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ABSTRACT Carpooling taxicab services hold the promise of providing additional transportation supply,
especially in the extreme weather or rush hour when regular taxicab services are insufficient. Although
many recommendation systems about regular taxicab services have been proposed recently, little research,
if any, has been done to assist passengers to find a successful taxicab ride with carpooling. In this paper,
we present the first systematic work to design a unified recommendation system for both the regular and
carpooling services, called CallCab, based on a data-driven approach. In response to a passenger’s real-
time request, CallCab aims to recommend either: 1) a vacant taxicab for a regular service with no detour
or 2) an occupied taxicab heading to the similar direction for a carpooling service with the minimum detour,
yet without assuming any knowledge of destinations of passengers already in taxicabs. To analyze these
unknown destinations of occupied taxicabs, CallCab generates and refines taxicab trip distributions based on
GPS data sets and context information collected in the existing taxicab infrastructure. To improve CallCab’s
efficiency to process such a big data set, we augment the efficient MapReduce model with a Measure phase
tailored for our CallCab. Finally, we design a reciprocal price mechanism to facilitate the taxicab carpooling
implementation in the real world. We evaluate CallCab with a real-world data set of 14 000 taxicabs, and
results show that compared with the ground truth, CallCab reduces 60% of the total mileage to deliver all
passengers and 41% of passenger’s waiting time. Our price mechanism reduces 23% of passengers’ fares and
increases 28% of drivers’ profits simultaneously.

INDEX TERMS Taxicab network, recommendation system, carpooling.

I. INTRODUCTION
Among all transportation modes, taxicabs play a prominent
role in residents’ commutes in metropolitan areas, e.g.,
New York City, over 100 companies operate 13, 000 taxicabs
with daily demand of 660, 000 passengers [1]. In taxicab ser-
vices, availability and affordability are two important criteria:
the top comments from passengers about taxicabs are that
taxicabs are not available when needed and fares are higher
than expected. According to a survey [2], the average waiting
time for a taxicab in the rush hour in big cities, e.g., NewYork
City, is more than 13 minutes, and the average taxicab fare is
more than 6 times of a public transit fare, e.g., a bus.

To improve both the availability and the affordability,
a carpooling service is proposed in dense urban areas.
In the carpooling service, a passenger can hail an occupied
taxicab on streets or wait at a taxicab stand to carpool with
the existing passengers. For the availability, a well-designed
carpooling schedule groups related passengers into a single
taxicab trip with theminimum detour mileage, thus delivering
the same number of passengers with fewer taxicabs and
lower mileage; for the affordability, a practical carpooling
price mechanism reduces the passengers’ fares, since the
total fares and tolls are shared by all passengers on the same
taxicab.
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Different from regular taxicab services where any vacant
taxicab can take a passenger in any direction, in a carpooling
service, however, a new passenger has to find a carpoolable
taxicab, which refers to an occupied taxicab with the exist-
ing passengers heading to the similar direction (no need
to be the same destination) with this new passenger. But
finding such a carpoolable taxicab is challenging because in
the existing taxicab network infrastructure, even with real-
time taxicab GPS tracking, a dispatching center cannot know
future directions of the taxicabs that pick up passengers along
streets, since the destinations of these passengers are normally
unknown to the dispatching center. Unfortunately, almost all
the existing taxicab recommendation systems [3]–[10] are
focused on vacant taxicabs. Little work, if any, is focused
on how to find a carpoolable taxicab for a passenger. Thus,
we face a challenge to assist passengers to find carpoolable
taxicabs in the existing infrastructures.

In this paper, we argue that a data driven approach is a
promising solution to address such an issue. In the existing
taxicab infrastructure of big cities, taxicabs’ locations and
status are uploaded to a dispatching center periodically in
real time, forming a large GPS dataset. This dataset has a
large volume (several TBs) and grows fast (1TB per year),
and it can be used to draw taxicab trip distributions to ana-
lyze passengers’ destinations (thus the future directions of
occupied taxicabs) based on context information, e.g., the
route this taxicab has already passed. Thus, we employ these
distributions to assist passengers to find carpoolable taxicabs.

In this work, we conduct the first effort to design a
unified recommendation system called CallCab for both
CArpooLing and reguLar taxiCAB services in dense urban
areas such as New York City, Beijing, or Shenzhen, based
on both GPS datasets and contexts collected in the existing
infrastructure. Specifically, the key contributions of this paper
are as follows:
• To the best of our knowledge, we conduct the first
work to recommend either a vacant or a carpoolable
taxicab for a passenger with a unified method, and pro-
vide a comprehensive study of how to analyze occupied
taxicabs’ routes without destinations of passengers.

• We design CallCab, which mines trip distributions
from GPS datasets collected in the existing infrastruc-
ture. Then, according to these distributions conditioning
on collected contexts for a particular new passenger,
CallCab recommends either a vacant taxicab for a direct
route (no detour distance), or a carpoolable taxicab for
a carpooling route (small detour distance) in real time
based on the similarities between directions of this new
passenger and potential taxicabs.

• To quantify the similarity between directions, we design
a novel metric called Detour Ratio, a ratio between a
particular passenger’s detour distance and the distance
of the direct route. This detour ratio unifies recom-
mendations for both regular services (with detour ratios
equal to 0) and carpooling services (with detour ratios
larger than 0). Thus, CallCab recommends the taxicab

(either vacant or occupied) with the minimum detour
ratio for a new passenger.

• To efficiently process GPS datasets for the detour ratio
calculation, we present a generic Map Reduce Measure
model by adding a new Measure operation to the
MapReduce. This model provides three kinds of abstrac-
tions to hide details of data processing, and can be used
for various applications.

