
CodeRepair: PHY-layer Partial Packet Recovery
Without the Pain

Jun Huang†, Guoliang Xing†, Jianwei Niu§ and Shan Lin‡
†Department of Comptuer Science and Engineering, Michigan State University, MI 48824, USA
‡Department of Electrical and Computer Engineering, Stony Brook University, NY 11790, USA

§State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China

Abstract—Prior studies show that repairing partially corrupted
packets, instead of retransmitting them in their entirety, holds
potential in improving the performance of 802.11 networks.
However, the efficiency of existing packet recovery approaches is
severely limited by various overhead associated to redundant
transmission and repeated channel contention. In this paper,
we propose CodeRepair, a practical coding-based protocol that
recovers partially corrupted 802.11 packets without these pains.
The design of CodeRepair is based on two novel ideas. First,
CodeRepair pushes the limit of 802.11 PHY to piggyback parities
in the padded bits of OFDM, obviating the need of transmitting
extra information for error correction. Second, CodeRepair
corrects errors at the PHY layer, which is significantly more
efficient than traditional link-layer approaches. This is due to the
fact that a single coded bit usually affects the decoding of a group
of data bits in 802.11 convolutional code. As a result, CodeRepair
can salvage a partially corrupted packet by correcting a small
number of erroneous coded bits using the padded parities. To
reduce computational cost of error recovery, CodeRepair employs
single parity code for correcting coded bit errors. We propose
several techniques to augment the error correcting capability
of single parity code without compromising its computation
efficiency. Our evaluation shows that CodeRepair recovers an
average of 34% partially corrupted packets, and improves the
end-to-end link goodput by 59% on lossy 802.11 links.

I. INTRODUCTION

Despite the fast increase of PHY data rate, wireless net-
works have not seen a commensurate performance improve-
ment [14], especially in challenging environments where
wireless links suffer poor reliability caused by time-varying
interference and channel fading conditions. For instance, a
recent measurement conducted on VanLAN – a testbed of
connected buses deployed in the Bay Area – show that wireless
links between moving buses and base stations are extremely
lossy, and the transport layer suffers a loss ratio up to 10%,
even in the presence of link layer error recovery mechanisms
[15]. Measurements on off-the-shelf Wi-Fi devices show that
about 40% of received packets are partially corrupted when
the receiver is moving at walking speed [12].

Prior studies showed that repairing partially corrupted pack-
ets, instead of retransmitting them in their entirety, holds
substantial potential in improving wireless network reliability
[24] [12] [11] [10] [23]. However, the existing packet recovery
solutions often imped system throughput due to their high
overhead. For example, cooperative protocols [5] [13] [16]
[22] need to coordinate multiple receivers over the wired
backbone for correcting bit errors. The protocols based on

forward error correction (FEC) codes [12] [23] and selective
retransmission [24] [11] [10] entail extra bandwidth consump-
tion for transmitting error correction codes or retransmitting
parts of the packet.

In this paper, we propose CodeRepair, a practical system
that recovers partially corrupted packets in 802.11 networks
without the above pains. CodeRepair achieves this goal by
integrating two key novel designs. First, CodeRepair pushes
the limit of 802.11 PHY to piggyback a small number of
parities without incurring extra transmission overhead. This
is realized by exploiting the padding bits in OFDM, which
is adopted by current 802.11a/g/n standards. Each OFDM
symbol carries tens to hundreds of bits, depending on the
modulation rate. When the packet size is not an integral
number of OFDM symbols, the sender has to pad rubbish
bits to fill the last OFDM symbol. CodeRepair salvages these
padded bits to carry parity bits, obviating the need of sending
redundant information for error correction. Second, to augment
the error correction capability of padded parities, CodeRepair
performs error recovery at the PHY layer, which represents a
paradigm shift from exiting FEC-based link layer approaches
[12] [23]. Our key insight is that a single coded bit usually
affects the decoding of a group of data bits, due to the use of
convolutional code in 802.11. Therefore, correcting a single
coded bit may improve the success rate of decoding multiple
data bits. As a result, CodeRepair can salvage a data packet
with many errors by correcting a small number of erroneous
coded bits using the padded parities.

The key challenge of realizing the above ideas in 802.11
PHY is to minimize the complexity of error correction and
packet recovery. This is particularly crucial due to the delay
sensitive nature of 802.11 PHY. For example, the receiver must
complete packet recovery within the short inter-frame space
(SIFS) defined by 802.11, which is only 10µs in 802.11g.
To meet the stringent timing constraints of 802.11 PHY, the
computational cost of packet recovery needs to be minimized.
To this end, CodeRepair employs the single parity code (SPC),
a simple error detection code, for correcting coded bit errors.
To improve the error correcting capability of SPC, we propose
a novel design which integrates several simple yet effective
techniques, including code reversing, selective re-decoding,
and parity sampling rate optimization, to augment SPC into a
highly efficient outer FEC atop the conventional channel codes
without compromising its computation simplicity.

2015 IEEE Conference on Computer Communications (INFOCOM)

978-1-4799-8381-0/15/$31.00 ©2015 IEEE 1463

We implemented CodeRepair in USRP/GNURadio plat-
form, and extensively evaluated its error correcting efficiency,
as well as the impact on end-to-end link performance. We
show that CodeRepair recovers an average of 34% erroneous
packets, and improves the goodput by 59% on lossy links.
Although we primarily focus on 802.11 networks in this paper,
the design of CodeRepair can be applied to other OFDM-based
radio technologies, such as LTE and ultra-wideband (UWB).
Moreover, the augmented SPC can be used as an efficient outer
code to improve the performance of channel coding in other
delay sensitive environments.

