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Abstract-Battery-powered wireless sensor devices need to be 
charged to provide the desired functionality after deployment. 
Task or even device failures can occur if the voltage of the 
battery is low. It is very important to schedule the recharge of 
batteries in time. Existing battery scheduling algorithms usually 
charge a battery when its voltage drops below a fixed level. 
Such algorithms work well when the workloads are predictable. 
However, workloads of wireless sensors can be highly bursty, 
i.e., extensive sensing and communication tasks usually occur in 
a very short time period. If such a bursty workload occurs when 
the battery voltage is low, the battery energy can be depleted 
very quickly, resulting in system task failures before the device 
can be recharged. To deal with unpredictable bursty workloads, 
we investigate battery characteristics with different workloads 
via experiments. Based on the empirical results, we build an 
adaptive linear model and propose a feedback control based 
battery charge scheduling algorithm. T his algorithm dynamically 
adjusts the battery charge threshold for recharge scheduling, 
adapting to bursty workloads. We have tested our algorithms in 
extensive simulations with traces obtained from real experiments. 
Evaluation results show that our algorithms can adapt to bursty 
workloads. Compared to existing algorithms, our algorithm 
achieves a 68.26% lower task failure ratio with a 3.45% sacrifice 
on system lifetime under bursty workloads. 

Index Terms-battery, burstiness, scheduling, control, energy 
efficiency 

I. INTRODUCTION 

With the advance of wireless and sensing technologies, 

wireless sensor networks are deployed for various applica­

tions, such as military surveillance, scientific exploration, and 

environmental monitoring. These wireless sensor devices are 

usually powered by rechargeable batteries. To maintain desired 

functionality of such devices, it is very important to charge 

their batteries in time after deployment. However, in real 

systems on-demand battery charging scheme is widely used, 

since system users may not be aware of the low power battery 

status until nodes start to fail. Moreover, it requires extra time 

and effort to recharge the battery after deployment. 

Battery characteristics and scheduling have been studied 

extensively [1-6]. These studies have provided valuable re­

search results. A large part of these works assume stable or 

predictable workloads. However, the workloads for wireless 

sensor networks are usually dynamic due to the nature of 

physical phenomena they monitor. Therefore, wireless sensor 

nodes may consume energy at a highly dynamic rate. Recent 

studies [7-9] suggest that the energy usage of these devices 

can be bursty i.e., a device consumes a large amount of 

energy within a short period of time due to an extensive 
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Fig. 1: Battery Charge with Bursty Load 

workload. Such bursty energy usage can deplete a battery 

very quickly when its voltage is already low. As shown in 

Figure 1, if a bursty workload occurs when the battery is 

close to depletion, it causes a dramatic discharge in a short 

time period. When the battery's voltage drops out of normal 

operational voltage levels, tasks and even the system fail. We 

call this problem dramatic discharge with bursty workloads. It 

is very challenging for battery charge schedules to deal with 

bursty workloads. 

With simplified workload assumptions, many of existing 

battery charge scheduling algorithms use fixed schedules to 

charge the battery; other on-demand algorithms require the 

battery to be charged when its voltage drops below a fixed 

level. These schemes work well when the power consumption 

doesn't vary dramatically. Unfortunately, they all suffer from 

the dramatic discharge with bursty loads. In this work, we have 

demonstrated that those existing recharging schemes 1) do not 

fully utilize energy that is stored in batteries if batteries are 

charged conservatively, and 2) do not sustain desired services 

of devices if batteries are charged aggressively. 

In order to achieve efficient usage of battery energy and to 

sustain desired services for as long as possible, it is essential 

to dynamically schedule the battery charge process based 

on usage patterns. Recent research [10] demonstrates some 

potential designs for dynamic battery scheduling algorithms. 

In this work, we investigate the impact of bursty workloads 

on system lifetime via experiments. Based on our experimental 

results, we create an empirical model of battery lifetime under 

different workloads. With this empirical model, we propose 

feedback control based adaptive schedules for charging the 

battery. Our algorithm design aims to optimize the lifetime of 

a device and to reduce the number of task misses with a fixed 

number of battery charges. The rechargeable batteries have 

limited recharge cycles due to cyclic memory and crystalline 

formation [11]. Specifically, our online algorithm estimates 
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Fig. 2: Battery Characteristics 

the remaining lifetime of a device based on the discharging 

rate of its batteries and its past workload. A markov model is 

employed to approximate the bursty workload. Our algorithm 

demonstrates a good tradeoff between the system performance 

and the system lifetime. 