• To facilitate the taxicab carpooling implementation
in the real world, we present a simple yet effective
reciprocal price mechanism to lower passengers’ fares
and simultaneously to improve drivers’ profits, thus pro-
viding the economic incentives for carpooling.

We test CallCab on a real-world dataset consisting of GPS
records from more than 14, 000 taxicabs in Shenzhen, the
most crowded city in China. The results show that com-
pared with the ground truth, CallCab reduces 60% of the
total mileage and reduces 41% of the waiting time. Our
price mechanism reduces 23% of the passengers’ fares, and
increases 28% of the drivers’ profits, simultaneously.
The rest of the paper is organized as follows. Section II

presents motivations. Section III shows our main idea.
Section IV depicts the computing model. Sections V and VI
describe the design and the price mechanism. Section VII
evaluates our system. Section VIII introduces the related
work, followed by the conclusion in Section IX.

II. MOTIVATION
In this section, based on a dataset collected in the infrastruc-
ture of Shenzhen, we present our motivation to show two
inefficiencies of taxicab services, and to provide evidence for
carpooling services to address these inefficiencies.

A. INFRASTRUCTURE DESCRIPTION
In the existing taxicab networks of large cities, e.g.,
New York City, Beijing, and Shenzhen, taxicabs are equipped
with GPS and communication devices, in addition to fare
meters. To monitor the global status of all taxicabs, dispatch-
ing centers with cloud servers are also established in the most
taxicab networks. Thus, as shown in Figure 1, the existing
taxicab infrastructure typically consists of two parts: taxicabs
in the frontend; dispatching centers in the backend.

FIGURE 1. Existing infrastructure.

In such an infrastructure, (i) taxicabs record their
physical status, e.g., the current location, with GPS devices;
(ii) taxicabs record their logical status with fare meters,
i.e., with passengers or not; (iii) physical and logical status
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TABLE 1. Dataset summary.

is uploaded periodically to the dispatching centers via cell
towers, by GPS records, which mainly consist of the
following parameters: Plate Number; Date and Time; GPS
Coordinates; Status Bit: with passengers or not when this
record is uploaded. Table 1 gives statistics about such a
GPS dataset of Shenzhen.

As in Table 1, this half-year dataset contains almost
four billion GPS records. The partial aggregated data used
in this work have been made for public access in the website
of Transport Committee of Shenzhen Municipality [11] on
a monthly basis. Such a large raw dataset has a very high
resolution, which can be used to locate a particular taxicab
at a fine granularity in terms of both time and space. But such
a detailed GPS dataset has many records of no interest. Thus,
we mine some semantics from this large fine-granular raw
dataset to produce logical concepts, i.e., trips, for our system
design in Section IV.

Specifically, based on GPS records, we separate individual
trips from the entire dataset by continuously observing the
change of the status bit on the GPS records of the same
taxicab. If a status bit turns to 1 from 0 in two consecutive
records of a taxicab, then it indicates that this taxicab just
picked up a passenger in the location indicated by the GPS
coordinates, which is considered as an origin or a pickup
location of a trip; if a status bit turns to 0 from 1, then it
indicates that this taxicab just droped off a passenger at the
location considered as a destination or a dropoff location of a
trip. A GPS record set consisting of visited locations between
an origin and its corresponding destination is considered as a
trip, which is the key for our design.

Figure 2 gives an example of a trip by mapping several
GPS records on a map. A taxicab starts with no passengers
at location L1, and picks up a passenger between L2 and L3,
and drops off this passenger between L4 and L5, and picks up
a new passenger between L6 and L7, and finally leaves the
map at L8. Thus, a complete trip is given from L3 to L5.

B. INEFFICIENCIES OF TAXICAB SERVICES
We use the empirical data in Shenzhen to show two key
inefficiencies, i.e., low affordability and low availability, for
current regular taxicab services.

1) LOW AFFORDABILITY OF TAXICAB SERVICES
Table 2 shows the taxicab fares (including surcharges) in USD
for a 3KM trip in eight large cities in the world. We found that
the taxicab fares are typically higher in developed countries
than those in developing countries. In addition, according to

FIGURE 2. Taxicab trip.

TABLE 2. Taxicab fares.

a survey in New York City [2], the average taxicab fare is
5.8 times of public transit fare, e.g., a bus. Further, according
to the average paid taxicab fare in an hour basis from our
Shenzhen dataset, the average fare of 22.9 CNY ($3.5) for
Shenzhen taxicabs is 11 times of a bus fare, and is 11% of the
average daily income [12].

2) LOW AVAILABILITY OF TAXICAB SERVICES
We investigate the availability of taxicab services
in Figure 3, which shows taxicab occupancy ratios, and a
high ratio indicates fewer empty taxicabs on streets, i.e.,
low availability. It indicates more than 80% of taxicabs is
occupied on average during the rush hour. Figure 4 plots time
intervals between taxicab trips. A small interval indicates that
a taxicab picks up a new passenger right after it drops off an
old passenger, i.e., low availability. It shows the average time
interval in the rush hour is less than 3 mins.

FIGURE 3. Occupancy rate.
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FIGURE 4. Trip interval.

C. OPPORTUNITIES FOR TAXICAB CARPOOLING
Taxicab carpooling services employ fewer taxicabs to deliver
the same number of passengers, and lower the individual
passenger fare by letting more passengers share the same
taxicab. Thus, carpooling services are promising endeavors
to improve both the affordability and availability of taxicab
services.

