same notation of Definition 1.
Recall that we consider controller parameters p ∈ P (where
P is a hyperbox of appropriate dimension) and that2T in (2)
is the joint distribution of the underlying probability space for
trajectories of the SDSS up to time T . For clarity, let us denote
with x(p, θ, t) the state of the SDSS at time t under controller
parameters p ∈ P and stochastic variables θ ∼ 2T . We con-
sider time-bounded safety properties of the form G[0,T ]ψ ,
where ψ : Rn

→ B is a predicate that assigns either true
or false to the SDSS state vector. In particular, ψ describes
the invariant that the SDSS must satisfy at every time point,
and is described as a quantifier-free first-order-logic formula
over the theory of nonlinear real arithmetic. The semantics
of the safety properties is defined with respect to parameters

p ∈ P and stochastic variables θ ∼ 2T as follows:

(p, θ) |H G[0,T ]ψ ⇐⇒ ∀t ∈ [0,T ] ψ(x(p, θ, t)). (9)

Boolean combinations of safety properties follow the usual
interpretation. We remark that our focus is on safety proper-
ties, and hence we do not consider the full range of temporal
logic operators.2

For a time-bounded safety property G[0,T ]ψ , we denote by
Pr(p, ψ) the probability with respect to2T that the property
is satisfied by the SDSS instantiated with parameters p, i.e.,

Pr(p, ψ) =
∫
fθ (z) · 1

(
(p, z) |H G[0,T ]ψ

)
dz, (10)

where 1 is the indicator function and fθ is the density function
of θ ∼ 2T .
We seek to synthesize controller parameters p for the SDSS

such that the safety probability Pr(p, ψ) is above a given
threshold ϑ . In particular, we restrict the search space for p by
assuming a maximum controller degree L (see Definition 2).
Definition 5 (Digital Controller Synthesis): Given an

SDSS, a time-bounded safety property G[0,T ]ψ , a maxi-
mum controller degree L, and a probability threshold ϑ ∈
(0, 1), the digital controller synthesis problem is finding the
degree l∗

l∗ = min{ l | C(l) 6= ∅, l ≤ L}

and a controller parameter p∗ ∈ C(l∗) where

C(l) := {p ∈ Pl | Pr(p, ψ) > ϑ}

and Pl is the parameter space of controllers of degree l. We
define the feasible set of this controller synthesis problem
by C :=

⋃
l≤L C(l). If C = ∅ we say that the problem is

infeasible.
In general, the above synthesis problem is very hard to

solve exactly due to the presence of nonlinearities, ordi-
nary differential equations (ODEs) introduced by the SDSS
dynamics, and multi-dimensional integration for computing
probabilities. In fact, a decision version of the digital con-
troller synthesis problem (i.e., given l ≤ L decide whether
C(l) is nonempty), is easily shown to be undecidable. While
Satisfiability Modulo Theory (SMT) approaches, e.g., [15],
can now in principle handle nonlinear arithmetics via a
sound numerical relaxation, their computational complexity
is exponential in the number of variables. In particular, our
stochastic optimization problem is high-dimensional and cur-
rently infeasible for fully formal approaches, but it can be
tackled, as done in [44], by replacing the exact probabil-
ity Pr(p, ψ) with a statistical estimate, thereby obtaining a
Monte Carlo version of Definition 5.

From a statistical viewpoint, the satisfaction of ψ is a
Bernoulli random variable with parameter Pr(p, ψ), which
is the true probability that the SDSS with parameter p sat-
isfies ψ . Let θK = (θ1, . . . , θK ) be a finite-dimensional
random vector in which each θi is independent and identically

2Time-bounded reachability F[0,T ]ψ can be expressed as ¬G[0,T ]¬ψ .
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distributed as 2T . A sample of 2T is a (non-random) vector
zK = (z1, . . . , zK ) where each observation zi is a realization
of θi.

TheMonte Carlo estimator P̂r(p, ψ, θK ) ofPr(p, ψ) is the
proportion of times θi satisfies the safety property:

P̂r(p, ψ, θK ) =
1
K

K∑
i=1

1
(
(p, θi) |H G[0,T ]ψ

)
. (11)

Note that the estimator P̂r(p, ψ, θK ) is a random variable
as it depends on the random vector θK . Importantly, by the
properties of themean, P̂r(p, ψ, θK ) is an unbiased estimator,
meaning that its expected value E

[
P̂r(p, ψ, θK )

]
is equal

to the true probability Pr(p, ψ). Given a sample zK , i.e., a
realization of θK , the (non-random) quantity P̂r(p, ψ, zK )
denotes theMonte-Carlo estimate ofPr(p, ψ), i.e., a concrete
realization of the estimator P̂r(p, ψ, θK ).

To solve the Monte Carlo synthesis problem, we need
to decide if Pr(p, ψ) > ϑ on the basis of a concrete
sample zK and estimate P̂r(p, ψ, zK ). This corresponds to
a statistical hypothesis testing problem, where one tests the
null hypothesis H0 : Pr(p, ψ) ≤ ϑ against the alternative
hypothesis Ha : Pr(p, ψ) > ϑ . The test rejects H0 in favor
of Ha if it is unlikely that the estimate P̂r(p, ψ, zK ) would
have been observed if H0 was true. For any test, there is
some probability of committing type-1 errors, i.e., of wrongly
rejecting H0, and type-2 errors, i.e., of failing to reject H0
even though H0 is false. This probabilities are induced by
sampling, i.e., by the vector of random parameters θK . Any
test procedure guarantees that the probability of type-1 errors
equals an arbitrarily small significance level α ∈ (0, 1) [28].
The confidence c = 1−α is the probability thatH0 is correctly
rejected.

Below we describe our statistical test by the predicate
γ
(
Pr(p, ψ) > ϑ, P̂r(p, ψ, zK ), α

)
, which is true iff, on the

basis of the estimate P̂r(p, ψ, zK ), the test rejects hypothesis
Pr(p, ψ) ≤ ϑ in favor of Pr(p, ψ) > ϑ at significance
level α. Therefore, in theMonte Carlo version of the synthesis
problem, we synthesize controller parameters p for the SDSS
such that the test predicate is true for some given α.
Definition 6 (Digital Controller Synthesis – Monte Carlo):

Given an SDSS, a time-bounded safety property G[0,T ]ψ ,
a maximum controller degree L, a probability threshold
ϑ ∈ (0, 1), a sample zK = (z1, . . . , zK ) of 2T , and a sig-
nificance level α ∈ (0, 1), the Monte Carlo digital controller
synthesis problem is finding

l̂∗ = min{ l | Ĉ(l) 6= ∅, l ≤ L}

and a controller parameter p̂∗ ∈ Ĉ(l̂∗) where

Ĉ(l) :=
{
p ∈ Pl | γ

(
Pr(p, ψ) > ϑ, P̂r(p, ψ, zK ), α

)}
.

For a sample zK , we define the feasible set of this controller
synthesis problem by Ĉ :=

⋃
l≤L Ĉ(l). If Ĉ = ∅, then we say

that the problem is infeasible for zK .
The following proposition provides a way to decide the

test predicate γ
(
Pr(p, ψ) > ϑ, P̂r(p, ψ, zK ), α

)
by using a

confidence interval (CI). Given a confidence level c ∈ (0, 1)
and a random i.i.d. vector θK , an interval [a(θK ), b(θK )] is a
c-CI for Pr(p, ψ) if the probability w.r.t. θK that the interval
contains Pr(p, ψ) is c. Note that the interval endpoints are
random as they depend on θK . For a concrete sample zK ,
we denote by [a(zK ), b(zK )] the corresponding (non-random)
interval estimate based on zK .
Proposition 1: For significance level α ∈ (0, 1) and sam-

ple zK of 2T , let [a(zK ), b(zK )] be a (1 − α)-confidence
interval estimate for Pr(p, ψ). Then, for any ϑ ∈ (0, 1),

a(zK ) > ϑ ⇒ γ
(
Pr(p, ψ) > ϑ, P̂r(p, ψ, zK ), α′

)
,

for some α′ ≤ α.
Proof: The proof is based on standard results in statisti-

cal hypothesis testing and is presented in the appendix.
That is, if the lower end of the (1−α)-CI estimate forPr(p, ψ)
is above ϑ , then we can reject the hypothesis Pr(p, ψ) ≤ ϑ
in favor of Pr(p, ψ) > ϑ at level at most α.