The process of energy consumption and recovery is affected 

by many uncertainties. Intuitively, if all of the energy that is 

produced and consumed is known at every time point, we 

can find the optimal battery charge schedule. However, the 

workload could be unpredictable. In order to achieve a stable 

system performance, we also develop robust charge schedules. 

Our dynamic battery charge scheduling algorithms are eval­

uated in extensive simulations. Simulation results show that 

our feedback based dynamic schedules achieve a 68.26% lower 

task failure ratio compared to existing schemes, with merely 

a 3.45% decrease in system lifetime. Also, our robust battery 

charge schedule can achieve even lower task failure ratios with 

bursty workloads. 

The rest of this paper is organized as follows. Our moti­

vation is presented in Section II. In Section III, we show the 

battery charge scheduling algorithm. In Section IV, our solu­

tion is evaluated in simulation. State-of-the-art is described in 

Section V. Conclusions of this work are stated in Section VI. 

II. AN EMPIRICAL STUDY ON BATTERY CHARATERISTICS 

In order to design better battery charging schedules for 

dealing with bursty workloads, we need to understand a bat­

tery's charging and discharging characteristics. In this section, 

we conducted several sets of experiments to study battery 

charateristics under different workloads. These experiments 

are repeated with multiple different batteries. The data col­

lected from different batteries is similar. We used five UltraFire 

brand AA lithium ion batteries with a maximum voltage rating 

of 3.6v and a nominal charge capacity of 900mAh in these 

experiments. 

In the first set of experiments, we discharged a battery 

with a constant workload. We measured and recorded its 

voltage changes. The data obtained from one battery is plotted 

in Figure 2 (a). The curves in Figure 2 (a) represent the 

battery discharging rates from six starting voltage levels for 

durations of five minutes. From Figure 2 (a), we notice that the 

battery voltage decreases through the entire discharge process. 

These curves are approximately linear. The voltage decreases 

relatively slowly when the voltage is high and relatively 

quickly when the voltage is low. This data can help us build a 

model of a battery's voltage over time with a fixed workload. 

In the second set of experiments, we discharge a battery 

multiple times with different workloads. For each experi­

ment, we use a constant workload, represented by a constant 

current. We measured and recorded its voltage change. The 

data obtained is plotted in Figure 2 (b). Each curve in this 

figure represents a battery's discharging rate with a specific 

workload. From this figure, we can see that all of these figures 

are approximately linear in the battery's operational range, 

specifically if the voltage is higher than 2.8 volts. However, 

the slopes of these curves are significantly different. These 

curves are dramatically steeper with higher workloads, which 

conforms to the rate capacity effect [12]. This experimental 

data helps us to capture the relation between a battery's 

discharging rate and its specific workload. 

In the third set of experiments, we charged a battery from 

a uniform source voltage of five volts. We measured and 

recorded battery voltage during the charging process. The data 

obtained is plotted in Figure 2 (c). Each curve in Figure 2 

(c) shows the charging rate of the battery from one starting 

voltage. We notice that the charging rates with different 

starting voltages are very similar. The voltage increases a little 

bit more quickly while it is low, and the rate becomes stable 

as the voltage rises. For this charging experiment, we also 

computed the total amount of energy that is absorbed by the 

battery. Figure 2 (d) shows the total absorbed energy as a 

function of time. Similarly, we can see the battery's energy 

storage increases slowly at an approximately constant rate. 

III. DESIGN OF DYNAMIC CHARGE SCHEDULE 

In this section, we describe a battery model based on 

our extensive empirical studies. With this battery model, we 

design a feedback control based battery charge scheduling 

algorithm. Our algorithm aims to sustain a high quality system 

performance by adapting to bursty workloads. 

A. Battery and Workload Models 
From our experimental results, we create an empirical 

battery energy model. This model characterizes the battery 

discharging rate with different workloads. 