In this subsection, to enable a practical service, we discuss
three factors to show how likely carpooling services can be
achieved in reality: (i) the distance between passengers’ ori-
gins as well as the distance between passengers’ destinations;
(ii) the travel distances of shared routes between passengers;
(iii) the passenger preference to the carpooling services. The
benefit of carpooling services can be further unleashed, if we
have more passengers who (i) start from close origins or end
at close destinations, and (ii) share the long-distance common
routes, and (iii) are willing to accept carpooling services.

1) CLOSE ORIGINS AND CLOSE DESTINATIONS
Based on the dataset, we show 200 consecutive trips to an
airport in Figure 5 where most passengers came to the airport
from the downtown and several hot spots.

FIGURE 5. Trips to an airport.

In Figure 6, we show the cumulative distribution func-
tion (hereafter CDF) of distances between the origins of
1, 000 trips to the airport. Similarly, almost 50% of the trips
have an origin closer than 1 KM to another origin, and almost
90% of trips have an origin closer than 5 KM to another
origin. In Figure 7, we show the CDF of distances between
destinations of 1, 000 trips from the airport. Almost 60% of
trips has a destination closer than 1KM to another destination,

FIGURE 6. Close origins.

FIGURE 7. Close destinations.

and almost 80% of trips has a destination closer than 5 KM
to another destination.

2) SHARED ROUTES
Based on the dataset, Figure 8 shows the CDF of distances of
shared routes of 1, 000 trips to the airport. More than 90% of
trips share at least 7.5 KM with another trip, and more than
50% of trips share at least 20 KM with another trip. Figure 9
shows the CDF of distances of shared routes of 1, 000 trips
from the airport. Similarly, more than 90% of trips share at
least 5 KMwith another trip, andmore than 50% of trips share
at least 20 KM with another trip.

FIGURE 8. Shared dist. to AP.

3) PASSENGER PREFERENCES
Based on a taxicab service survey held at Beijing [13], we
found that most passengers are willing to accept carpool-
ing services. According to this survey, 75% of interviewees
accept carpooling services; 73% of interviewees accept a
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FIGURE 9. Shared dist. from AP.

simple carpooling price mechanism where every passenger
pays 60% of the regular service fare for the shared distance,
leading to extra profits for drivers.

D. POSITIONS AND CHALLENGES OF CARPOOLING
Instead of completely replacing the traditional taxicab
services, carpooling taxicab services aim to serve as a key
supplement for the situations where traditional taxicab ser-
vices are insufficient in the rush hour or the extreme weather,
or where some passengers would like to take transportation
cheaper than regular taxicabs yet more convenient than buses.

Given the mined semantics, the existing recommendation
systems can easily locate and recommend a vacant taxicab to
a new passenger based on their locations. But if no nearby
vacant taxicab is available, they cannot recommend an occu-
pied taxicab for a carpooling service, since destinations of the
most existing passengers in taxicabs are unknown. But the
large GPS dataset and contexts provide us an opportunity to
predict the future directions of occupied taxicabs, and thus
to locate carpoolable taxicabs. Note that though using the
historical taxicab data presents a constraint, it offers valuable
insights for future services since the taxicab trips are highly
patterned due to regular commutes [14].

III. METHODOLOGY
Our CallCab aims for both the regular and carpooling ser-
vices. Since regular services are commonly understood, we
give an example of carpooling services, and then present the
main idea of CallCab.

A. TAXICAB CARPOOLING SCENARIO
Figure 10 gives a passenger Pwaiting at origin I0 and heading
to destination I5. Under the existing infrastructure, P provides
a request with origin I0 and destination I5 to a recommenda-
tion system for a taxicab. Based on real-time GPS records,
a recommendation system locates two nearby occupied
taxicabs T1 and T2 that will pass P′s origin I0 soon.
To recommend T1 or T2 toP, a recommendation system has

to analyze the actual traveling distance for P to be carpooled
into T1 or T2. For example, if carpooled into T1 at origin I0,
P first has to be ‘‘involuntarily’’ taken to a location I3 (which
is unknown destination of existing passengers on T1) before to
P′s destination I5, by the ‘‘First Come, First Served’’ policy.

FIGURE 10. Taxicab operating scenario.

Thus, the actual traveling distance for P to be carpooled into
T1 is a carpool distance (| · |) of a carpool route, i.e., |I0 ⇒
I3|+|I3 ⇒ I5|, instead of a direct route with a direct distance
of |I0 ⇒ I5|. The difference between the carpool distance and
the direct distance leads to a detour distance of (|I0 ⇒ I3| +
|I3 ⇒ I5|)− |I0 ⇒ I5|. With both the detour distance and the
direct distance, we have a Detour Ratio ρPT1 =

detour distance
direct distance

to show the utility of P being carpooled into T1.
Note that though the ‘‘First Come, First Served’’ policy is

mostly adopted, it may not be the best choice. For example, if
P′s destination I5 is on the path from I0 to I3, we can ask T1 to
pick upP at I0 and then to drop offP at I5 during the process of
T1 delivering the existing onboard passenger from I0 to I3, i.e.,
serving P first. There is no additional detour for the existing
passenger of T1, since both I0 and I5 are on the route from
I1 to I3. As a result, when calculating the carpool distance,
if the destination of a carpooling passenger P is on the path
of the existing taxicab service, then the carpool distance is
equal to the direct distance, since there is no detour to deliver
the carpooling passenger.
Different occupied taxicabs passing I0 have different des-

tinations, leading to different detour ratios for P to carpool.
The optimal strategy is usually to select the taxicab with the
minimum detour ratio.
However, only the origins of passengers on T1 or T2

(i.e., I1 or I2) are known for the recommendation system, and
their destinations (i.e., I3 or I4) are mostly unknown in the
existing infrastructure. Thus, the existing recommendation
system cannot calculate detour ratios, thus failing to recom-
mend a taxicab with a smaller detour ratio to P.
But in the existing infrastructure, although destinations are

unknown during trips, the destinations are stored in terms of
GPS records, after passengers are dropped off. These histori-
cal destinations and the collected real-time contexts are used
to analyze unknown destinations of existing passengers in
taxicabs, and thus to analyze detour ratios for new passengers
to carpool with the existing passengers.