We remark that solving the Monte Carlo synthesis prob-
lem of Definition 12 is simpler than solving the problem of
Definition 11, because deciding whether p ∈ Ĉ(l) for a
parameter p only requires performing an hypothesis test,
which boils down to computing a CI estimate. The cost of
this procedure reduces to that of evaluating the property
(p, zi) |H G[0,T ]ψ for each individual observation zi, plus a
constant-time operation to derive the interval. On the other
hand, the problem of Definition 11 involves precise integra-
tion of (p, z) |H G[0,T ]ψ over the probability distribution
of θ ∼ 2T as written in (10), which is, clearly, more
computationally expensive.

However, even with this simplification, a decision version
of the Monte Carlo digital controller synthesis problem (i.e.,
deciding whether Ĉ(l) = ∅ for some sample zK ) remains
undecidable when plants with nonlinear ODEs are involved.
That is because evaluating (p, zi) |H G[0,T ]ψ amounts to solv-
ing reachability, which is well known to be an undecidable
problem for general nonlinear systems. Hence, as explained
in the next Section, one can only solve the Monte Carlo con-
troller synthesis problem approximately, in the sense that we
might not be always able to return the optimal controller l̂∗.
We now discuss the relation between the feasible set of the

synthesis problem of Definition 5, C, and that of the Monte
Carlo version of Definition 6, Ĉ.
Proposition 2: Let θK = (θ1, . . . , θK ) be the vector rep-

resenting a random sample of the stochastic SDSS parame-
ters, i.e., where each θi is i.i.d. as 2T . Then the following
statements hold:
i. ProbθK {Ĉ ⊆ C} = 1 − α, where α is the significance

level chosen in Definition 6 for the test predicate γ .
ii. ProbθK {C ⊆ Ĉ} = 1− β, where β is the probability of

type-2 errors for γ .
Proof: i. follows from noticing that p ∈ Ĉ ⇒ p 6∈ C

can be rewritten as γ
(
Pr(p, ψ) > ϑ, P̂r(p, ψ, θK ), α

)
⇒

Pr(p, ψ) ≤ ϑ , which is a type-1 error. By the same argument,
ii. holds because p ∈ C ⇒ p 6∈ Ĉ corresponds to a type-2
error.
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Unlike α, the error probability β cannot be controlled a priori
and depends on the true probability Pr(p, ψ). However, it is
easy to show that β can be reduced by increasing the sample
size K or the level α .3

V. SYNTHESIS ALGORITHM
In this section, we present an algorithm for approximately
solving the Monte Carlo controller synthesis problem of
Definition 12. Our synthesis algorithm starts from controllers
with degree l = 0 and iteratively increases l until the con-
straint Ĉ(l) 6= ∅ is satisfied or l reaches a maximum value.

The synthesis algorithm, summarized in Algorithm 1, con-
sists of two nested loops. The inner loop (lines 4–10) com-
prises two stages: optimization and verification. Procedure
optimize (line 5) aims at finding parameters p that maxi-
mize the empirical probability that the closed-loop system
with a discrete-time approximation of the plant satisfies the
safety specification; optimize also returns an approximate
confidence interval (CI) [a, b] for such probability. This CI
is approximate since it is derived using an approximation of
the true closed-loop system. Then, procedure verify (line 6)
checks the candidate controller p in closed-loopwith the orig-
inal (continuous-time) plant model and computes a precise
CI [a′, b′] for Pr(p, ψ) (11). We use the continuous-time
plant only in verify because of the high computational com-
plexity of validated ODE solving compared to solving its
discrete-time approximation. The interval returned by verify
is compared with the current best precise interval [a∗, b∗],
which is then updated accordingly (line 7).
Note that we use the lower bound of the CI as the opti-

mization objective, because, by Proposition 1, this being
above ϑ ensures that the safety probability of the synthesized
controller is above ϑ with confidence 1− α.4

The procedures optimize and verify are iterated until the
approximate CI (for the discrete-time plant) [a, b] and the
verified CI (for the continuous-time plant) [a′, b′] overlap to a
sufficient length, or a∗ > ϑ (line 10), or a maximum number
of iterations is reached. The first condition implements an
heuristics aimed at terminating early when the discrete-time
plant and the continuous-time plant essentially behave the
same, and thus a finer discretization is not needed. If a∗ > ϑ

holds, then the current best parameter p∗ is a witness for
Ĉ(l) 6= ∅. Therefore, p∗ approximately solves the digital
controller synthesis problem of Definition 12. (The approxi-
mation lies in the fact that we cannot guarantee that the syn-
thesized controller hasminimum degree.) Thus, the algorithm
terminates returning p∗. Otherwise, if a∗ ≤ ϑ , we increase
the controller degree l (line 11) up to a maximum degree L
and proceed with another iteration of the outer loop.

3Assuming to use the precise binomial test for proportions [9], β ≤
FB(K ,Pr(p,ψ))

(
F−1B(K ,ϑ)(1− α)− 1

)
, where FB(n,p) is the cumulative dis-

tribution function of the binomial distribution with parameters n and p, and
F−1B(n,p) is its inverse.

4On the contrary, using the midpoint of the interval does not provide any
statistical guarantee about the satisfaction of our specification.

In the inner loop, line 9 improves the approximation of
the closed-loop system used in optimize. This can be any
adjustment to the ODE solver complexity (e.g., increasing the
Taylor series order). In our case, it corresponds to increasing
the number of time points used for ODE integration. We next
explain both optimize and verify in more detail.

Algorithm 1Main Synthesis Algorithm
Input: S – SDSS, L ≥ 0 – maximum controller degree,

P = [c0, d0] × · · · × [c2L , d2L] – parameters domain, ϑ
– probability threshold, m – initial solver discretization,
ε ∈ (0, 1) – factor for tuning m (interval overlap), ξ –
confidence interval size, c – confidence value.

Output: {p∗, [a∗, b∗]} - best performing controller.
1: [a∗, b∗] := [0, 0]; l := 0
2: repeat
3: Pl := [c0, d0]× · · · × [c2l, d2l]
4: repeat
5: {p, [a, b]} := optimize(S,Pl,m, ξ, c)
6: [a′, b′] := verify(S,p, ξ, c)
7: if a′ > a∗ then p∗ := p; [a∗, b∗] := [a′, b′]
8: end if
9: m := update_discretization(m)
10: until |[a, b] ∩ [a′, b′]| ≥ ε(b − a) or a∗ > ϑ or

MAX_ATTEMPTS
11: l = l + 1;
12: until l > L or a∗ > ϑ

13: return {p∗, [a∗, b∗]}

a: PROCEDURE OPTIMIZE
The procedure, described in Algorithm 2, implements a mod-
ified cross-entropy (CE) optimization algorithm [38] which
works as follows: 1) a set of controller parameters is drawn
randomly from a normal distribution (whose mean is initially
set to the center of the parameter domain); 2) a CI for the
safety probability is computed for each sampled parameter,
and only the best ones (the 10% with highest safety probabil-
ities) are used for updating the mean and the variance of the
normal distribution used for sampling controller parameters.
Multiple iterations of steps 1) and 2) allow the CE distribu-
tion to approach parameter values that maximize the safety
probability. CE is an effective black-box optimization algo-
rithm, which has been shown to converge to locally optimal
solutions.5

After sampling a controller p, we first apply the stabil-
ity check of Theorem 1 (line 7). If p does not pass the
test, i.e., it is necessarily unstable, it is rejected. Otherwise,
we compute a CI for Pr(p, ψ). For this purpose, we consider
a discrete-time version of the plant, where the time interval
between the controller sampling points (defined by τ – see
Definition 1) is discretized uniformly using m time points.
Then the model ODEs are evaluated by an approximate ODE

5Making it more advanced than plain random sampling. Our approach,
however, can be easily adapted to other black-box optimization algorithms.
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Algorithm 2 {p, [a, b]} := optimize(S,Pl,m, ξ, c)
Input: S,Pl,m, ξ, c
Output: p, [a, b]

FModified Cross-Entropy (CE) algorithm
1: p∗ := ⊥; [a∗, b∗] := [0, 0]
2: repeat
3: Q := {(p∗, [a∗, b∗])} F queue of samples
4: repeat
5: p:= sample parameters from CE distribution
6: if (p passes stability check) then
7: F Theorem 1
8: [a, b]:= confidence interval, with size ξ and

confidence c, for probability of satisfy-
ing ψ with plant discretization m and
controller p