The battery discharging charateristics discussed in last sec­

tion suggest an approximate linear relation relation between 

battery discharging rate and workload: 

Tdischarge = a ·  w + b (1) 
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Fig. 3: HMM for Bursty Task 

where r discharge represents the battery discharging rate, w 

represents system workload, a and b are model parameters that 

are different with various types of batteries and can change 

over the lifetime of the battery. These parameters can be 

obtained via online system identification using the least square 

approximation. This battery model allows us to predict battery 

lifetime based on workloads and adjust the charging process 

accordingly. 

The basic task models are described as follows. The device 

has a set of tasks S to execute. Each task Si in this set S 
must run for a certain period of time Ti; if a task is stopped 

within its executing time period, it fails. When the system is 

not executing any task, its state is idle. The time duration for 

the idle state i is represented as h The power consumption 

of a task Si is represented as Ji. 
Here we consider three types of tasks: 1) stochastic tasks, 2) 

bursty tasks, and 3) a hybrid of the first two types. Stochastic 

tasks occur randomly; their occurrences are independent of 

one another. Bursty tasks are highly correlated in time. Their 

occurrences usually happen in the same time period. We note 

that the goal of this task model is to describe the burstiness 

of energy imposed by system workloads. Application level 

couplings of tasks are not the focus of this model. 

We model these bursty tasks with a hidden markov model 

(HMM). As shown in Figure 3, a group of tasks represented 

by a specific subset sj of S usually run together. A task in this 

group is represented as sj i. The transition probability from a 

normal task Si to a burst of tasks sj is represented by p( sj lSi). 
The transition probability from a normal task Si to another 

task, say Sk, is represented by p(sklsi). idle represents a type 

of low-power task. 

The total energy consumption of such a burst can be 

represented by the following equation. 
siESj 

E(Sj) = L ji (2) 

The maximum amount of energy consumption of any burst is 

represented by Emax. 

Emax = max{E(Sj)} (3) 

B. Adaptive Charge Schedules 
Battery charge schedules determine the time to charge a 

battery. Intuitively, a battery should be charged as late as 

possible for a longer system lifetime. The system lifetime can 

be defined as follows. optime represents the operation time 

after the ith recharge. K is the maximum number of recharges 

the battery can handle. 
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Fig. 4: Battery Charge Control Loop 

K 

lifetime = L optimei 
i=l 

(4) 

Charging the battery as late as possible can also achieve higher 

energy efficiency since the battery energy is used completely 

after each charge. However, if the battery is deeply depleted, 

when a bursty workload occurs, the battery will run out 

of power immediately. As a result, the tasks fail and the 

system performance decreases. Therefore, we need to find a 

good tradeoff between the energy efficiency and the system 

performance in our charging algorithm. 

As the system performance, in terms of the task failure 

ratio, is a central metric for system service quality, we define 

the system service sustainability as the length of time during 

which no tasks fail. The system sustain ability can be defined 

as follows. n failure (i) is the number of task failures during 

the ith charging period. k 
sustainab ility = L optimei 

i=l 
k 

subject to L n failure (i) = 0 
i=l 

(5) 

Our goal is to design a battery charging algorithm that 

optimizes the system sustainability and achieves high charging 

efficiency. It is very challenging to achieve this goal, especially 

when bursty tasks are considered. Combined with dynamic 

battery characteristics, such as the rate capacity effect, it is 

even more difficult to predict the optimal charging time. The 

rate capacity effect indicates that a bursty load can significantly 

decrease the deliverable energy of the battery. The reason is 

that the battery discharging rate affects the deliverable energy 

of the battery significantly. If a task that requires a relatively 

high current comes up, the battery may not be able to supply 

the energy required, within the time required, to complete 

this task, even though it might be able to handle a task 

that takes longer to execute but requires the same amount of 

energy. Compared with previous charging algorithms, which 

usually use a fixed level of remaining energy, we design a 

feedback based algorithm that dynamically adjusts charging 

schedules. The feedback block diagram is shown in Figure 4. 

The control input is the difference between the desirable 

sustainable lifetime and the expected sustainable lifetime. The 

control output is the charging level threshold in voltage. The 

charge controller uses the empirical battery model to adjust 

the charging level. The charging level is used by the charge 

scheduler to select batteries to charge if their current voltages 

drop below this charging level. The Battery Charger charges 

batteries according to the specified schedules from the Charge 
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Fig. 5: Charge Scheduling Algorithms with Different Workloads 

Scheduler. The life estimation module estimates the expected 

sustainable lifetime, based on our bursty workload model. 