B. RECOMMENDATION PROCEDURES
The overview of recommendation procedures in CallCab is
shown in Figure 11. First, we continuously maintain the trip
distributions offline. Second, when a carpooling passenger
request arrives in the real time, we calculate the detour ratio
for every nearby taxicab based on the passenger request and
the real-time contexts. Third, we recommend the taxicab with
the minimum detour ratio.
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FIGURE 11. Overview of recommendation.

1) TRIP DISTRIBUTIONS
In CallCab, GPS records for all taxicabs are stored as a
big dataset. By GPS records, destinations and correspond-
ing origins comprise numerous trips, used to construct trip
distributions. Such distributions generate destinations of trips
that start at a particular origin and pass a particular location.

2) DETOUR RATIO CALCULATIONS
Upon receiving a request from a passenger P, CallCab uses
trip distributions to calculate an Expected Detour Ratio ρPT1
for P to carpool with a nearby taxicab T1, by a basic and
an advanced design. In both the basic and advanced design,
CallCab (i) calculates a potential destination set DST1 for T1
(DST1 includes all destinations previously associated to the
origin of existing passengers on T1; this origin is obtained by
T ′1s last pickup locations), and then (ii) reduces the size of
DST1 by contexts, and (iii) assigns probabilities for all desti-
nations in reduced DST1 to calculate a weighted average ρ

P
T1
.

The key differences between the basic and advanced designs
are (i) how to reduce the size of DST1 , and (ii) how to assign
the probabilities for the destinations in DST1 , as shown by
Figure 12.

FIGURE 12. Detour ratio calculations.

a: BASIC DESIGN
(i) Based on trip distributions and T1’s last pickup location I1,
CallCab calculates DST1 = {I2, I3, I4, I5}. (ii) Assuming
drivers use the shortest trips to deliver all passengers, we
eliminate some destinations inDST1 , according to T1’s current
location I0. CallCab first obtains shortest paths between I1 to
all destinations inDST1 from the dataset. Then, a destination Ii
is eliminated fromDST1 , if the shortest path from I1 to Ii does
not include I0. For example,CallCab eliminates I2 fromDST1 ,
since the shortest path from I1 to I2 does not include I0 in the
normal situation; i.e., a normal trip starting at I1 and passing
I0 is not the shortest trip from I1 to I2, so I2 is not a potential
destination for a trip starting at I1 and passing I0. (iii) By
assigning equal probabilities (i.e., 33%) for the remaining I3,
I4 and I5 in DST1 , CallCab calculates a weighted average ρ

P
T1

by their locations.

b: ADVANCED DESIGN
The advanced design is built upon the basic design. But in
the advanced design, (i) based on richer contexts, CallCab
further reduces the size of DST1 obtained in the basic design,
e.g., CallCab can eliminate I5 from DST1 , if I5 has never
been a destination for a trip at the current time of day and
day of week. (ii) Instead of assigning equal probabilities
for the remaining I3 and I4 as in the basic design, CallCab
assigns probabilities to I3 and I4 based on their frequencies
in the distributions to more accurately calculate ρPT1 in the
advanced design, e.g., if among six trips starting from I1 in
the distribution, four of them have I3 as their destinations,
while others have I4 as their destinations, then CallCab
assigns Pr(I3) = 4

6 and Pr(I4) = 2
6 to calculate a weighted

average ρPT1 . Note that if T1’s destination is known as one
of the richer contexts (e.g., reservation based pickups) to the
dispatching center, then we reduce the destination setDST1 to
only one destination with 100% probability.
To summarize, the basic design conditions trip distributions

on only limited contexts, e.g., origin and current locations
of taxicabs, while the advanced design further considers the
richer contexts, e.g., popularity of destinations and time of
day. Thus, the basic design is suitable for the scenario with
the limited contexts, while the advanced design is suitable for
the scenario with the richer contexts.

3) ONLINE RECOMMENDATION
With the detour ratio for every taxicab within a given recom-
mendation radius, CallCab recommends the taxicab with the
minimum expected detour ratio (either a vacant taxicab with
no detour or an occupied taxicab with a small detour) for this
passenger. With updated contexts, e.g., taxicab locations, this
recommendation is constantly updated.

C. OPPORTUNITY FOR MAPRDUCE
IN CALLCAB DESIGN
The key step in CallCab is how to obtain trip distribu-
tions based on a raw GPS dataset. However, the raw GPS
dataset shows physical aspects of taxicabs, while our design
is focused on logical concepts, e.g., trips, not directly given
in the raw datasets. Further, the raw GPS dataset typically
has a large volume and interconnects multi-dimensional GPS
records with high resolutions, so though detailed enough,
much of the raw dataset is of no interest in our design. Thus,
to tackle this big dataset regarding these features [15], we
need to map this raw physical GPS dataset to a filtered and
compressed logical dataset (i.e., trips) for analyses. In this
work, we are inspired by MapReduce model proposed to
deal with such big datasets [16], and augment it by an
additional Measure phase to present a generic model called
MapReduceMeasure, which can be used independently from
our design. In Sections IV and V, employing the recommen-
dation system as a showcase, we show how to use our model
to tackle a big dataset that is not in a format ready for analyses.
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TABLE 3. Model operations.