II. RELATED WORK

Corrupted packet recovery for 802.11. Traditionally, 802.11
recovers corrupted packets using link layer protocols. Selective
retransmission based protocols [11] [10] reduce packet recov-
ery overhead by only retransmitting the bits that are likely to
be wrong. Similarly, Zhang et al. [24] propose µACK, which
sends ACKs for every few symbols on a separate feedback
channel to enable in-frame recovery. Other protocols, such as
ZipTx [12], use link layer FEC to correct bit errors. Unite
[23] combines selective retransmission and link layer FECs to
minimize error recovery overhead. Leveraging the broadcast
nature of wireless channel, cooperative protocols [5] [13]
[16] [22] coordinate multiple receivers that hear the same
transmission to correct packet errors. However, the efficiency
of these approaches is severely limited by the high error
reovery overhead, which includes the costs of coordinating
multiple receivers, extra bandwidth consumption for sending
redundancy information, and the channel access overhead
during retransmissions. In comparison, CodeRepair avoids
these overhead and explores the efficiency of PHY packet
recovery. Moreover, CodeRepair can be integrated with link
layer protocols to improve their performance.

Hybrid ARQ and rateless code. 4G wireless standard uses
hybrid ARQ for correcting corrupted packets. In hybrid ARQ,
data is first encoded using a low-rate mother code, and then
in each round of (re)tranmission the coded block is punctured
(i.e., only a fraction of the coded bits are chosen) and transmit-
ted, until the packet is successfully decoded or all coded bits
are sent. However, if bit errors cannot be completely corrected
after sending all codes, a new round of retransmission will be
triggered, which causes bandwidth waste just like link layer
retransmissions. Moreover, hybrid ARQ only works when the
underlying channel code is rate-compatible [7]. Unfortunately,
802.11 convolutional code is not rate-compatible [20]. Thus
realizing hybrid ARQ in 802.11 requires non-trivial modifi-
cations in the default encoder. To optimize link performance
under time-varying channel conditions, recent work [6] [17]
propose to use rateless code to automatically achieve the
optimal transmission rate. However, realizing rateless codes
requires significant modifications to the current 802.11 PHY.
Moreover, decoding rateless codes incurs multiple rounds of
extensive computations [17].

Both hybrid ARQ and rateless codes require a stateful PHY,
where the decoder has to buffer the coded bits for all ongoing

packets until they are successfully decoded. While stateful
PHY is employed in celluar networks where a centralized
controller schedule all transmissions, it is prohibitively expen-
sive in the unlicensed band, where senders compete with each
other for channel access. Since packets from other senders may
arrive before the ongoing packet is successfully decoded, it is
extremely difficult to maintain packet status at the PHY layer.
As a result, 802.11 adopts a stateless PHY where decodings
of packets are independent of each other.

Turbo code. CodeRepair uses padded parities as an outer
FEC atop of channel code. This structure is similar to that
of Turbo code. However, a key feature of CodeRepair is its
extremely low overhead. Turbo code parallel y concatenates
two FECs, and relies on iterative decoding to reduce error rate.
This requires not only significant modifications to the structure
of 802.11 encoder, but also extensive computations at the
decoder. In comparison, CodeRepair piggybacks the parities of
outer code in the padded bits of 802.11 packets, without mod-
ifying the default encoder or transmitting extra bits. Moreover,
existing FECs typically requires substantial computations for
decoding, which will degrade the efficiency of 802.11 PHY.
CodeRepair augments the single parity code for error recovery,
of which the incurred computational overhead is only 2% to
7% to that of channel decoders. These features make it feasible
to incorporate CodeRepair into existing 802.11 standards.

III. BACKGROUND ON 802.11 PHY

In this section, we introduce the background of 802.11 PHY
that is necessary for understanding our approach.

A. Convolutional Code

A rate-m/n convolutional code transforms each m-bit mes-
sage into n-bit codeword. Coded bits are computed based on
the current and last k bits using pre-defined generator polyno-
mials, where k is referred to as constraint length. The state of
the encoder is defined by the values of last k bits. Tab. I shows
an example of a rate-1/2 convolutional code with k = 2. The
two generator polynomials are c1 = b0⊕b1⊕b2, and c2 = b0⊕b2,
where b0 is the current bit, b1b2 represents the encoder state.
The transition table describes how an input bit triggers a state
transition inside the encoder, and the output table gives the
computation results of generator polynomials. In 802.11, a
rate-1/2 code with k = 6 is employed as mother code. Higher
coding rate can be achieved by puncturing certain coded bits
before transmission. For each bit bi, a codeword of two bits
is computed using the following generator polynomials,

c2i = bi ⊕ bi−2 ⊕ bi−3 ⊕ bi−5 ⊕ bi−6,

c2i+1 = bi ⊕ bi−1 ⊕ bi−2 ⊕ bi−3 ⊕ bi−6,
(1)

where bi−k is the bit of round i− k, and bi−k = 0 if i < k.
Fig. 1 shows the process of convolutional encoding using

the code given in Tab. I. PATH-1 and PATH-2 show the
traces of state transitions when encoding the messages of
00000 and 11010. The goal of decoding is to find the most
likely path on the trellis that yields the coded bit sequence

2015 IEEE Conference on Computer Communications (INFOCOM)

1464

TABLE I
AN EXAMPLE OF A RATE-1/2 CONVOLUTIONAL CODE.

Transition Output (c1c2)
state (b1b2) b0 = 0 b0 = 1 b0 = 0 b0 = 1

00 00 10 00 11
01 00 10 11 00
10 01 11 10 01
11 01 11 01 10

Fig. 1. Illustration of convolutional encoding using the code defined
in Tab. I. Each branch is labeled by the input bit that triggers the
transition, along with the output codeword.

of minimum cost to the received sequence, where the cost is
commonly computed using Hamming distance. For example,
given a received coded bit sequence of 0100000100, the costs
of PATH-1 and PATH-2 are 2 and 5, respectively. In this case,
PATH-1 is more likely the correct path.

B. Bit Padding

In OFDM-based wireless systems, when packet size is not
an integral multiple of the number of bits carried by an OFDM
symbol, rubbish bits will be padded at packet tail to fill the
last OFDM symbol. In 802.11, each OFDM symbol carry a
total of 24 to 320 data bits, depending on the modulation and
channel coding schemes. Let n be the number of data bits
carried by each OFDM symbol. A k-bit packet consists of
⌊k/n⌋ OFDM symbols. The number of padded bits can be
calculated as n× ⌊ k

n
⌋ − k.