9: else [a, b] := [0, 0]
10: end if
11: Q := Q ∪ {(p, [a, b])} F add sample to Q
12: until MAX_SAMPLES
13: (p∗, [a∗, b∗]) := argmax {a | (p, [a, b]) ∈ Q}
14: update CE distribution using tail(Q)
15: F using the bestMAX_SAMPLES − 1 samples
16: Q := ∅ F empty queue
17: untilMAX_ITERATIONS
18: return {(p∗, [a∗, b∗])}

solver (based on the first term of the Taylor series expansion)
only at the points of the obtained grid 0 = t1 < · · · < tm = τ .
(The safety property is also checked at these time points only.)
If there is a discrepancy between the CIs produced by proce-
dures optimize and verify, the discretization granularitym is
increased, and procedure optimize is executed again.
To compute the CI, we use sequential Bayesian estimation

for efficiency reasons [44], but other standard statistical tech-
niques may also be employed (e.g., the Chernoff-Hoeffding
bound). After an adequate number of controller parameters
are sampled and evaluated, the best performing sample is cho-
sen (line 13), and the CE distribution is updated accordingly
(line 14, see [38] for more details). This is repeated until a
maximum number of iterations is reached.

b: PROCEDURE VERIFY
We use the ProbReach tool [43] to compute a CI for Pr(p, ψ)
(line 6 of Algorithm 1). This step is necessary since the
candidate controller has been obtained using an approxi-
mate, discrete-time solver for simulating the continuous plant
dynamics, while ProbReach uses instead an SMT solver [16]
to handle the plant dynamics in a sound manner. In particular,
ProbReach allows to derive a numerically and statistically
valid confidence interval.

Procedure verify consists of two steps. The first step builds
a hybrid system (the model format accepted by ProbReach)
representing the closed-loop system under the candidate con-
troller. In the second step, verify invokes ProbReach with

three parameters: the hybrid system, and the required min-
imum size ξ and confidence c of the confidence interval to
compute. We remark that the size of the confidence interval
cannot be guaranteed in general [44] because of the unde-
cidability of reasoning about nonlinear arithmetic. The confi-
dence interval returned by ProbReach via verify can be fully
trusted from both the statistical and numerical viewpoints:
while the interval size might be larger than ξ , the confidence
is guaranteed to be at least c, as the sampled controllers are
evaluated by SMT and verified numerical techniques, and
the confidence interval is computed exactly without relying
on approximation techniques. We stress that, by relying on
verified integration techniques, we have guaranteed bounds
on the ODE solution regardless of the sampling period, which
means that we have a provably correct method to assess safety
of each deterministic state trajectory explored.
Theorem 2: Let S be an SDSS for which the synthesis

problem of Definition 5 is feasible for a given ϑ ∈ (0, 1)
andminimum controller degree l∗. Suppose that Algorithm 1,
with parameters S, ϑ,L ≥ l∗ and c ∈ (0, 1), returns a
controller p of degree l, and an interval [a, b] such that a > ϑ .
Then, with some probability c′ ≥ cw.r.t. sampling, l∗ ≤ l and
p is in the feasible set of the controller synthesis problem of
Definition 5 for S, ϑ, and L.

Proof: It suffices to note that if Algorithm 1 terminates
by finding a controller p of degree l and an associated interval
[a, b] with a > ϑ , then by Proposition 1, the test predicate
γ
(
Pr(p, ψ) > ϑ, P̂r(p, ψ, zK ), α′

)
holds for some α′ ≤ 1−

c, where zK is the sample of the stochastic SDSS variables
used to compute the CI. This in turn implies that p is inCwith
probability (w.r.t. sampling) at least c, for the same argument
made in the proof of Proposition 2. Now note that l < l∗

corresponds to saying that p is in the feasible set of the Monte
Carlo synthesis problem of Definition 6 with L = l and that
p is not in the feasible set of the original synthesis problem
of Definition 5 with L = l. By the same argument as above,
this happens with probability at most 1− c, and hence l ≥ l∗

with probability at least c.
Remark 2: Note that synthesizing a controller for the

SDSS that makes the closed-loop system stable and guaran-
tees satisfaction of the specification is a difficult task. Our
approach proposes an interplay between these two require-
ments. An easy-to-check sufficient condition for Lyapunov
stability is used in the first stage of Algorithm 1 to keep
only a subset of those controllers that make the closed-loop
system stable. Then, only the controllers that satisfy this
condition are checked against the second requirement. This
makes our method very efficient, as it excludes from the
synthesis a consistent portion of irrelevant controller param-
eters, i.e., those that failed our stability check. Finally, our
algorithm ensures safety and Lyapunov stability of the SDSS
with the synthesized controller.
Remark 3: We can estimate the amount of samples

required to obtain a controller of degree l in the worst case
scenario. Assuming that MAX_ATTEMPTS in Algorithm 1
andMAX_ITERATIONS andMAX_SAMPLES in Algorithm 2
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are constant, it will take (l + 1) · MAX_ATTEMPTS ·
(MAX_ITERATIONS ·MAX_SAMPLES · n+ m) samples to
synthesize a controller of degree l, where n is the number of
sample evaluations required to compute a confidence interval
(line 7 of Algorithm 2) for the given controller parameters,
and m is the number of sample evaluations required by
procedure verify to compute a confidence interval. Thus,
with the assumptions above the number of samples grows
linearly with the controller degree. However, the amount of
time required to evaluate every sample inside the optimization
algorithm and procedure verify varies, since the solution of
the model’s ODEs depends on the sampled values.

VI. FINITE-PRECISION CONTROLLER IMPLEMENTATION
In practice, digital controllers are implemented by some
finite-precision hardware, which could result in unexpected,
erroneous behavior. We show that the safety guarantees
of the controllers found by our approach are valid under
finite-precision implementations. The ProbReach tool (which
we use to compute CIs for the satisfaction probability of the
closed-loop system) overapproximates the system dynamics
by exploiting interval methods, in which interval bounds are
variables of a fixed type (e.g., double). Now, any digital
controller (as per Definition 2) operating over a finite time
horizon is essentially a finite sum of basic arithmetic opera-
tions. Given a float type T , the behavior of an implementation
of the controller using variables of type T is overapproxi-
mated by the interval version of that controller with interval
bounds of type T . Thus, it follows that the probability of
avoiding a ‘bad’ region by the system in closed loop with the
interval controller is a lower bound for the probability with
any floating-point implementation of the controller (with the
same precision T ).
Theorem 3: Let P̂rTfp(p, ψ, θK ) and P̂r

T
ia (p, ψ, θK ) be the

MC estimator (11) computed using a controller implemented
by floating-point operations of type T and via interval arith-
metic and interval bounds of type T , respectively. Then

ProbθK {P̂r
T
fp(p, ψ, θK ) > ϑ}≥ProbθK {P̂r

T
ia (p, ψ, θK ) > ϑ}

where θK = (θ1, . . . , θK ) are K i.i.d. random variables
distributed as 2T .

Proof: Let xTfp (p, θ, t) be the state trajectory of the
closed-loop system under a floating-point implementation of
a controller using type T , and let xTia (p, θ, t) be the set of
state trajectories obtained via interval arithmetic and interval
bounds of type T in ProbReach. By (9) and (11) we write:

P̂rTfp(p, ψ, θK )=
1
K

K∑
i=1

1
{
∀t ∈ [0,T ] ψ(xTfp (p, θi, t))

}
,

P̂rTia (p, ψ, θK )=
1
K

K∑
i=1

1
{
∀t ∈ [0,T ], ∀x∈xTia (p, θi, t)ψ(x)

}
with 1{·} being the indicator function. Since xia is an interval
arithmetic extension with endpoints in T of the trajectory and
xfp is the trajectory implemented with floating-point type T ,

then ∀t ∈ [0,T ] xTfp (p, θ, t) ∈ x
T
ia (p, θ, t) which implies that

1
{
∀t ∈ [0,T ] ψ(xTfp (p, θi, t))

}
≥ 1

{
∀t ∈ [0,T ], ∀x ∈ xTia (p, θi, t) ψ(x)

}
,

and thus P̂rTfp(p, ψ, θK ) ≥ P̂rTia (p, ψ, θK ) for all p, ψ and
θK . In particular,

{θK : P̂r
T
fp(p, ψ, θK ) > ϑ} ⊇ {θK : P̂r

T
ia (p, ψ, θK ) > ϑ},

which implies the thesis.
In our implementation T is double, hence the LHS of

the confidence intervals computed by ProbReach is effec-
tively a lower bound for the LHS of the confidence intervals
obtained by using any double-precision controller implemen-
tation (under the same sample set, obviously). Thismeans that
our synthesis approach already takes into account any error
due to floating-point approximation in a deployed controller.