IV. MAPREDUCEMEASURE MODEL
In this section, we first introduce the basic yet generic
MapReduceMeasure model, and then present preliminaries,
and defineMap, Reduce, andMeasure operations tailored for
our application.

A. MAPREDUCEMEASURE INTRODUCTION
Our MapReduceMeasure model is mainly based on
MapReduce, which is designed as a generic design and
programming model for processing and generating large
datasets. MapReduce has two key operations: Map and
Reduce. A dataset user specifies a Map operation that takes
key/value pairs as input to generate a set of intermediate
key/value pairs, and a Reduce operation that takes all inter-
mediate values associated with the same intermediate keys as
inputs to generate a set of output values.

Even though sufficiently generic to perform many real
world tasks, the two-phase MapReduce model is best at gen-
erating a set of values based on the same key. The impact of
one key on the values generated by another key is difficult to
evaluate in the current model. In this work, we present a third
phaseMeasure, and it measures the impact of one key on the
values generated by another key, and outputs a new value as
a metric to show the impact. The generic types of our model
are given as in Eq.(1).

Map : (key1, value1) → Set[key2, value2];

Reduce : (key2,Set[value2]) → Set[value2];

Measure : (key3,Set[value2]) → value3. (1)

Note that in this work we design theMeasure operation as a
separate operation in order to increase the parallelism on the
operation levels, even though the Measure operation can be
merged into the Reduced operation. The Measure operation
is the designated point formulti-input operations. It obtains its
input from several different MapReduce programs and makes
use of the fact that the output in the Reduced operation is
typically partitioned and sorted. Thus, every parallel instance
of theMeasure operation may select any data subset form all
its input partitions to enable the flexible combination of data
for parallel processing. In short, our three-operation design is
flexibly performed in parallel to enable a fast processing of
the taxicab GPS traces to meet the real-time requirement of
carpooling applications.

B. PRELIMINARIES
To convert the raw GPS dataset into a format ready for our
model, we present a mathematical concept, Carpool Graph,
and convert a set of raw GPS records into a logical trip record
based on the carpool graph.
The basic unit for a passenger to carpool with others is a

road segment. Thus, we define a carpool graph as a simple
graph where vertices represent intersections and edges repre-
sent road segments between adjacent intersections. Figure 13
shows a carpool graph created by a given road map.

FIGURE 13. Carpool graph.

A set of raw GPS records belonging to a single logical trip
is identified as shown in Section II-A by several key GPS
records, indicating the origin, the visited locations, and the
destination. Based on the set of GPS records belonging to a
single logical trip, we create a trip record to capture the key
information about this trip, e.g., the origin, the destination, the
intersections passed, the time and the date.

C. MODEL OPERATIONS
Via the trip record dataset obtained in the last subsection, we
present three model operations.

1) MAP OPERATIONS
The Map operation is to reorganize the trip record dataset
by generating pairs containing new keys (e.g., a specific
intersection) and the values associated to these new keys
(e.g., a trip includes this specific intersection). Three Map
operations are presented in Table 3, e.g., MapByIS generates
a set of [key=intersection, value=trip] pairs, e.g., [I1, Trip#1]
where Trip#1 includes intersection I1.

2) REDUCE OPERATIONS
The Reduce operation is to reduce the size of sets of values
associated to the same key.We present fourReduce operations
as in Table 3, e.g., ReduceByIS1 takes an intersection I1 and
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all trips associated to I1 as input, and generates a smaller set
of trips, including I1 as their first intersection.

3) MEASURE OPERATION
We present MeasureB and MeasureA for the Basic and
Advanced design as in Section III-B2, which both take
the following as input: (i) a new passenger P’s Origin IPO;
(ii) P’s Destination IPD; (iii) a trip set [TRIP]Ti , indicating
a particular trip distribution about a taxicab Ti. Both
operations output a detour ratio ρPTi for P to be carpooled into
Ti as in Eq.(2):∑
I
Ti
Di
∈DSTi

(Pr(ITiDi )·
(|IPO ⇒ ITiDi | + |I

Ti
Di ⇒ IPD|)− |I

P
O ⇒ IPD|

|IPO ⇒ IPD|
)

(2)

where DSTi is the destination set of [TRIP]Ti , and includes
all distinct destinations of trips in [TRIP]Ti . In MeasureB for
the basic design, assuming every destination has an equal
probability, Pr(ITiDi ) =

1
|DSTi |

where |DSTi | is the size of DSTi ;
whereas in MeasureA for the advanced design, assuming
every destination has a different probability according to the
times it appears in the trip set [TRIP]Ti (i.e., frequency),

Pr(ITiDi ) =
|I
Ti
Di
|

|[TRIP]Ti |
where |ITiDi | is the number of ITiDi appearing

in [TRIP]Ti as a destination. Note that if Ti is a vacant taxicab,
both operations return 0 as the ratio, since no detour is needed
for a vacant taxicab. Further, if ITiDi is on the route from
IPO to IPD , both operations also return 0 as the ratio, because
there is no detour to drop off the carpooling passenger first.

V. CALLCAB DESIGN
With the model presented in the last section, we present our
design for a unified recommendation for both vacant and
occupied taxicabs.

A. TRIP DISTRIBUTIONS
We envision a scenario where in the existing infrastructure,
CallCab maintains trip distributions based on GPS records
received by a dispatching center. By our Map operations, we
generate different trip distributions for a particular intersec-
tion, the time of day, or the day of week. For example, a trip
distribution for a particular intersection indicates how many
taxicab trips pass such an intersection among the total taxicab
trips.