If the current workload is Si, and the task model indicates a 

high transition probability p( sj lSi), the life estimation model 

will calculate the expected lifetime T(t)expsus based on the 

following equation: 

T(t)expsus = (vc - Vo)jrdischarge (6) 

where Vc is the current voltage, and Vo is the lower bound 

of the device's operational voltage. The discharging rate 

r discharge is calcuated based on our empirical model: 

rdischarge = a· w + b = a· (E(Sj)jTsi) + b (7) 

where E(Sj) and TSi are the total energy consumption and 

the time duration of the bursty workload sj. The estimated 

lifetime is compared against the specified sustainable lifetime 

Tsus to obtain a control error in sustain ability e(t)sus: 

e(t)sus = Tsus - T(t)expsus (S) 

Here, Tsus represents the amount of time required to setup 

the next recharge, for example, 5 minutes for a mobile device. 

It can be specified by the user based on the application 

and system requirements. The control algorithm is triggered 

when the expected sustainable time is close to the specified 

sustainable time so that the charging schedule can be adjusted 

in time. When battery voltage is high (Tsus < < T(t)expsus), 
the control algorithm is not triggered. 

Upon obtaining errors of sustain ability, the charge controller 

calculates the starting level in a short adjustment period before 

the next battery charge. The charge controller makes adjust­

ments on the starting level for the battery charge schedule 

when: 1) the expected sustainability is much larger than the 

desirable sustain ability, and 2) the expected sustainability is 

dramatically smaller than the desirable sustainability. Also, 

based on the empirical battery models that we obtained from 

the experiments, we use a P control to make adjustments on 

starting charge levels as follows. 

Vt(t + 1) = Vt(t) + Kp' rdischarge(t) . e(t)sus (9) 

Here, Vt (t) represents the starting charge level at time t, and 

Kp represents the proportional gain. On one hand, if the 

expected sustainability is lower than the desirable value, the 

system may suffer from task failures when a burst in the 

workload arrives. In this case, the starting charge level should 

be increased so that batteries can be charged early enough 

to deal with the burst. On the other hand, if the expected 

sustainability is higher than the desirable value, the system 

may have more than a sufficient amount of energy for the 

incoming workload burst. In this case, the starting charge level 

will be decreased, so that batteries can be charged later to 

achieve better efficiency without experiencing task failures. 

Since we use the linear battery models, it is necessary to use 

a proportional control design to gradually adjust the charging 

threshold to adapt. Before each battery charge, this feedback 

based design runs a few loops discretely until it converges. 

To better deal with dynamic battery models and workloads, 

we have designed a robust control solution for battery charging 

based on worst case bursty workload estimations. The robust 

charging strategy suggests that the battery should be recharged 

as soon as the device cannot support the maximal bursty load. 

In other words, the remaining energy is less or equal to Emax. 
This maximal bursty load is estimated based on the workload 

history. As long as no bursty load with a higher energy 

consumption occurs in the future, this condition guarantees no 

task failures and achieves the longest sustain ability. However, 

it is not efficient since in most cases the worst case bursty 

load may not occur at the moment that the battery is charged. 

As a result, this conservative strategy causes a large amount 

of the remaining energy Emax to be left unused in the battery 

most of the time. 

IV. EVALUATION 

We set up a series of simulations based on collected experi­

mental data. After recording the current and the voltage across 

multiple battery charging cycles from full to depleted, we build 

a voltage based discharge table. An abstract virtual battery 

containing voltage and energy information is subjected to a 

series of simulated tasks, represented by periods of uniform 

power consumption. The battery's energy is drained linearly 

during individual tasks, and the voltage is updated accordingly 

at regular intervals as well as after each task completes: after 

subtracting the consumed energy from the virtual batterys 

energy supply, we match the battery's energy value in the dis­

charge table and linearly interpolate the corresponding voltage 

entries. Initial energy is determined on the basis of a specified 

initial voltage of 3.5v. The lower bound for operational battery 

voltage level is set to 2.Sv. 