VII. CASE STUDIES AND EVALUATION
We evaluate our approach on three case studies: a model of
insulin control for Type 1 diabetes (T1D) [19], also known
as the artificial pancreas, a model of a powertrain control
system [20], and a quadruple-tank process. For all case stud-
ies we use the following input parameters for Algorithm 1:
ξ = 0.05, c = 0.99 (obtained with 99%-confidence intervals)
and ε = 0.5. The parameter domains were selected after a
preliminary evaluation of our algorithm on larger domains,
to avoid parameter regions yielding numerous unstable and
unsafe controllers. The experiments were performed on a
32-core Intel 2.90GHz system running Ubuntu.

The considered case studies were also evaluated using
MATLAB toolboxes for PID tuning. All the models were
linearized around the steady state value and discretized
with the controller sampling rate. The SISO systems (i.e.,
artificial pancreas and powertrain) were evaluated using
the PID Tuner toolbox (pidTuner function), and the
quadruple-tank model was evaluated by the Robust Control
toolbox (hinfstruct function). The obtained parameter
values were then checked for safety using verify procedure.
Digital PID controllers While our algorithm can

synthesize any digital controller as per Definition 2, we here
exemplify its use via proportional-integral-derivative (PID)
controllers, one of the most popular control techniques.
A PID controller output is the weighted sum of three terms:
the error itself weighted with KP, its rate of change weighted
with KD, and accumulated error weighted with KI . The
input/output equation of a digital PID controller is

u(k) = u(k − 1)+ KP [e(k)− e(k − 1)]

+KI e(k)+KD[e(k)−2e(k − 1)+ e(k − 2)]. (12)

Essentially, the controller needs to store the previous value
of the input and the previous two values of the error. In the
following case studies, we focus on the synthesis of con-
trollers in the PID form, hence we consider a maximum
degree L = 2.
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TABLE 1. Controller synthesis for the artificial pancreas system. l – controller degree, KP , KI , KD – controller gains, [a∗,b∗] – 99%-confidence interval for
safety probability, #o(#0

o) – number of points used by the non-verified ODE solver at the end (beginning) of iteration, #c (#un) – number of
candidates (unstable) sampled by the optimization algorithm, CPU(opt) – total (only optimize procedure) runtime in minutes.

A. ARTIFICIAL PANCREAS
The artificial pancreas (AP) is a system for the automated
delivery of insulin, which is required to keep blood glucose
(BG) levels of diabetic patients within safe ranges, typically
between 4-11mmol/L. A continuous glucosemonitor (CGM)
sends BGmeasurements to a control algorithm that computes
the adequate insulin input. PID control is one of the main
techniques used for this purpose [49], and is also found in
commercial devices [22].

Meals are the major disturbance in insulin control, which
make fully closed-loop control challenging. Our approach is
therefore well suited to solve this problem because it can
synthesize controllers attaining arbitrary safety probability by
minimizing the impact of such disturbances. Tomodel insulin
and glucose dynamics, we employ the nonlinear model of
Hovorka et al. [19], considered as one of the most faithful
models. The plant has 9 state variables describing insulin
and glucose concentration in different physiological compart-
ments. We evaluate the system for a time bound of 24 hours.

In our SDSS model, we consider three meals (breakfast,
lunch and dinner) with random timing and random amount,
expressed by the following normally-distributed parameters:
the amount of carbohydrates (CHO) of each meal in grams,
DG0 ∼ N (50, 100), DG1 ∼ N (70, 100) and DG2 ∼

N (60, 100), and the waiting times between meals, T1 ∼
N (300, 100) and T2 ∼ N (300, 100). The corresponding
disturbance input is given by:

d(t) = {DG0 if t ∈ [0,T1); DG1 if t ∈ [T1,T2);

DG2 if t ∈ [T2, 1440]; 0 otherwise}.

The system output y(t) is the CGM measurement
(performed every 5 minutes), given by the equation
y(t) = C(t)+η(t), whereC is the state variable for interstitial
glucose and η(t) is white Gaussian sensor noise with standard
deviation 0.25.

The control input u(t) is the insulin infusion rate com-
puted by the PID controller. The tracking error is defined as
e(t) = r − y(t) with the constant reference signal
r = 6.11 mmol/L. The total infusion rate is given by u(t)+ub
where ub (≈ 0.05548) is the basal insulin, i.e., a low and
continuous dose to regulate glucose outside meals. The value
of ub is chosen to guarantee a steady-state BG value equals to
r in absence of meals. This steady state is used as the initial
state of the system.

c: SAFETY PROPERTY
Insulin control seeks to prevent hyperglycemia (BG above
11 mmol/L) and hypoglycemia (BG below 4 mmol/L).

Hypoglycemia happens when the controller overshoots the
insulin dose, and has more severe health effects than hyper-
glycemia, which is tolerated to a small extent after meals. For
this reason we consider a safe BG range of [4, 16] mmol/L,
which strictly avoids hypoglycemia and allows for some
post-meal hyperglycemia tolerance. In addition, we want that
the glucose level stays close to the reference signal towards
the end of the 24 hours (1,440minutes). Our invariant is given
by:

G∈ [4, 16]∧(t ∈ [1, 410, 1, 440]→ G∈ [r−0.25, r+0.25])

(13)

where G is the state variable for the BG concentration and
r = 6.11 is the (constant) reference signal.
In the synthesis algorithm, we use a probability threshold

of ϑ = 0.95 (we want to satisfy the above invariant with
probability at least 95%).

d: SYNTHESIS RESULTS
Table 1 shows the PID controllers synthesized at each iter-
ation of the algorithm. The domain of controller parame-
ters was chosen as follows: KP ∈ [−10−2, 10−3], KI ∈
[−10−5, 10−6] and KD ∈ [−1, 10−1]. Even though none of
the synthesized controllers achieves the probability threshold
ϑ = 0.95, the degree-2 controller (PID) is very close to
satisfying the property, with a 99%-confidence interval of
[0.94242, 0.99242]. Also, note that no unstable controller
was explored during the synthesis – see column #c(#un)
in Table 1.
To better understand the performance of the controllers,

we analyze their behavior on 1,000 Monte Carlo executions
of the system. The results, reported in Figure 3, evidence that
hyper- and hypo-glycemia episodes are never sustained.

e: RESULTS VALIDATION
The controller parameter values produced by MATLAB PID
tuner and the resulting confidence intervals computed by
the verify procedure are given in Table 2. It can be seen
that the obtained safety probabilities are very low, and the
simulations (see Figure 4) evidence that the controller fails
to quickly in a timely manner from hypoglycemia and to
reach the reference point by the end of the 24-hour period.
In contrast, our controller prevents any hypoglycemia episode
and successfully drives the system to the reference glucose
after the last meal disturbance.

B. POWERTRAIN SYSTEM
We consider the automotive air-fuel control system adapted
from the powertrain control benchmark in [20]. The plant
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FIGURE 3. Evaluation of synthesized controllers (degrees l = 0,1,2) on 1,000 simulations of the AP system. Blue lines: BG profiles; light gray areas -
healthy BG interval (G ∈ [4,16]); dark gray areas - tighter interval [5.86,6.36] where the BG level should remain for the last 30 minutes (see (13));
dashed black lines: reference BG level (6.11).

FIGURE 4. Evaluation of controllers obtained with MATLAB’s PID tuner toolbox (degrees l = 0,1,2) on 1,000 simulations of the AP system.
Blue lines: BG profiles; light gray areas - healthy BG range (G ∈ [4,16]); dark gray areas - tighter interval [5.86,6.36] where the BG level should
remain for the last 30 minutes (see (13)); dashed black lines: reference BG level (6.11).