B. EXPECTED DETOUR RATIO CALCULATIONS
When a passenger P wants to find a taxicab, P makes a
request with the Origin IPO and the Destination IPD to CallCab.
Based on IPO and real-time GPS records, CallCab collects the
following contexts. Time of Day TD and Day of Week DW :
We consider both Time of Day (in terms of hourly windows)
and Day of Week (in terms of SUN, MON, TUS, ..., and
SAT).Nearby Taxicab Set T :As potential candidates, T is a
set of taxicabs (either vacant or occupied) close and heading

to P’s origin IPO , within a recommendation radius RT to IPO
(e.g., 100M). For every taxicab Ti ∈ T , based on real-
time GPS records, CallCab further obtains (i) Last Pickup
Location ITiO (i.e., the Origin of existing passengers on Ti),
and (ii) Current Location of Ti, which equals to IPO , since Ti is
heading to P. Based on the above contexts,CallCab generates
several particular distributions by model operations, which
are used to calculate an expected detour ratio for P to be
carpooled into a taxicab Ti ∈ T .

1) BASIC DESIGN
In the basic design, for a particular taxicab Ti ∈ T , CallCab
generates two distributions and combines them together:
(i) the trip distribution on intersection ITiO (the last pickup
location of Ti); (ii) the trip distribution on intersection IPO
(P’s origin, i.e., Ti’s current location), by the following
operations in Eq.(3).

TripSet(ITiO ) = ReduceByIS1(ITiO ,MapByIS);

TripSet(IPO) = ReduceByIS2(IPO,MapByIS);

TripSet(B) = TripSet(ITiO ) ∩ TripSet(IPO). (3)

According to the above TripSet(B), CallCab obtains the
expected detour ratio ρPTi as in Eq.(4).

ρPTi = MeasureB(IPO, I
P
D,TripSet(B)) (4)

2) ADVANCED DESIGN
CallCab generates two more trip distributions and combines
them with the TripSet(B) as in Eq.(5).

TripSet(TD) = ReduceByTD(TD,MapByTD);

TripSet(DW ) = ReduceByDW (DW ,MapByDW );

TripSet(A) = TripSet(TD) ∩ TripSet(DW ) ∩ TripSet(B).

(5)

According to TripSet(A), CallCab obtains the expected
detour ratio ρPTi as in Eq.(6).

ρPTi = MeasureA(IPO, I
P
D,TripSet(A)) (6)

C. ONLINE RECOMMENDATION
Among all ρPTi where Ti ∈ T , the taxicab TMIN associated
with the minimum ρ is the taxicab CallCab recommended to
the passenger P. CallCab sorts all nearby taxicabs according
to ρ, and if two or more taxicabs have the same ρ, the tie is
broken by the distances to the passenger P. Further, CallCab
marks all nearby taxicabs with ρ and plate numbers on a
carpool graph sent back to the passenger’s mobile device.
We envision that a passenger follows this carpool graph to hail
the recommended taxicab. During this process, some context
information, e.g., the passenger’s location or the nearby taxi-
cabs’ current locations, will be changed, which may change
detour ratios of the recommended taxicabs. Thus, CallCab
updates this carpool graph, until the passenger is moving
together with a taxicab, indicating this passenger has already
found a ride.
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VI. RECIPROCAL PRICE MECHANISM
The objective of our price mechanism on carpooling services
is to employ a simple formula to lower the passenger fare
and to improve the driver profit together, compared to
non-carpooling situations. For a carpooling trip, the whole
distance is dividend into the shared distances and the
non-shared distances. For the non-shared distances, the pas-
senger has to pay the fare according to the existing price
mechanism, which is highly diverse in different cities. In this
paper, we focus how to calculate fare for the shared distances.
Figure 14 gives an example about sharing distance among
multiple passengers.

FIGURE 14. Shared distances.

Figure 14 shows 3 carpooled passengers who are picked
up by the same taxicab at locations b, a, c, and dropped
off at e, d , f , respectively. In this concurrent carpool trip,
the mileage between a and b as well as between e and f is
not shared by more than one passenger and is considered as
regular taxicab services, and should be charged by the existing
price mechanism. The rest of mileage is shared by either two
or three passengers. For the shared mileage, every passenger
should pay the carpooling fare, instead of the regular fare. For
a passenger Pi sharing with other k passengers, the carpool
fare CF is calculated based on the regular fare RF and a
variable fare sharing ratio, i.e, CF = RF × r where 1

1+k ≤

r ≤ 1. With r ≥ 1
1+k , we ensure that the total fare paid by

all passengers together is at least equal to the regular fare for
the benefit of drivers; whereas with r ≤ 1, we ensure that
every passenger pays less than the regular fare RF for the
benefit of passengers. Thus, by this price mechanism, every
passenger at most pays for the regular fare, and the driver at
least collects the regular fare. A r bigger than 1

1+k and smaller
than 1 leads a reciprocal situation where every passenger pays
a carpool fare less than the regular fare, and the driver collects
the aggregated carpool fare more than the regular fare.

Figure 15 gives the relationship between the total increased
profit for the driver and fare sharing ratio r for passengers
when 1 to 4 passengers are carpooled. In all carpool scenarios,
the relationship between the total fare increased and r is
linear. To encourage the carpooling service for both drivers
and passengers, our objective is: ‘‘the more the carpooled
passengers, the less fare every passenger pays, the more profit
the driver has’’. Thus, we suggest three models for the price
mechanism where the maximum passenger number is 4 as

FIGURE 15. Sharing ratio.