IV. A MOTIVATION EXAMPLE

Our approach is driven by the hypothesis that recovering
corrupted 802.11 packets at the PHY layer requires sig-
nificantly less redundancy than that required by link layer
protocols. The intuition behind is that, by correcting an
erroneous coded bit, we can affect the decoding of a sequence
of surrounding data bits, leading to higher error correction
efficiency. In the following, we demonstrate this intuition using
an example based on the code defined in Tab. I.

Tab. II gives an example where a correcting one coded bit
recovers 4 data bits. The first three columns show transmitted
bits, transmitted and received coded bits, respectively. For
PATH-I and PATH-2, the table shows the 2-bit codeword
expected by the path, along with the decoding output and
the costs accumulated on the path. Assuming a 4-bit mes-
sage ‘0000’ is transmitted using the code defined in Tab. I,
the transmitted and received coded bits are ‘00000000’ and
‘10011000’, respectively. Tab. II shows the case where the
decoder compares the costs of the correct path (PATH-1) and

TABLE II
AN EXAMPLE WHERE CORRECTING ONE CODED BIT RECOVERS

FOUR DATA BITS.

Tx Tx Rx PATH-1 PATH-2
bit code code Code Bit Cost Code Bit Cost
0 00 10 00 0 1 11 1 1
0 00 01 00 0 2 01 1 1
0 00 10 00 0 3 10 1 1
0 00 00 00 0 3 10 1 2

a faulty path of 4 bit errors (PATH-2). As the accumulated
costs of PATH-1 and PATH-2 are 3 and 2, the decoder will
eliminate PATH-1, causing 4 bit errors in decoding output. In
this example, correcting one of coded bit errors will reduce
the cost of PATH-1 to 2, and increase the cost of PATH-2 to
3, reviving PATH-1 and correcting 4 bit errors.

V. CHALLENGES AND SYSTEM OVERVIEW

Realizing the idea of PHY packet recovery in 802.11 raises
two practical challenges.

Maintaining communication efficiency. Recent studies [14]
[24] show that the channel contention cost of 802.11 can easily
offside the spectrum efficiency of high-rate PHY. To minimize
communication overhead, an efficient packet recovery solution
should avoid retransmissions whenever it is possible.

Minimizing computational overhead. 802.11 PHY is delay-
sensitive. If a sender does not receive an ACK within the
window of SIFS (10 µs in 802.11g), it will consider the
packet lost and trigger a retransmission. PHY packet recovery
requires an extra round of decoding to correct coded bits,
leading to higher delay. This delay depends on the complexity
of the FEC used for error correction, and must be minimized
to meet the stringent 802.11 timing constraints.

To address the above challenges, we propose CodeRepair, a
practical PHY packet recovery protocol for 802.11. CodeRe-
pair pushes the limit of 802.11 PHY to piggyback a small
number of parities on the padded bits of OFDM, therefore
avoiding extra communication overhead. During error correc-
tion, CodeRepair receiver first uses piggybacked parities to
correct a subset of received coded bits, and then re-decodes
to recover a the packet without triggering retransmissions.

CodeRepair is designed to be highly computational efficient.
To this end, we employ single parity code (SPC) – a simple
error detection code – for coded bits recovery. To augment
SPC for error correction, CodeRepair integrates three tech-
niques including code reversing, selective re-decoding, and
parity optimization, to turn SPC into an efficient outer code
atop 802.11 convolutional code without compromising SPC’s
computation simplicity. CodeRepair can be integrated with
other FECs to achieve better error correcting performance,
although this comes at the cost of increased complexity.

We now give an overview on the working flow of CodeRe-
pair. On the sender side, CodeRepair generates a small number
of parities, where each parity is the modulo-2 sum of some ran-
domly selected coded bits. The parities are then piggybacked
by the padded bits of 802.11. Fig. 2 shows the architecture of

2015 IEEE Conference on Computer Communications (INFOCOM)

1465

Fig. 2. The architecture of an 802.11 receiver augmented with
CodeRepair components (gray area).

an 802.11 receiver augmented with CodeRepair components.
For each packet that fails CRC check, CodeRepair receiver
extracts padded parities after packet decoding, and then per-
forms SPC decoding to re-estimate a subset of coded bits. To
augment SPC for error correction, CodeRepair employs code
reversing, a technique that leverages the decoding confidence
of data bits to reverse coded bit values. The number of
bits sampled by each parity is carefully tuned to improve
error correction performance. To correct erroneous data bits,
CodeRepair selectively re-decodes a group of low confidence
bit blocks using the re-estimated coded bit sequence. In the
next section, we will introduce the design of CodeRepair in
detail.

VI. CODEREPAIR DESIGN

In this section, we introduce the coding of SPC, describe
the design of CodeRepair sender and receiver, and then discuss
how to improve the utilization of padded parities.

A. Single Parity Code

CodeRepair augments single parity code (SPC) – a simple
error detection code – to an efficient outer FEC atop 802.11
convolutional code. The key motivation driven this design is
to minimize computational overhead. In the following, we first
introduce the coding and decoding of SPC, and then discuss
its deficiency in error correction.
Coding and decoding. CodeRepair employs SPC to encode
and estimate coded bit values of 802.11 packet. Given n
randomly selected coded bits x1, ..., xn, the SPC encoder
computes a single parity p, such that p⊕ x1...⊕ xn = 0. Let
y1, ..., yn be the received coded bits, and q be the received
parity. We use ϕ(yi|s) to denote the LLR of yi obtained
through soft-demodulating the received signal s; ϕ(q|s) can
be derived by soft-decision channel decoding. To decode SPC,
we resort to the decoding techniques developed for LDPC.
Specifically, for two independent binary variables a and b,
ϕ(a⊕ b) can be derived using Jacobian function [3],

ϕ(a⊕b) = sgn
(
ϕ(a)

)
sgn

(
ϕ(b)

)(
min(|ϕ(a)|, |ϕ(b)|)−c

)
, (2)

where sgn(a) is the sign of a, and c can be approximated using
a constant while incurring only a negligible loss in accuracy
[4]. Following the Bayes’ rule, we can use the received parity
q to update the LLR of yi as follows,

ϕ(yi|s, q) = ϕ(yi|s) + ϕ(yi|q) = ϕ(yi|s) + ϕ(yi ⊕ u|s), (3)

where u = q ⊕ y1 ⊕ ...⊕ yn.