TABLE 2. Controller synthesis results obtained by MATLAB’s PID tuner
toolbox for the artificial pancreas system. l – controller degree, KP , KI ,
KD – controller gains, [a∗,b∗] – 99%-confidence interval for safety
probability obtained using the verify procedure, CPU – total runtime in
minutes for computing the confidence intervals.

model consists of a system of three nonlinear ODEs describ-
ing the dynamics of the engine in relation to the throttle air
dynamics, intake manifold and air-fuel path.

The system has two external inputs, captured by the dis-
turbance vector d(t) = [ω(t) θin(t)]T , where ω (rad/s) is
the engine speed (ω ∼ N (105, 4)), and θin (degrees) is the
throttle angle. θin(t) is defined as a pulse train wave with
random amplitude a ∼ N (30.6, 25) and period ζ = 4:

θin(t) = a I {t ∈ [0, ζ/2)} + 8.8 I {t ∈ [ζ/2, ζ ]}.

The noisy plant output is y(t) = λ(t)+ η(t), where λ(t) is the
air/fuel ratio, and η(t) ∼ N (0, 0.0625).

The engine is controlled by a PID controller that seeks to
maintain a constant air/fuel ratio equals to the stoichiometric

value λ̄ = 14.7, which is when the engine performs optimally.
The tracking error is thus given by e(t) = y(t)−λ̄. The control
signal u(t) determines the amount of fuel entering the system.

f: SAFETY PROPERTY
We consider the following invariant

|µ(t)| < 1 ∧ (t ∈ [ζ/8, ζ/2] ∪ [5ζ/8, ζ ])→ |µ(t)| < 0.05)

where µ(t) = (λ(t) − λ̄)/λ̄ is the relative error from the
setpoint. The first conjunct states that the air/fuel ratio should
constantly be within ±100% of the ideal ratio λ̄. The second
conjunct states that whenever the input throttle angle θin rises
(at time t = 0) or falls (t = ζ/2), the plant should settle
within time ζ/8 and remain in the settling region (±5%
around λ̄) until the next rise or fall (happening after time ζ/2).
We set the probability threshold to ϑ = 0.96.

g: SYNTHESIS RESULTS
Table 3 shows the PID controllers synthesized at each iter-
ation of the algorithm. The domain of controller parameters
was chosen as follows: KP ∈ [−0.1, 0.5], KI ∈ [−0.05, 0.2]
and KD ∈ [−0.05, 0.05]. With our algorithm, we could
synthesize a degree-2 controller (PID) satisfying the thresh-
old. The optimal degree-1 controller has similar performance

VOLUME 8, 2020 180835



F. Shmarov et al.: Automated Synthesis of Safe Digital Controllers for Sampled-Data Stochastic Nonlinear Systems

TABLE 3. Controller synthesis for the powertrain system. See caption of Table 1.

(both yield confidence intervals with RHS equals to 1), albeit
below the threshold.

Compared to the AP case study, we observe that the
powertrain model requires generating (and verifying) fewer
candidate parameters, although dozens of them turned out to
generate unstable controllers – see column #c(#un) in Table 3.
At the same time the dynamics of the powertrain sys-
tem appear more challenging to control as the model
requires more ODE integration steps (see column #o(#0o) of
Tables 3 and 1).

h: RESULTS VALIDATION
The controller parameter values produced by MATLAB and
the resulting confidence intervals computed by the verify pro-
cedure are given in Table 4. It can be seen that MATLAB pro-
duced a better controller of degree 0 ([0.925064,0.975064] vs.
[0.783,0.834]). However, the controllers of higher degree
demonstrate very low safety probability, while our approach
produces much safer controllers.

TABLE 4. Controller synthesis results obtained by MATLAB’s PID tuner
toolbox for the fuel control system. l – controller degree, KP , KI , KD –
controller gains, [a∗,b∗] – 99%-confidence interval for safety probability
obtained using the verify procedure, CPU – total runtime in minutes for
computing the confidence intervals.

C. QUADRUPLE-TANK PROCESS
We consider a quadruple-tank process adapted from [21],
which consists of four interconnected water tanks. The pro-
cess is illustrated in Figure 5. This model is an example of
a multiple-input and multiple-output (MIMO) system with
multivariable right half-plane zeros [17] (such zeros bring
performance limitations in control problems). We extended
the deterministic model of [21] to include uncertainties in the
valve settings and random disturbances in the process that
removes water from the tanks.

The process is controlled in a decentralized fashion,
by which two digital controllers are designed for the
input-output pairs (u1, y1) and (u2, y2), where u1 and u2 are
the input voltages for the pumps, and y1 and y2 are the water
level measurements obtained as y1 = 0.5 · h1 and y2 =
0.5 · h2, where h1 and h2 are the water levels in tanks 1 and 2,
respectively. In this case study we assume that the pumps can
only add water to the tanks (and cannot pump it out).

FIGURE 5. The diagram of the quadruple-tank model.

We consider a scenario where at time 0 and then twice
after every minute we remove a random amount of water
from tanks 1 and 2, reducing the corresponding water levels
by a random value ∼ U(0, 3). Every time such a distur-
bance happens, the valves parameters are randomly reset to
γ1 ∼ N (0.7, 0.223) and γ2 ∼ N (0.6, 0.223). The system is
subject to a measurement noise modeled as a white Gaussian
noise with variance 0.33.

i: SAFETY PROPERTY
After each disturbance, we require that the system reaches
the desired water levels in tanks 1 and 2 (within 1 centimeter
above or below the corresponding set points r1 = 12.4
and r2 = 12.7) within 5 seconds, and that the water levels
stay close to the setpoints for the remaining 55 seconds,
before the next disturbance occurs. Also, all four water levels
h1, h2, h3, h4 must always stay in the interval [0, 20] and
the input voltages u1, u2 for both pumps must be in the
range [0, 24].

j: SYNTHESIS RESULTS
The domain of controller parameters was chosen as KP1 ∈
[−1, 20], KI1 ∈ [−1, 10], KD1 ∈ [−1, 10], KP2 ∈ [−1, 20],
KI2 ∈ [−1, 10], KD2 ∈ [−1, 10]. The controller synthesis
results are presented in Table 5, which show that we can
obtain a confidence interval of up to [0.94, 0.99] for the
safety probability by using two PI controllers (see third row
of Table 5). Note that the performance of the controller is
not improved by including the derivative terms KD1 ,KD2 (see
last two rows). This can be attributed to the optimization

180836 VOLUME 8, 2020



F. Shmarov et al.: Automated Synthesis of Safe Digital Controllers for Sampled-Data Stochastic Nonlinear Systems

TABLE 5. Controller synthesis for the quadruple-tank system. KP1
, KI1

, KD1
, KP2

, KI2
, KD2

– controller gains, [a∗,b∗] – confidence interval for safety
probability (with c = 0.99), #c (#un) – number of candidates (unstable) sampled by the optimization algorithm, CPU(opt) – total (only optimize
procedure) runtime in minutes, ∗ – the number of points in discretization was increased from 1 to 2.

algorithm which works by sampling a finite number of con-
troller parameters and thus, might fail to explore parameter
regions with better safety probability.

k: RESULTS VALIDATION
For a MIMO system with 2 inputs ui and 2 outputs ei there
are 4 PID controllers for all possible combinations of inputs
and outputs. In matrix form this can be written as:[

u1
u2

]
=

[
PID11 PID12
PID21 PID22

]
×

[
e1
e2

]
. (14)

We remark that in our original case study we simplified
the considered controller by assuming that PID12 = 0 and
PID21 = 0. The following parameters were produced for the
quadruple-tank model by MATLAB PID tuner:

KP =
[
23.8422 0.3915
0.1842 31.6801

]
,

KI =
[
0.0012 −0.0039
−0.0156 0.0078

]
,

KD =
[
−24.8422 0.404
0.186 −32.0047

]
. (15)

The corresponding confidence interval [0,0.0267794] was
obtained by our verify procedure in 3 minutes.