TABLE 4. Price mechanism.

in Figure 15. The mechanism 1 is given in Table 4, e.g.,
if four passengers are carpooled, every passenger pays 40%
of the regular fare, leading to 60% more fare as the profit for
the driver. The mechanism 2 and 3 are similar to model 1,
except increasing the starting fare sharing ratio, leading more
benefits for the driver. In the more advanced design, this
ratio r could change from time to time based on various
factors, i.e., the supply and demand relationship in taxicab
networks.

VII. CALLCAB EVALUATION
We draw a sample with one week of GPS records from the
dataset in Section II-A to test CallCab.

A. EVALUATION OVERVIEW
We compare two versions of CallCab, Basic and Advanced,
against aHeuristic recommendation. Based on GPS datasets,
we also obtain trip records which show the real passenger
requests. Then, we use the requests that happened in the
dataset of one day as the future requests to test CallCab.
Based on a trip record such as [pickup time, origin, dropoff
time, destination] in the dataset, we generate a passen-
ger request [request time=pickup time, origin, destination].
According to a request, all systems first locate a nearby taxi-
cab set T where taxicabs are within RT radius to the origin,
based on traces of taxicabs in the dataset for a particular
day. If there are vacant taxicabs in T , all schemes recom-
mend the closest vacant taxicab to passengers. Otherwise,
(i) Heuristic recommends the closest taxicab in T to the
passenger; (ii) Basic calculates the expected detour ratio for
every taxicab in T based on the basic design in Section V-B1,
and then recommends the taxicab with the minimum ratio;
(iii) Advanced works similarly, except that it calculates the
detour ratio based on the advanced design in Section V-B1.
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We use Actual Detour Ratio as a key metric to show the
efficiency, which is obtained by actual travel distance−direct distance

direct distance ,
and given a specific recommended taxicab, this metric is
calculated by the method given in Section III-A.

We investigate Percentage of Reduced Mileage, which is
used to evaluate how much the total mileage can be reduced
by an efficient system recommending more suitable occupied
taxicabs. It equals to M−m

M whereM is the total mileage used
to deliver all passengers separately (i.e., only regular services
with vacant taxicabs), and m is the total mileage used to
deliver all passengers with either vacant or occupied taxicabs
recommended.

We justify carpooling services by showing Percentage of
Reduced Waiting Time due to carpooling. With carpooling,
a passenger can significantly reduce the waiting time to take a
carpooled taxicab, instead of waiting for a vacant taxicab. But
in the current dataset, the actual waiting time for a passenger
is not given. However, the upper bound of the waiting time
is determined by the time that two taxicabs pass the same
pickup location. For example, if a GPS dataset shows that
(i) when a vacant taxicab T1 passes a location L at time τ ,
T1 does not pick up any passenger, and (ii) when another
vacant taxicab T2 passes the same location L later at time
τ + 1τ , T2 picks up a passenger, then the upper bound of
waiting time for this passenger is 1τ . Assuming the actual
waiting time is equally distributed from 0 to1τ , and then we
obtain an expected waiting time 1τr for a regular service in
the dataset. The waiting time 1τc for carpooling is decided
by the time when the passenger starts to wait (obtained by
τ+1τ−1τr ) and the time when the recommended occupied
taxicab passes the passenger’s location (obtained from the
dataset). Based on the waiting time and expected trip time,
we also investigate the Total Travel Time for passengers
from the time when they start to wait to the time when
they are dropped off. The expected trip time is obtained by
average travel time for all historical trips traveling the same
route.

Finally, we investigate Reduced Fares for passengers
and Increased Profits for drivers by our reciprocal price
mechanism.

We evaluate the performance for different hourly windows
for weekdays and weekends, and at different radii RT , which
determine the size of the nearby taxicab set T . The default
setting of RT is 250M. For both weekdays and weekends,
we use requests from an one-day dataset and test all systems
with traces of taxicabs on other days. The average results are
reported.

We maintain the trip distributions offline and update them
on a daily basis. Thus, in the real-time mode, the running time
for the recommendation is mostly depended on the number of
nearby taxicabs. We process the data with a Hadoop cluster
of 10 nodes (8 processors in each node), and recommend a
taxicab among a fair number of nearby taxicabs under rea-
sonable response time, e.g., we recommend a taxicab among
10 taxicabs within 3 seconds. We omit the related figures due
to space limitations.

B. IMPACT OF DAY OF WEEK AND TIME OF DAY
Figure 16 plots the average actual detour ratio on five week-
days. During the rush hour of a weekday, e.g., 7-10, the
average actual detour ratios for all four schemes are higher
than those of the non-rush hour, e.g., 1-7. This is because there
are many vacant taxicabs during the non-rush hour, whereas
in the rush hour passengers have to use carpooling services,
which leads to high actual detour ratios. But the Basic and
Advanced solutions outperform Heuristic, which have a high
average actual detour ratios during the rush hour, i.e., 60%
and 55%. Advanced outperforms Basic by 25% in the rush
hour.

FIGURE 16. Detour in weekday.

FIGURE 17. Detour in weekend.

Figure 17 gives the average actual detour ratios for two
weekends. During the rush hour of a weekend, e.g., 10-21,
the average actual detour ratios for Basic and Advanced are
much lower than others. This is because during the rush
hour, Heuristic recommends more occupied taxicabs with
long detours to passengers. But both versions of CallCab
utilize the trip distribution to recommend occupied taxicabs
with less expected ratios, so it leads to a lower ratio.
Figure 18 shows the percentage of reduced mileage for five

weekdays. During the rush hour of a weekday, e.g., 7-10, the
percentage of reduced mileage is higher than that of the non-
rush hour for all four schemes. This is because during the rush
hour, there are more carpooling services than regular services,
which leads to the reduction of the total mileage to deliver
the same number of passengers. But Basic and Advanced
outperform Heuristic during both the rush and non-rush hour,
which shows the effectiveness of CallCab.
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FIGURE 18. Mileage in weekday.