Deficiency in error correction. Despite its computation effi-
ciency, SPC is rarely used as an error correcting code. As an
error detection code, SPC only detects odd number of errors,
and cannot identify the positions of erroneous bits. When there
is odd number of errors, sgn(ϕ(yi|q)) = −sgn(ϕ(yi|s)). In this
case, the SPC decoder trades off the accuracy of correct coded
bits to recover erroneous ones. When there is even number
of errors, we have sgn(ϕ(yi|q)) = sgn(ϕ(yi|s)). In this case, the
parity has no contribution to error correction. In Section VI-C,
we will address this inherent deficiency of SPC, enabling it to
recover coded bits while preserving its computation simplicity.

B. CodeRepair Sender

On the sender side, CodeRepair employs SPC to encode the
coded bits of 802.11 packet into parities. Each parity randomly
samples a group of coded bits, which are selected based
on a pseudo-random number sequence generated offline. The
sender and receiver share this sequence during SPC encoding
and decoding. CodeRepair sender piggybacks parities on the
padded bits of 802.11 (see Section III-B), allowing the receiver
to correct corrupted packets without triggering retransmissions
or consuming extra bandwidth.

Fig. 3(a) shows the number of padded bits measured in
two data traces of real-life 802.11 networks. SIGCOMM
[18] is a publicly available packet trace collected in WLANs
of hundreds of users attending SIGCOMM 2008. The trace
named Home is collected by ourselves in an apartment from
an 802.11n WLAN. We observe plenty of padded bits in both
traces. The average numbers of padded bits per packet are
83 and 157 SIGCOMM and Home, respectively. Fig. 3(b)
further studies the impact of bit rate using the SIGCOMM
trace. As shown in the figure, packets transmitted at high bit
rates contain more padded bits. Denote ndata as the number
of bits carried by one OFDM symbol. ndata increases with
data rates. Assuming the packet size is randomly distributed,
the average number of padded bits is ndata/2. In 802.11n and
802.11ac, padded bits can be even more substantial.

C. CodeRepair Receiver

At the receiver, CodeRepair utilizes the padded parities to
recover coded bits, and then re-decodes to correct corrupted
packets. To address the deficiency of SPC, CodeRepair opti-
mizes the sampling rate of parities to maximize their utilities
(see Section VI-D). Meanwhile, CodeRepair receiver uses two
techniques called code reversing and selective re-decoding to
augment SPC decoder. In the following, we explain how these

2015 IEEE Conference on Computer Communications (INFOCOM)

1466

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 40 80 120 160 200 240

C
D

F

Number of padded bits

SIGCOMM

Home

(a) Number of padded bits per
packet.

 0

 40

 80

 120

 160

 200

 240

6 9 12 18 24 36 48 54

N
u
m

 o
f

p
ad

d
ed

 b
it

s

Bit rate (Mbps)

(b) Effect of bit rates measured in
SIGCOMM trace.

Fig. 3. Padded data bits in real-life network traffic.

-4

 0

 4

 8

 12

 16

-4 0 4 8 12 16

L
L

R
 o

f
c
o
d
e
d
 b

it
-1

LLR of coded bit-2

(a) Before code reversing.

-4

 0

 4

 8

 12

 16

-4 0 4 8 12 16

L
L

R
 o

f
c
o
d
e
d
 b

it
-1

LLR of coded bit-2

(b) After code reversing.
Fig. 4. Effect of code reversing. Each point denotes a codeword
consisting of two coded bits. A negative LLR indicates an erroneous
coded bit. Gray points denote the codewords containing at least one
gray code.

techniques are integrated together, and then describe code
reversing and selective re-decoding in detail.
Basic idea of augmenting SPC decoding. At the very
high-level, CodeRepair employs SPC to correct coded bit
errors. Due to the deficiency discussed in Section VI-A, SPC
decoding may decrease the estimation accuracy of correct
coded bits. CodeRepair suppresses this side effect through
selective re-decoding. Specifically, by evaluating the decoding
confidence, CodeRepair receiver first identifies a group of gray
blocks that are likely to contain decoding errors. We denote
the coded bits located in gray blocks as gray codes. Then the
receiver performs code reversing, which exploits decoded bits
of high confidence to recover non-gray codes. By optimizing
the sampling rate of parities (as discussed in Section VI-D,
we can maximize the chance at which each parity samples one
gray code. As a result, the estimation error of the sampled gray
code will be reduced after SPC decoding. However, as shown
in Eq. (2) and Eq. (3), the accuracy of non-gray codes will
be traded off. This side-effect is suppressed using selective re-
decoding, where only the gray blocks are re-decoded to correct
decoding errors.
Code reversing. The goal of code reversing is to recover
non-gray codes through soft re-encoding data bits using their
decoding confidence. The intuition behind is straightforward.
Considering the case when a packet is decoded correctly, a
simple method to correct all coded bit errors is to re-encode
the packet. Specifically, to reverse a codeword y2iy2i+1, we
take Eq. (1) into Eq. (2), and then follow the Bayes’ rule to
sum the results with ϕ(y2i|s) and ϕ(y2i+1|s) to update the
estimation.

Fig. 4 illustrates the effect of code reversing. The trans-
mitted packet consists of all zero bits. Based on Eq. (1),
transmitted coded bits are all zeros too. Thus a negative LLR
indicates a coded bit error. Each gray point in the figure
denotes a codeword that contains at least one gray code. As
shown Fig. 4, code reversing significantly reduces errors in
non-gray codes. However, we note that simply re-decoding
using the reversed codes will not correct most decoding errors
because code reversing cannot recover errors in gray codes,
which are the root causes of decoding errors.