VIII. CONCLUSION
The synthesis of digital controllers for cyber-physical sys-
tems with nonlinear and stochastic dynamics is a challenging
problem. For such systems, no automated methods currently
exist for deriving controllers with rigorous and quantitative
safety guarantees. In this article, we have presented a solution
to this problem based on two key contributions: an easy-
to-check condition for Lyapunov stability of the system; and
a two-stage synthesis algorithm that alternates between a fast
candidate-generation phase (based on Monte-Carlo sampling
and approximate ODE solving), and a verification phase
where we derive numerically and statistically valid confi-
dence intervals for the safety probability of the closed-loop
system. We applied our method to three nonlinear systems
(artificial pancreas, powertrain, and quadruple-tank process)
and synthesized controllers that are provably stable and safe.
In future, we plan to extend our technique to plants mod-
eled as switched or hybrid systems and to controllers with
fixed-point precision. Furthermore, we plan to investigate the
use of inductivemethods (e.g., barrier certificates) to speed up
the safety verification of candidate controllers.

APPENDIX A
PROOF OF STATEMENTS
Outline of the proof of instability in Theorem 1.According
to Definition 4, we should show that the following statement
holds in order to get Lyapunov instability:

∃ε > 0 · ∀δ > 0 · ∃x1(0) ∧ z1[0] with ‖(x1(0), z1[0])‖ ≤ δ

∧ ∃t ≥ 0 with ‖(x1(t), z1[k])‖ > ε,

where x1 := x−xe and z1 := z−ze. Our proof is constructive.
We give an ε > 0 and properly choose initial conditions
x1(0), z1[0] that can be made small arbitrarily. The overall
aim of the proof is to construct a quadratic function of the
augmented state and utilize a few intermediate inequalities to
show that this function is monotonically increasing as long as
‖(x1(t), z1[k])‖ ≤ ε. This contradiction ensures existence of
a t ≥ 0 with ‖(x1(t), z1[k])‖ > ε.
Intuition behind the intermediate steps. We first shift

the variables around the equilibrium and write down their
dynamics in (16) to simplify the notation. We then show in
Lemma 1 that the nonlinearity in the dynamics has at most a
local linear growth. Then we study in Lemma 2 the deviations
in the continuous state inside the sampling intervals from
the beginning of the interval. The bound on these devia-
tions is used in Lemma 3 to find a bound for the nonlinear
terms over the whole sampling interval. Finally, this bound is
used to prove that the constructed function is monotonically
increasing.

Let us shift the variables around their equilibrium values
and define x1 := x − xe, z1 := z− ze, and u1 := u− ue. The
dynamics of x1, z1, u1 are

d
dt
x1(t) = f̄ (x1(t), u1[k]), ∀t ∈ [tk , tk+1)

z1[k + 1] = Gcz1[k]− Hcō(x1[k])

u1[k] = Ccz1[k]− Dcō(x1[k]), k ∈ Z≥0, (16)

where f̄ (x1, u1) := f (x1 + xe, u1 + ue, 0) and ō(x1) :=
o(x1+xe)−o(xe).Note that we have used the notation x1[k] =
x1(kτ ) for all k . Thus x1 = 0, z1 = 0 is an equilibrium
point for (16). The matrices A,B,C in (8) can be written as
A = ∂ f̄

∂x1
(0, 0), B = ∂ f̄

∂u1
(0, 0), and C = ∂ ō

∂x1
(0).

The following three lemmas are relatively standard for
analyzing the local behavior of the system at equilibrium.
Similar inequalities are utilized in the literature for stability
of dynamical systems (e.g., [33]). We provide their proof for
the sake of completeness.
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Lemma 1: Define g(x1, u1) := f̄ (x1, u1)−Ax1−Bu1 and
l(x1) := ō(x1) − Cx1. Then, for any γ > 0 there exists an
r(γ ) > 0 such that

‖g(x1, u1)‖ ≤ γ ‖x1‖ + γ ‖u1‖ and ‖l(x1)‖ ≤ γ ‖x1‖, (17)

for all x1 ∈ Rn, u1 ∈ Rm with ‖(x1, u1)‖ ≤ r(γ ).
Note that functions g, l are the nonlinear terms describing
the deviation between nonlinear functions f , o and their lin-
earized versions. The next lemma establishes a bound on x1(t)
for any t ∈ [kτ, kτ + τ ], as a function of x1[k] and z1[k].
Proof of Lemma 1. Functions g, l are the nonlinear terms

describing the deviation between nonlinear functions f , o
and their linearized versions. Since f and o are continuously
differentiable, g, l are also continuously differentiable with
their values and their first derivatives equal to zero. Thus,
we have

lim
‖(x1,u1)‖→0

‖g(x1, u1)‖
‖(x1, u1)‖

= 0 and lim
‖x‖→0

‖l(x1)‖
‖x1‖

= 0.

The definition of limit implies for any γ > 0, there are
r1(γ ) > 0 and r2(γ ) > 0 such that

‖g(x1, u1)‖
‖(x1, u1)‖

≤ γ and
‖l(x1)‖
‖x1‖

≤ γ (18)

for all ‖(x1, u1)‖ ≤ r1(γ ) and ‖x1‖ ≤ r2(γ ). Set r(γ ) =
min{r1(γ ), r2(γ )} and take any x1 ∈ Rn and u1 ∈ Rm such
that ‖(x1, u1)‖ ≤ r(γ ). This means

‖(x1, u1)‖ ≤ r(γ ) ≤ r1(γ ) and

‖x1‖ ≤ ‖(x1, u1)‖ ≤ r(γ ) ≤ r2(γ ),

thus both inequalities in (18) hold. We can use triangle
inequality on (18) as follows:

‖g(x1, u1)‖ ≤ γ ‖(x1, u1)‖ ≤ γ (‖x1‖ + ‖u1‖) and

‖l(x1)‖ ≤ γ ‖x1‖,

which shows that the inequalities in (17) hold with the
chosen r(γ ). �
Lemma 2: Under dynamics (16), there exist two functions

h1, h2 such that for a given t ∈ [kτ, (k + 1)τ ] and any γ > 0,
we have

‖x1(t)‖≤h1(t−kτ, γ )‖x1[k]‖+h2(t−kτ, γ )‖z1[k]‖ (19)

if ‖(x1(t1), u1[k])‖ ≤ r(γ ) for all t1 ∈ [kτ, t], with r(γ )
satisfying property (17). Functions h1, h2 are continuous and
nonnegative with h1(0, γ ) = 1 and h2(0, γ ) = 0.

Proof of Lemma 2. We simplify the dynamics of the
closed-loop SDSS as

d
dt
x1(t) = Ax1(t)+ BCcz1[k]−BDcCx1[k]

+g(x1(t), u1[k]),
z1[k + 1] = Gcz1[k]− HcCx1[k]− Hcl(x1[k]).

(20)

Define the functionW (t) := ‖x1(t)‖2,

d
dt
W (t) = 2 [Ax1(t)+ BCcz1[k]−BDcCx1[k]

+ g(x1(t), u1[k])]Tx1(t)
≤ 2‖x1(t)‖ [‖A‖‖x1(t)‖ + ‖BCc‖‖z1[k]‖
+ ‖BDcC‖‖x1[k]‖ + γ ‖x1(t)‖ + γ ‖u1[k]‖] .

ReplaceW (t) =: σ 2(t) and divide both sides by σ (t) to get

d
dt
σ (t) ≤ Lσ (t)+ L1σ [k]+ L2‖z1[k]‖ (21)

with L := ‖A‖+γ , L1 := ‖BDcC‖+γ ‖DcC‖+γ 2
‖Dc‖, and

L2 := ‖BCc‖ + γ ‖Cc‖. Now we apply Grönwall’s inequal-
ity [2] to (21) over the interval [kτ, t], which states that σ (t)
is upper bounded by the solution of the differential equation
obtained from replacing inequality in (21) with equality.