FIGURE 19. Mileage in weekend.

Figure 19 shows the percentage of reduced mileage for
twoweekends. Different fromweekdays, for the weekend, the
high percentages of reduced mileage are between 10-21 for
both versions of CallCab. The performance on weekends is
different than that on weekdays, since people take taxicabs
at different times on weekdays and weekends. There is no
significant high percentage of reducedmileage in certain time
windows among 10-21 than others. The relative performance
is similar as in Figure 18.

FIGURE 20. Detour vs. radius.

C. IMPACT OF RECOMMENDATION RADIUS
Figure 20 shows the effects of recommendation radii on
the average actual detour ratio from 8-9 of a weekday.
We increase the recommendation radius from 50 meters to
250 meters, which increases the size of potential taxicabs that
can be recommended. Heuristic is not affected by such an
increase, since it only recommends the closest taxicab. But
with the increase of the radius, both Advanced and Basic

FIGURE 21. Mileage vs. radius.

have lower actual detour ratios, because a large recommen-
dation radius gives them more taxicabs to select for a better
recommendation.
Figure 21 shows effects of recommendation radii on

percentage of reduced mileage from 8-9 of a weekday. With
the increase of the radius from 50 to 250 meters, the perfor-
mance of both versions ofCallCab increases, while the others
stay the same. But as the radius is close to 250M, the increase
for CallCab slows down, since the radius is large enough to
have the sufficient taxicabs for recommendations, and a larger
radius does not help.

FIGURE 22. Waiting time in WD.

D. WAITING TIME AND TOTAL TRAVEL TIME
In this subsection, we show the percentage of reduced waiting
time due to carpooling in the weekday (WD) in Figure 22.
Because the method we use to calculate waiting time is based
on taxicabs passing locations of pickup events, we present
the percentage of reduced waiting time from 8 to 20 of a
weekday, due to the high densities of taxicabs and pickup
events. During the rush hour, e.g., from 8 to 10 A.M., all
systems with carpooling services reduce the waiting time
by as much as 41% on average. Heuristic outperforms the
rest because it recommends the closest occupied taxicab for
carpooling services, and other systems perform similarly to
each other. We also show the total travel time by adding the
expected trip time to the waiting time as in Figure 23. During
the rush hour, all systems with carpooling services reduce the
total travel time by as much as 28%, due to the prolonged
waiting time in regular services. But in the non rush hour,
because of the decreased waiting time, carpooling services
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FIGURE 23. Total time in WD.

FIGURE 24. Reduced fares.

FIGURE 25. Increased profits.

increase the passenger total travel time by as much as 29%
by taking detour to deliver other passengers.

E. REDUCED FARES AND INCREASED PROFITS
In this subsection, we evaluate the performance of CallCab’s
reciprocal price mechanism. Based on the datasets, we have
the ground truth for regular fares of individual passengers,
and based on the recommended taxicabs, we have the fares
for carpooling services. We use our price mechanism 1 as
in Section VI. In Figures 24 and 25, we can see that in the
rush hour of a day, the fare for every passenger decreases
significantly by as much as 23% on average, and the profit
for the drivers increases by as much as 28% on average. In the
non-rush hour of a day, we still achieve both a 10% passenger
fare reduction and a 9% driver profit improvement, which
indicates the advantage of our reciprocal price mechanism.

VIII. RELATED WORK
Due to the increasing availability of GPS devices in taxicabs,
taxicab GPS records have been employed by several systems

to improve the efficiency of regular taxicab services, e.g.,
discovering temporal and spatial causal interactions to pro-
vide timely and efficient services in certain urban areas [7];
detecting anomalous taxicab trips to discover driver fraud or
road network changes [17]; allowing taxicab passengers to
query the expected duration and fare of a planed trip based
on previous trips [14]; querying real-time taxicab availability
to make informed transportation choices [3]; recommending
optimal pickup locations or routes [4]. Moveover, taxicab
GPS records can help beyond the taxicab business: assist-
ing other drivers to improve their driving performance with
GPS records from experienced taxicab drivers [18]; navi-
gating newer drivers to smart routes based on those of the
experienced taxicab drivers [19]; better understanding traffic
conditions of cities [20]. Yet existing research on taxicab
systems are focused on vacant taxicabs, assuming that one
taxicab can accommodate only a single delivery request at a
time. In contrast, our recommendation system aims for both
vacant and occupied taxicabs.
Currently, carpooling taxicab services exist in big cities in

an ad hoc fashion. For example, in New York City, up to
four passengers can carpool together in a single taxicab ride
during 6 AM to 10 AM on a weekday, along three preset
routes in Manhattan at a flat fare of $3 or $4 per passenger,
significantly less than the regular metered rates [21].
However, no systematic method under the existing infrastruc-
ture is provided to improve the efficiency of carpooling.

IX. CONCLUSION
In this work, we analyze, design, and evaluate a recom-
mendation system CallCab for both carpooling and regular
taxicab services in taxicab networks. CallCab mines taxicab
trip distributions from historical GPS datasets collected in
an existing infrastructure, and recommends either a vacant
taxicab with no detour distance or a carpool route with a small
detour distance. We verify CallCab with a real world dataset
of 14, 000 taxicabs, and results show that compared to ground
truth,CallCab decreases 60% of the total mileage, 41% of the
passenger’s waiting time and 28% of the total travel time.
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