Code coloring and selective re-decoding. In each corrupted
packet, CodeRepair receiver identifies a group of gray blocks
and then re-decodes them after coded bits recovery. Specifi-
cally, the receiver colors the i-th codeword as gray, if there
exists a bit bj at position j, such that |j − i| ≤ k and
|ϕ(bj)| ≤ T , where k = 6 is the constraint length of
802.11 convolutional code, and T is a pre-defined threshold
on decoding confidence. This coloring scheme is motivated
by the principle of 802.11 convolutional decoding, i.e., an
erroneous codeword may affect the decoding of all the bits
located within a distance of constraint length. Once the gray
blocks are identified, the receiver calls the default channel
decoder to re-decode using recovered gray codes for error
correction. To choose T for CodeRepair, we conduct an
empirical measurement on a testbed of 10 USRP links to find
the minimum confidence that includes all bit errors for 95%
packets.

D. Parity Sampling Rate Optimization

To assure that SPC decoding will improve the estimation
accuracy of gray codes, CodeRepair tunes the sampling rate
of parities to maximize the probability at which each parity
samples one gray code. Therefore all reversed non-gray codes
sampled by the same parity will contribute to recover the gray
code during SPC decoding.

Let γg be the ratio of gray codes, and n be the number
of coded bits sampled by each parity. Denote P(n, γg) as the
probability where one gray code is sampled by a parity, we
have,

P(n, γg) = n× γg × (1− γg)
n−1, (4)

Our goal is to find n, such that,

nopt = argmax
n

{P(n, γg)} = −
1

1− log γg
. (5)

To optimize n, a rigorous approach would be to measure the
probabilistic distribution of γg at runtime, and then maximize
the expectation of Eq. (5) accordingly. Unfortunately, this may
significantly complicate the design of PHY. We address this
problem using an empirical approach to profile the distribution
of γg offline, and then compute nopt using Eq. 5. In our
measurement, we observe that the distributions of gray code
ratio varies for packet of different sizes. Corrupted packets of
larger size have a higher gray code ratio. To address this issue,
we profile different nopt for different packet lengths.

2015 IEEE Conference on Computer Communications (INFOCOM)

1467

VII. PERFORMANCE ANALYSIS

In this section, we present an analytical study to verify the
efficiency of PHY packet recovery based on Shannon’s random
code [19]. We characterize the efficiency by metric γ, which
is defined as the expected number of bit errors reduced by
correcting one coded bit error.

We begin with a brief introduction on the background of
random code. At the encoder, a message is first divided into n-
bit blocks. Then each block is encoded into a m-bit codeword
based on the random mapping defined in a codebook, which is
shared by both sender and receiver. The above code is denoted
as (n,m)-code, where n/m is the coding rate.

Assuming that a m-bit codeword is received with ε errors,
the received codeword defines a set Aε, in which the Hamming
distances from all codewords to the received one is less than
ε. The size of Aε is,

|Aε| =
(m
0

)
+

(m
1

)
+ ...+

(m
ε

)

If at least one of the codewords in Aε is selected to encode a
block, the transmitted block will be eliminated during decod-
ing, causing decoding errors1. Assuming that m is reasonably
large so that ε ≪ 2m, the probability of correct decoding can
be computed as,

P(ε) = (1− 2n−m)|A
ε|

Given that the block is decoded with errors, to correct the
block, number of coded bits needed to correct is,

∑
0≤k<ε

(
ε− k

)(
P(k)− P(k + 1)

)
1−P(ε)

=
ε−

∑
0<k≤ε P(k)

1− P(ε)

Because of random coding, an erroneous n-bit block contains
an average of n/2 bit errors. Thus γ can be derived as,

γ =
∑

0<ε<m

ρ(ε)×
n

2
×

1− P(ε)

ε−
∑

0≤k≤ε P(k)
(6)

where ρ(·) is the probability of having ε coded bit errors in
a m-bit codeword. For binary symmetric channel (BSC) and
AWGN channel, coded bit errors occur independently of each
other. Thus ε follows binomial distribution, i.e., ε ∼ B(m,β),
where β is the coded bit error rate.

Fig. 5 plots Eq. (6) for four random codes of different
block lengths over binary symmetric channels. As shown in
the figure, correcting one coded bits reduces a large number
of bit errors. Moreover, we find that PHY packet recovery is
particularly efficient when the block length of code is large or
the coded bit error rate is low. This result suggests that real-
life wireless networks will benefit from PHY packet recovery
for two reasons. First, as a common practice, real-life wireless

1We assume that the decoder will eliminate the true message if its distance
is equal to another candidate. Thus the result derived in this section provides
a lower bound of γ.

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

B
it

 e
rr

o
rs

re

d
u

ce
d

 b
y

 c
o

rr
ec

ti
n

g
 o

n
e

co
d

ed
 b

it
 e

rr
o

r

Coded bit error rate

code (8, 16)
code (12, 24)
code (16, 32)
code (20, 40)

Fig. 5. Bit errors reduced by correcting one faulty coded bit for
Shannon’s random code.

networks usually employ channel codes of large block length
for improving the resistance to transmission errors. As an
example, the block length of LDPC employed in 802.11n
ranges from 648 to 1944. Second, coded bit error rate observed
in real-life wireless networks is typically low due to the
effect of bit rate adaptation, which optimizes the modulation
to minimize transmission errors under time-varying channel
conditions.

VIII. EVALUATION

We prototype CodeRepair in an 802.11 like PHY atop the
OFDM modules of GNURadio/USRP platform. The PHY im-
plements 802.11 compliant operations, including scrambling,
interleaving, convolutional coding and decoding. We employ
BCJR [1], a widely adopted algorithm for maximum a posteri-
ori decoding of 802.11 convolutional code. The decoder takes
demodulated symbols as input, converts complex symbols on
constellation to soft coded bits using a soft-output de-mapper
[21], and then performs soft-in soft-out decoding. CodeRepair
is integrated with BCJR following the structure shown in Fig.
2.

Our evaluation centers around three aspects. (1) How effi-
ciently can CodeRepair recover corrupted packets? (2) What
is the impact of CodeRepair on the link-layer of 802.11
with transmission rate adaptation? and (3) How much is the
decoding overhead of CodeRepair?