⇒ σ (t) ≤ h1(t − kτ, γ )σ [k]+ h2(t − kτ, γ )‖z1[k]‖,

with functions

h1(t, γ ) :=eLt + (eLt−1)L1/L, h2(t, γ ) := (eLt − 1)L2/L,
(22)

where L,L1,L2 depend on γ as defined above. �
The upper bound (19) enables us to study the effect of the

nonlinear terms g(·) and l(·) in the sampled version of the
dynamics, which can be written as

x1[k + 1] = (G-HDcC)x1[k]−HCcz1[k]+ ĝ[k],
z1[k + 1] = Gcz1[k]− HcCx1[k]+ l̂[k], (23)

with G,H defined in Theorem 1, l̂[k] := −Hcl(x1[k]), and

ĝ[k] :=
∫ τ

0
eA(τ−λ)g(x1(kτ + λ), u1[k])dλ. (24)

Next, we derive a bound for ĝ[·] in terms of x1 and z1.
Lemma 3: For any γ > 0, there exist continuous functions

ĥ1, ĥ2 such that the following inequality holds for ĝ[·] defined
in (24),

‖ĝ[k]‖ ≤ γ ĥ1(τ )‖x1[k]‖ + γ ĥ2(τ )‖z1[k]‖ (25)

if ‖(x1(t), u1[k])‖ ≤ r(γ ) for all t ∈ [kτ, (k + 1)τ ], with r(γ )
satisfying property (17). Functions ĥ1, ĥ2 are nonnegative
with ĥ1(0) = 0 and ĥ2(0) = 0.
Proof of Lemma 3. Using the assumption of
‖(x1(t), u1[k])‖ ≤ r(γ ) for all t ∈ [kτ, (k + 1)τ ], we get

‖ĝ[k]‖ ≤
∫ τ

0
‖eA(τ−λ)‖‖g(x1(kτ + λ), u1[k])‖dλ

≤ γ

∫ τ

0
‖eA(τ−λ)‖(‖x1(kτ + λ)‖ + ‖u1[k]‖)dλ.

Then we employ Lemma 2 to get

‖ĝ[k]‖ ≤ γ ‖x1[k]‖

×

∫ τ

0
‖eA(τ−λ)‖(h1(λ, γ )+ ‖DcC‖ + γ ‖Dc‖)dλ

+ γ ‖z1[k]‖
∫ τ

0
‖eA(τ−λ)‖(h2(λ, γ )+ ‖Cc‖)dλ.
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Next we use the fact that for the matrix A, there are con-
stants α and 0 such that ‖eAt‖2 ≤ 0eαt for all t ≥ 0 and
get

ĥ1(τ ) =
∫ τ

0
0eα(τ−λ)(h1(λ, γ )+ ‖DcC‖ + γ ‖Dc‖)dλ

= 0

[
1+

L2
L

] [
eLτ − eατ

L − α

]
+0

[
‖DcC‖ + γ ‖Dc‖ −

L2
L

]
eατ − 1
α

.

Similarly, the second integral is bounded by

ĥ2(τ ) =
∫ τ

0
0eα(τ−λ)(h2(λ, γ )+ ‖Cc‖)dλ

=
0L1
L

[
eLτ − eατ

L − α

]
+ 0

[
‖Cc‖ −

L1
L

] [
eατ − 1
α

]
.

�
We need the following well-known proposition on stability

of a matrix in the construction of the quadratic function.
Proposition 3 ( [24]): All eigenvalues of a square matrix

G are inside the unit circle if and only if there exist positive
definite matricesM ,Q that satisfy GTMG−M = −Q.

Construction of a monotonically increasing function.
Suppose Ĝ in (7) has at least one eigenvalue outside the unit
circle. We cluster the eigenvalues of Ĝ into a group of eigen-
values outside the unit circle and a group of eigenvalues on
or inside the unit circle. Then there is a nonsingular matrix T
such that

T ĜT−1 =
[
G1 0
0 G2

]
,

where G1 contains all of the eigenvalues of Ĝ from the first
group and G2 has the remaining eigenvalues. The matrix T
can be found for instance by transforming Ĝ into its real
Jordan form. Now define µ > 0 by

1+ 2µ = min
i
|λi(G1)|.

Then bothG2/(1+µ) and (1+µ)G
−1
1 have their eigenvalues

inside the unit circle. According to Proposition 3, there are
positive definite matrices M1,M2 and Q1,Q2 such that the
following matrix equalities hold

(1+ µ)2GT1
−1
M1G

−1
1 −M1 = −Q1,

GT2M2G2/(1+ µ)2 −M2 = −Q2. (26)

Define the quadratic function

V [k] := xs[k]TT T
[
M1 0
0 −M2

]
Txs[k], (27)

with xs[k] = xs(kτ ) being the sampled shifted augmented
state

xs(t) :=
[
x1(t)
z1[k]

]
, ∀t ∈ [tk , tk+1), k ∈ Z≥0.

Note that V [·] is positive only on a subset of the augmented
state space.

Lemma 4: The functionV [·] in (27) satisfies the inequality

V [k + 1] ≥ (1+ µ)2 V [k]+ (c0 − c1γ − c2γ 2)‖Txs[k]‖2,

for any γ > 0 as long as ‖(x1(t), u1[k])‖ ≤ r(γ ). The
constants c0, c1, c2 are

c0 := min
i,j
{λi(Q̄1), λj(Q̄2)},

c1 := 2~ (‖M1G1‖+‖M2G2‖) ,

c2 := 2~2λmax(M2),

where Q̄1 := GT1Q1 G1, Q̄2 := (1+ µ)2 Q2, and

~ := ‖T‖‖T−1‖
√
ĥ1(τ )2 + ĥ2(τ )2 + 1,

with ĥ1(τ ) and ĥ2(τ ) defined in (25).
Proof of Lemma 4. Define a transformation of xs under T

by v as

v := Txs =
[
v1
v2

]
=

[
T1xs
T2xs

]
,

where the partitions of v and T are compatible with the
dimensions of G1 and G2. Using (23), we get the dynamics
of v[·] as

v[k + 1]=T ĜT−1v[k]+ T
[
ĝ[k]
l̂[k]

]
=

[
G1v1[k]+ ĝ1[k]
G2v2[k]+ ĝ2[k]

]
.

We have

V [k + 1]

= v1[k + 1]TM1 v1[k + 1]− v2[k + 1]TM2 v2[k + 1]

= v1[k]T (GT1M1 G1)v1[k]+ 2ĝ1[k]TM1(G1 v1[k]+ ĝ1[k])

− v2[k]T (GT2M2 G2)v2[k]−2ĝ2[k]TM2(G2 v2[k]+ĝ2[k])

According to (26) and definitions of Q̄1, Q̄2, we have

GT1M1 G1 = (1+ µ)2 M1 + Q̄1

GT2M2 G2 = (1+ µ)2 M2 − Q̄2.

Then,

V [k + 1] = (1+ µ)2 vT1M1 v1 + vT1 Q̄1 v1 +A1

− (1+ µ)2 vT2M2 v2 + vT2 Q̄2 v2 +A2. (28)

The terms inA1,A2 can be bounded using definition of ĝ1, ĝ2
as a function of ĝ and Lemma 3. For A2 we have

A2 := 2ĝ1[k]TM1ĝ1[k]− 2ĝ2[k]TM2ĝ2[k]

≥ −2λmax(M2)‖ĝ2[k]‖2

≥ −2λmax(M2)‖T‖2
(
‖ĝ[k]‖2 + |l̂[k]‖2

)
≥ −2λmax(M2)γ 2~2‖v‖2

= −c2γ 2
‖v‖2.

Similarly, we use the Cauchy-Schwartz inequality for A1 as

A1 := 2ĝ1[k]TM1G1 v1[k]− 2ĝ2[k]TM2G2 v2[k]

≥−2‖ĝ1[k]‖‖M1G1‖‖v1[k]‖−2‖ĝ2[k]‖‖M2G2‖‖v2[k]‖

≥−2‖T‖
∥∥∥[ĝ[k], l̂[k]]T∥∥∥ ‖v[k]‖(‖M1G1‖ + ‖M2G2‖)

VOLUME 8, 2020 180839



F. Shmarov et al.: Automated Synthesis of Safe Digital Controllers for Sampled-Data Stochastic Nonlinear Systems

≥ −2γ ~‖v‖2(‖M1G1‖ + ‖M2G2‖)

= −c1γ ‖v‖2.

Then, equality (28) implies that

V [k + 1] ≥ (1+ µ)2 V [k]+ vT1 Q̄1 v1 + vT2 Q̄2 v2
− c1γ ‖v‖2 − c2γ 2

‖v‖2

≥ (1+ µ)2 V [k]+ (c0 − c1γ − c2γ 2)‖v‖2

with c0 being the least eigenvalue of Q̄1 and Q̄2. �
Proof of instability in Theorem 1. For any δ > 0,

take an initial condition xs[0] = [xT1 [0], z
T
1 [0]]

T such that
‖xs[0]‖ ≤ δ and

V [0] = xs[0]T (T T1 M1 T1 − T T2 M2 T2)xs[0] > 0.

This is always possible by setting T2 xs = 0 and T2 xs to be
an eigenvector ofM1, then scaling xs down to have norm less
than δ.
Take 0 < γ0 ≤ 1 sufficiently small such that c0 − c1γ0 −

c2γ 2
0 ≥ 0. Note that this is always possible since ĥ1, ĥ2, and

thus c1, c2, are bounded by the interval γ ∈ (0, 1].
Select the associated radius r0 = r(γ0) according to Lemma 1.
Then we have V [k + 1] ≥ (1 + µ)2 V [k] as long as
‖(x1(t), u1[k])‖ ≤ r0. Take

ε :=
r0

1+ ‖Cc‖ + ‖Dc‖ + ‖DcC‖
.

We claim that the trajectory starting from xs[0] will always
leave the ball with radius ε. Suppose this is not true, i.e.,
‖xs(t)‖ ≤ ε for all t ≥ 0. Then ‖(x1(t), u1[k])‖ ≤ r0 for all
t ∈ [kτ, kτ+τ ] and k ∈ Z≥0 and V [k+1] ≥ (1+µ)2 V [k] ≥
(1 + µ)2kV (0). Then limk→∞ V [k] = ∞, which contradicts
the boundedness of xs(t). �
Proof of Proposition 1. We prove that, for significance

level α ∈ (0, 1), sample zK of 2T , ϑ ∈ (0, 1), a(zK ) >
ϑ H⇒ γ

(
Pr(p, ψ) > ϑ, P̂r(p, ψ, zK ), α′

)
, where α′ ≤ α,

[a(zK ), b(zK )] is a (1 − α)-confidence interval estimate for
Pr(p, ψ).

By standard results in statistical hypothesis testing,
a (1 − α)-confidence interval [a(zK ), b(zK )] for Pr(p, ψ)
contains all (and only) the values ϑ ′ such that we fail to reject
the null hypothesis in the two-sided test Pr(p, ψ) = ϑ ′ vs
Pr(p, ψ) 6= ϑ ′ at level α. This means that if ϑ is outside
the confidence interval, then the hypothesis Pr(p, ψ) = ϑ

is rejected in favor of Pr(p, ψ) 6= ϑ at level α. In par-
ticular, if ϑ is below the lower end of the interval, then
Pr(p, ψ) = ϑ is rejected in favor of hypothesis Pr(p, ψ) >
ϑ at level between α/2 and α.6 Finally, if our estimate is
extreme enough to reject Pr(p, ψ) = ϑ , it will also reject the
weaker hypothesis Pr(p, ψ) ≤ ϑ . Hence, the test predicate
γ
(
Pr(p, ψ) > ϑ, P̂r(p, ψ, zK ), α′

)
, with α′ ≤ α, holds. �

6If the confidence interval [a(zK ), b(zK )] is always symmetric about the
estimate P̂r(p, ψ, zK ), then Pr(p, ψ) > ϑ is accepted exactly at level α/2.
However, binomial confidence intervals for proportions can be asymmetric
when they are close to 1 or 0.

APPENDIX B
MODELS OF CASE STUDIES
Gluco-regulatory ODE model.

The model consists of three subsystems:

• Glucose Subsystem: it tracks the masses of glucose (in
mmol) in the accessible (Q1) and non-accessible (Q2)
compartments, G (mmol/L) represents the glucose con-
centration in plasma, EGP0 (mmol/min) is the endoge-
nous glucose production rate and UG(t) (mmol/min) is
the glucose absorption rate from the gut.

• Gut absorption: this subsystem uses a chain of two com-
partments, G1 and G2 (mmol), to model the absorption
dynamics of ingested food, given by the disturbance
DG(t). Ag is the CHO bio-availability. tmaxG (min) is the
time of maximum appearance rate of glucose.

• Interstitial glucose: C is the subcutaneous glucose con-
centration (mmol/L) detected by the CGM sensor and
has a delayed response w.r.t. the blood concentration G.

• Insulin Subsystem: it represents absorption of sub-
cutaneously administered insulin. It is defined by a
two-compartment chain, S1 and S2 measured in U (units
of insulin), where u(t) (U/min) is the administration of
insulin computed by the PID controller, ub (U/min) is
the basal insulin infusion rate and I (U/L) indicates the
insulin concentration in plasma.

• Insulin Action Subsystem: it models the action of insulin
on glucose distribution/transport, x1, glucose disposal,
x2, and endogenous glucose production, x3 (unitless).

The model parameters are given in Table 6.

dQ1

dt
= −F01 − x1 Q1 + k12Q2−FR+EGP0(1− x3)+UG

dQ2

dt
= x1 Q1 − (k12 + x2)Q2

dS1
dt
= u+ ub −

S1
tmaxI

,
dS2
dt
=
S1 − S2
tmaxI

dI
dt
=

S2
tmaxI · VI

− keI ,
dxi
dt
= −kai · xi+kbi ·I , i = 1, 2, 3

UG(t) = 5.55 AGt
e−t/tmaxG

t2maxG
d(t), G(t) =

Q1(t)
VG

dC
dt
= kint (G− C).

TABLE 6. Parameter values for the glucose-insulin regulatory model.
(kg) is the body weight.
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Fuel Control System Model. The dynamics of the
engine (plant) are given by the following set of ODEs:

ṗ = c1
(
ṁaf − ṁc

)
, θ̇ = 10(θin − θ), λ̇ = c26

[
ṁc
c25Fc

− λ

]
,

where p (bar) is the intake manifold pressure; θ (degrees) is
the throttle angle; λ is the air/fuel ratio; θin (degrees) is the
throttle angle input disturbance; θ̂ is the throttle plate angle
and is defined by: θ̂ = c6 + c7θ + c8θ2 + c9θ3; ṁc (g/s) is
the air inflow rate to cylinder and is defined by:

ṁc = c12(c2 + c3ωp+ c4ωp2 + c5ω2 p);

ω (rad/s) is the engine speed disturbance; ṁaf is the inlet air
mass flow rate, defined by:

ṁaf = 2θ̂
√
p/c10 − (p/c10)2; and

Fc is the commanded fuel input defined as Fc = (1 +
u(t))ṁc/λ̄, where u(t) is the control input and λ̄ is the ideal
air/fuel ratio.

Parameter values are: c1 = 0.41328, c2 = −0.366,
c3 = 0.08979, c4 = −0.0337, c5 = 0.0001, c6 = 2.821,
c7 = −0.05231, c8 = 0.10299, c9 = −0.00063, c10 = 1,
c12 = 0.9, c25 = 1, c26 = 4.
Quadruple-Tank Process Model. The dynamics of the

Quadruple-Tank Process are given by the following set of
ODEs [21]:

dh1
dt
= −

a1
A1

√
2gh1 +

a3
A1

√
2gh3 +

γ1k1
A1

u1

dh2
dt
= −

a2
A2

√
2gh2 +

a4
A2

√
2gh4 +

γ2k2
A2

u2

dh3
dt
= −

a3
A3

√
2gh3 +

(1− γ2)k2
A3

u2

dh4
dt
= −

a4
A4

√
2gh4 +

(1− γ1)k1
A4

u1,

where hi, ai,Ai, i ∈ {1, 2, 3, 4} are the water level,
cross-section of the outlet hole, and cross-section of tank i,
respectively. Inputs u1, u2 indicate the voltages applied to
the pumps and the corresponding flows are k1u1, k2u2. The
parameters γ1, γ2 ∈ (0, 1) show the settings of the valves. The
flow to tank 1 is γ1k1u1 and the flow to tank 4 is (1−γ1)k1u1
(similarly for the other two tanks). The acceleration of gravity
is denoted by g. The water levels of tanks 1, 2 are measured
by sensors as kch1, kch2. The parameter values are: A1 =
A3 = 28 cm2, A2 = A4 = 32 cm2, a1 = a3 = 0.071 cm2,
a2 = a4 = 0.057 cm2, kc = 0.5V/cm, g = 9.81m/s2.
We have chosen the steady state values h01 = 12.4 cm, h02 =
12.7 cm, h03 = 1.8 cm, h04 = 1.4 cm, u01 = 3.00V, u02 =
3.00V, k1 = 3.33 cm3/Vs, and k2 = 3.35 cm3/Vs.
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