A. Efficiency of Error Correction

Experiment settings. We evaluate the error correction perfor-
mance of CodeRepair on a testbed of 10 USRP links deployed
in an office building. Each link consists of two USRP nodes.
Without loss of generality, we evaluate CodeRepair atop the
rate-1/2 802.11 convolutional code, using BPSK modulation.
Our experiments are conducted on a 4MHz channel centered at
5 GHz. We observe that the USRP links exhibit substantially
different channel conditions. The average BER ranges from
0.06% to 5.37%. Our trace-driven emulation discussed in
Section VIII-B will evaluate CodeRepair performance under
other bit rates, on a 20MHz channel trace collected using
production 802.11n NICs.

Our evaluation focuses on the efficiency of coded bits
recovery and partial packet correction of CodeRepair. A key
factor that affects error correction performance is the number
of padded parities, which depends on the packet size and
bit rate. In real networks, packet size may follow different

2015 IEEE Conference on Computer Communications (INFOCOM)

1468

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

16 32 64 96 128

P
er

ce
n
ta

g
e

o
f

re
co

v
er

y

Number of parity bits

Link-layer RS
CodeRepair

(a) Effect of parity number.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 16 32

P
ro

b
ab

il
it

y
 o

f
re

co
v
er

y

Number of bit errors

RS-16

CR-16
CR-128

RS-128

(b) Effect of BER.
Fig. 6. Partial packet recovery of CodeRepair and link layer
RS code. In RS-k and CR-k denote link layer RS code and
CodeRepair when using k parities for error recovery.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

C
D

F

Error rate

Before code reversing
After code reversing

Fig. 7. Error rate of non-gray
codes before and after code re-
versing.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2

C
D

F

Error rate

Before recovery
32 parities
96 parities

Fig. 8. Error rate of gray-codes
before and after SPC decoding.

probabilistic distributions depending on the network traffic. In
the following, we conduct controlled experiments to study the
effect of the number of parity bits on CodeRepair performance.
Specifically, we use a fixed packet size of 420 bytes, where the
first 400 bytes are used for carrying data bits, and the last 20
bytes carrying parities. At the receiver, we tune the number of
parities used for error correction to study the effects on error
correction performance. In Section VIII-B, we will evaluate
CodeRepair using real-life network traffic of different packet
length distributions.
Coded bits recovery. We now evaluate the performance of
coded bits recovery described in Section VI-C. In particular,
CodeRepair first performs code reversing to recover non-gray
codes, and then conducts SPC decoding described in Section
VI-A to correct gray codes. We measure the performance by
transmitting 1000 packets on each USRP link. Fig. 7 show
the distribution of coded bit error rate for non-gray codes
before and after code reversing. The results are measured
using total 13872 corrupted packets logged in our testbed. We
observe that code reversing recovers a significant amount of
gray codes. Specifically, the average error rate is reduced from
4.4% to 0.2%.

Leveraging the low error rate of recovered non-gray codes,
CodeRepair further conducts SPC decoding using parities to
correct errors in gray codes. Fig. 8 shows the distribution
of coded bit error rate for gray codes before and after SPC
decoding using 32 and 96 parities. In particular, using 32
parities, CodeRepair reduces gray code error rates at the
25th and 75th percentile from 7.1% and 12.5% to 2.8% and
10.2%, respectively. Using 96 parities, the error rate at the
25th percentile is further reduced to 1.2%. Although the error
reduction is not substantial, correcting a small number of gray
code errors has significant impact on packet recovery because
one coded bit affects the decoding of a group of data bits (see
Section IV). In the following, we will evaluate the effect of
coded bits recovery on correcting partial packets.
Partial packet recovery. To validate the packet recovery
efficiency of CodeRepair, we compare its performance with
link-RS, which uses the Reed-Solomon (RS) code of 8-bit
symbols at the link layer to correct bit errors. RS code is
efficient in correcting the burst bit errors which are common
in 802.11 packet, and is widely adopted in previous work [12]

802.11 Sigcomm

CodeRepair Sigcomm

802.11 Home

CodeRepair Home

802.11 Random

CodeRepair Random

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Percentage of timing

Backoff+DIFS+SIFS Retran Tx

Fig. 12. Histogram of MAC timing measured on an 802.11 transmitter.
The figure shows the percentage of time used in transmission (Tx),
retransmission (Retran), and free time, which includes the backoff
time incurred by channel access, DIFS, and SIFS.

[23].

Fig. 6(a) compares the packet recovery performance of
CodeRepair and link-RS when using the same number of
parities. We observe that CodeRepair performs similarly with
link layer RS code when using 64, 96, and 128 parities.
However, when the number of parities is limited, CodeRepair
significantly outperforms link-RS. Specifically, using only 16
parities, CodeRepair recovers 20.2% partial packets, while link
layer RS code only recovers 6.6%. This is because CodeRepair
is able to leverage the efficiency of PHY packet recovery
(demonstrated in Section IV), where correcting one coded bit
improves the decoding success rate of a group of data bits.

Fig. 6(b) shows the packet recovery performance of
CodeRepair under different numbers of bit errors. We observe
that when using 128 parities, CodeRepair performs similarly
with link layer RS code. However, decoding RS code in-
curs much higher computation overhead than CodeRepair.
Moreover, when using 16 parities, CodeRepair significantly
outperforms RS code in recovering packets of small number of
bit errors. Link layer RS code can correct only one error byte
using 16 parities. When bit errors are distributed in different
bytes, RS code fails to recover the packet. In comparison,
CodeRepair first corrects a small number with coded bit errors,
and then leverages the efficiency of PHY packet recovery to
correct more bit errors. Previous studies [2] [12] show that bit
error rate observed in production 802.11 NIC is very low due
to the effect of bit rate adaptation. The result shown in Fig.
6(b) suggests that CodeRepair will be more efficient than link
layer FECs in real 802.11 networks.

2015 IEEE Conference on Computer Communications (INFOCOM)

1469

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Sigcomm Home Random

P
ac

k
et

 l
o

ss
 r

at
io

Packet trace

Fig. 9. Packet loss rate.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

Sigcomm Home Random

G
o

o
d

p
u

t
(M

b
p

s)

Packet trace

Fig. 10. Goodput.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Sigcomm Home Random

D
el

ay
 (

m
s)

Packet trace

802.11

CodeRepair

Link layer RS code

Fig. 11. Packet delay.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15

C
D

F

Goodput (Mbps)

80211 Skype
80211 Video

CodeRepair Skype
CodeRepair Video

Fig. 13. Goodput gain of CodeRepair on different types of traffic.
B. Impact on Link Layer Performance

In this section, we evaluate the impact of CodeRepair on the
link layer performance of 802.11 networks. Due to processing
delay, USRP cannot support full-featured link-layer protocols
(e.g., real-time rate adaptation). Therefore, we turn to trace-
driven emulations to evaluate the end-to-end link performance
gain of CodeRepair. To collect fine-grained channel trace, we
employ the tool introduced in [9] to sample channel state
information (CSI) on a 20 MHz channel using a link of
two Intel 802.11n NICs. During trace collection, the sender
transmits UDP packets at a speed of 2,000 packets/second.
Meanwhile, the receiver moves around the sender at normal
walking speed. Total 10-minute trace was collected. We then
run our implementations of CodeRepair and the 802.11 like
PHY over this channel trace to measure the end-to-end perfor-
mance. We observe that the SNR during trace collection ranges
from 3dB to 20dB. The signal experiences diverse multipath
fadings. The maximum difference between subcarrier SNRs
ranges from 5 dB to 22dB.
Evaluation settings. To adapt bit rate over time-varying
channel, we employ the algorithm proposed in [8], where
the transmitter tunes its bit rate based on the effective SNR
measured using receiver ACKs. We implemented a binary
exponential backoff algorithm where the transmitter doubles
its backoff window whenever a packet loss is detected. Ac-
cording to 802.11, the maximum retry limit is set to 6, and
the minimum contention window is set to 15.

We compare the performance of CodeRepair with two
baselines, including 802.11 and a link layer FEC based
scheme, which employs the RS code used in Fig. 6 and
piggybacks parities in the padded bits of 802.11 packets. By
comparing CodeRepair with link layer RS code, our goal is
to demonstrate the advantages of recovering partial packets at
the PHY layer. We note that realizing the link layer RS code
is very challenging. Recent study [2] shows that a software
RS decoder incurs a large processing delay, which cannot
meet the timing constraint of 802.11. In addition, RS decoding

incurs much higher computational overhead than CodeRepair.
Implementing RS decoding in firmware will significantly
increase the implementation cost.

A key factor that affects CodeRepair efficiency is the
number of padded parities, which depends on the packet
size and bit rate. In our evaluation, we study CodeRepair
performance using three packet size distributions, including
Random, SIGCOMM and Home. In Random, packet size is
randomly choosen between 16 bytes and 1580 bytes, which is
the maximum size of 802.11 packet. In SIGCOMM [18] and
Home, we replay the packet trace collected in real-life 802.11
networks to improve the realism of our evaluation.
Evaluation results. Our evaluation focuses on three link layer
metrics, including the packet loss rate, goodput, and packet
delay. Higher layer factors, such as TCP reactions, affect
how this link layer performance translates to real system
throughput.

Fig. 9 compares the packet loss rates of 802.11, CodeRepair,
and link layer RS code. We observe that CodeRepair yields
the lowest packet loss rate in all packet traces. Specifically, the
average packet loss rate of 802.11 in the three packet traces
is 32%, which is similar to the result measured in mobile
channels using production NICs [12]. CodeRepair reduces
packet loss rate from 32% to 21%, recovering 34% partial
packets. Moreover, CodeRepair corrects more packet errors
than link layer RS code. The result demonstrates the efficiency
of PHY packet recovery. Fig. 10 evaluates how this loss
rate reduction translates to the goodput gain. As shown in
the figure, CodeRepair significantly improves the end-to-end
goodput when compared with 802.11. Specifically, the goodput
gains of CodeRepair over 802.11 are 1.60x, 1.66x, and 1.49x
in SIGCOMM, Home, and Random packet traces, respectively.
The average goodput gain is 1.58x. Moreover, CodeRepair
outperforms link layer RS code by about 25% in all packet
traces. We further evaluate the packet delay in Fig. 11, where
the packet delay is measured as the duration from the start of
packet transmission to packet reception. CodeRepair reduces
packet delay when compared with 802.11. In particular, the
average packet delay is reduced by 37% in the SIGCOMM
trace.

To explain why a 34% packet loss reduction translates to
a 1.58x goodput gain, we analyze the 802.11 MAC timing
statistics in Fig. 12. As 802.11 employs binary exponential
backoff in MAC, it is very sensitive to packet losses. Whenever
a packet loss is detected, it doubles its channel contention
window, increasing the channel access overhead. By recover-
ing 34% partial packets, CodeRepair reduces backoff cost and

2015 IEEE Conference on Computer Communications (INFOCOM)

1470

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

C
D

F

Decoding cost

802.11
CodeRepair

Fig. 14. Decoding cost.
improves the channel utilization of 802.11, yielding significant
goodput improvement.

We further study the performance gain of CodeRepair for
different traffic types. Fig. 13 plots the CDF of goodputs for
Skype traffic and HD Video traffic. The average packet size
for Skype and HD Videos are 271 bytes and 1157 bytes,
respectively. We observe that the goodput gain of CodeRepair
on Skype is 1.62x. In comparison, the gain on Video traffic
is 1.36x. CodeRepair performs better on Skype traffic because
the ratio of padded bits is higher in packets of smaller size.

C. Decoding Cost

CodeRepair relies on selective re-decoding to correct partial
packets. When the packets cannot be recovered after re-
decoding, CodeRepair pays extra decoding cost. We define the
decoding cost as the ratio between the number of decoded bits
to the number of successfully received bits. Fig. 14 evaluates
the decoding costs of CodeRepair and 802.11 measured in
SIGCOMM [18] trace. We observe that CodeRepair yields
less decoding cost when compared with 802.11. Specifically,
the average decoding costs of 802.11 and CodeRepair are 1.76
and 1.52, respectively. CodeRepair reduces decoding cost by
13.6%.

IX. CONCLUSION

We present CodeRepair, a practical system for recovering
partially corrupted 802.11 packets. CodeRepair piggybacks
parities in the padded bits of OFDM, obviating the need of
transmitting extra information for error correction. CodeRepair
leverages the padded parities to correct errors at the PHY
layer, which is significantly more efficient than traditional
link layer approaches. Moreover, CodeRepair minimizes the
complexity of error recovery by augmenting the single parity
code for correcting errors. The extra computation overhead
incurred by CodeRepair is only 2% to 7% of the conventional
channel decoders. Our results show that CodeRepair improves
the system goodput by 59% on lossy 802.11 links.

To improve the interoperability of CodeRepair with produc-
tion 802.11 devices, we have implemented CodeRepair sender,
including the SPC encoding and parity padding, in userspace
driver. This allows commodity 802.11 devices to communicate
with CodeRepair receivers through a simple driver upgrade.
Currently, CodeRepair receiver is prototyped on the GNURa-
dio/USRP platform, which has a high processing delay. In the
future, we plan to implement CodeRepair receiver in hardware.
The extremely low complexity of SPC will lead to an efficient
hardware implementation of CodeRepair.

X. ACKNOWLEDGMENTS

This work was supported in part by U.S. National Sci-
ence Foundation under grants CNS-1423221, CNS-0954039
(CAREER), CNS-1239108, CNS-1218718, IIS-1231680, and
NSFC (61170296, 61190125).

REFERENCES

[1] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv. Optimal decoding of linear
codes for minimizing symbol error rate. In IEEE Transactions on
Information Theory, 1974.

[2] B. Chen, Z. Zhou, Y. Zhao, and H. Yu. Efficient error estimating coding:
feasibility and applications. In ACM SIGCOMM, 2010.

[3] J. Erfanian, S. Pasupathy, and G. Gulak. Reduced complexity symbol
detectors with parallel structure for isi channels. Communications, IEEE
Transactions on, 1994.

[4] M. Fossorier, M. Mihaljevic, and H. Imai. Reduced complexity iterative
decoding of low-density parity check codes based on belief propagation.
Communications, IEEE Transactions on, 1999.

[5] M. Gowda, S. Sen, R. R. Choudhury, and S.-J. Lee. Cooperative packet
recovery in enterprise wlans. In IEEE INFOCOM, 2013.

[6] A. Gudipati and S. Katti. Strider: automatic rate adaptation and collision
handling. In ACM SIGCOMM, 2011.

[7] J. Hagenauer. Rate-compatible punctured convolutional codes (rcpc
codes) and their applications. Communications, IEEE Transactions on,
1988.

[8] D. Halperin, W. Hu, A. Sheth, and D. Wetherall. Predictable 802.11
packet delivery from wireless channel measurements. In ACM SIG-
COMM, 2010.

[9] D. Halperin, W. Hu, A. Sheth, and D. Wetherall. Tool release: Gathering
802.11n traces with channel state information. ACM SIGCOMM CCR,
2011.

[10] B. Han, A. Schulman, F. Gringoli, N. Spring, B. Bhattacharjee, L. Nava,
L. Ji, S. Lee, and R. R. Miller. Maranello: Practical partial packet
recovery for 802.11. In NSDI, 2010.

[11] K. Jamieson and H. Balakrishnan. Ppr: Partial packet recovery for
wireless networks. In ACM SIGCOMM, 2007.

[12] K. C.-J. Lin, N. Kushman, and D. Katabi. Ziptx: Harnessing partial
packets in 802.11 networks. In ACM MobiCom, 2008.

[13] M.-H. Lu, P. Steenkiste, and T. Chen. Design, implementation and
evaluation of an efficient opportunistic retransmission protocol. In ACM
MobiCom, 2009.

[14] E. Magistretti, K. K. Chintalapudi, B. Radunovic, and R. Ramjee.
Wifi-nano: Reclaiming wifi efficiency through 800 ns slots. In ACM
MobiCom, 2011.

[15] R. Mahajan, J. Padhye, S. Agarwal, and B. Zill. High performance
vehicular connectivity with opportunistic erasure coding. In USENIX
ATC, 2012.

[16] A. Miu, H. Balakrishnan, and C. E. Koksal. Improving loss resilience
with multi-radio diversity in wireless networks. In ACM MobiCom,
2005.

[17] J. Perry, P. A. Iannucci, K. E. Fleming, H. Balakrishnan, and D. Shah.
Spinal codes. In ACM SIGCOMM, 2012.

[18] A. Schulman, D. Levin, and N. Spring. CRAWDAD data set
umd/sigcomm2008 (v. 2009-03-02).

[19] C. E. Shannon. A mathematical theory of communication. Bell system
technical journal, 1948.

[20] E. Strinati, S. Simoens, and J. Boutros. Performance evaluation of some
hybrid arq schemes in ieee 802.11a networks. In IEEE VTC-Spring,
2003.

[21] F. Tosato and P. Bisaglia. Simplified soft-output demapper for binary
interleaved cofdm with application to hiperlan/2. In Communications,
2002. ICC 2002. IEEE International Conference on, 2002.

[22] G. R. Woo, P. Kheradpour, S. Dawei, and D. Katabi. Beyond the bits:
cooperative packet recovery using physical layer information. In ACM
SIGCOMM, 2007.

[23] J. Xie, W. Hu, and Z. Zhang. Revisiting partial packet recovery in
802.11 wireless lans. In ACM MobiSys, 2011.

[24] J. Zhang, H. Shen, K. Tan, R. Chandra, Y. Zhang, and Q. Zhang. Frame
retransmissions considered harmful: improving spectrum efficiency us-
ing micro-acks. In ACM MobiCom, 2012.

2015 IEEE Conference on Computer Communications (INFOCOM)

1471