We have implemented two existing charging schemes: an 

on demand schedule and a periodic schedule. The on-demand 
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(a) System Lifetime (b) Average Sustainability 

Fig. 6: System Lifetime and Sustain ability 

schedule (On-demand) uses a fixed voltage level to trigger 

battery charges. The periodic schedule (Periodic) uses a fixed 

time interval to recharge the battery. Our control-based sched­

ule (Adaptive) is also implemented. We tuned the controller 

and set the proportional gain as 0.2. The sampling period is 

the same as our simulation elapsed time. We then implemented 

the robust control solution (Robust). We tested these three 

algorithms under three types of workloads: random, bursty, and 

hybrid. We randomly select some random tasks to aggregate 

them into the bursty tasks, then we assign values for the 

corresponding markov models. For the hybrid workload, we 

set 66.67% of the tasks to be bursty. The rest of the tasks 

are random tasks. Our task model is trained to learn the 

bursty workloads in each run as our experiments progress. 

The number of charging cycles is set as 10,000. We ran our 

simulations 40 times to obtain statistical results. 

The evaluation results are shown in Figure 5. We plot the 

task failure ratios of these four algorithms under three types 

of workloads in Figure 5 (a). From this figure, we have three 

observations. First, the task failure ratios of four algorithms 

are all below 10% with random workloads. This is because the 

energy consumption of random workloads is evenly distributed 

over time. The adjustments made by Adaptive and Robust are 

helpful but not significant. Second, the task failure ratios of 

Adaptive and Robust are significantly lower than On-demand 

and Periodic under bursty and hybrid workloads. The task 

failure ratio of Robust is close to zero. Finally, we can see 

that the task failure ratios of Adaptive and Robust under 

hybrid workloads are similarly good with those under random 

and bursty workloads. As the hybrid workloads are the most 

realistic, it demonstrates that Adaptive and Robust can work 

well in reality. 

To better demonstrate the impact of bursty tasks on our 

algorithms, we take a closer look at these four algorithms' 

performances in Figure 5 (c). The curves in this figure 

demonstrate the voltage changes of these algorithms during 

two charging cycles. We can see that bursty tasks can cause 

dramatic energy consumption at about the 50 hour mark, which 

lead to the task failures of On-demand, as the battery voltage is 

close to the operational bound while this burst occurs. Whereas 

for Adaptive, the begining of bursty tasks can be detected, 

and a battery charge can be triggered early enough to avoid 

failures. Some failures still occur (1.30%) for Adaptive due 

to inaccurate estimations. For Robust, the failure ratio is very 

low (0.01 %) since it uses the worst case estimation to select 

a very conservative charging level. However, the battery cycle 

:E3.0 
� � 2.8 

-.- Simulation Voltage -e- Experimental Voltage 

300 
Tlme(s) 

(a) Charging Validation 

-.- Simulated 
_-EmpriciaI1 -A-Empirical 2 3 '

� 
� ���'---'---'---& . ------- .. � � 3.0 

• �� �A 

.. � 
300 

Tlme(s) 

(b) Discharging Validation 

Fig. 7: Simulation Validation 

of Robust is much shorter than that of Adaptive. 

Figure 5 (b) shows the comparison of energy efficiencies 

of these four algorithms. The energy efficiency is calculated 

based on Equation 10. 

ef ficiency = Ecompleted_tasks/ Etotal (10) 

We use Ecompleted_tasks to represent the amount of energy 

consumed on tasks that are completed; Etotal represents the 

total amount of energy consumed in the battery's lifetime. 

From this figure, we can see that Robust achieves the highest 

energy efficiency in all cases. This is because Robust has very 

few task failures: 99.99% of the energy consumed is used to 

execute tasks successfully. Adaptive achieves a stable energy 

efficiency of about 98.68% with different workloads, which is 

short of Robust but much better than Periodic and On-demand. 

The reason is that Adaptive has very low task failure rates, 

and the energy wasted on uncompleted tasks is also very low. 

Whereas the energy efficiencies for both Periodic and On­

demand are much lower, especially with bursty workloads. As 

they do not adapt to the dramatic workload variation, both 

Periodic and On-demand waste a small amount of energy on 

tasks that they could not complete. 

Based on the experimental data, we further calculated the 

system lifetime and system sustainability. Figure 6 (a) shows 

the system lifetime of the four algorithms with a fixed number 

of recharges (10,000). We use the on-demand algorithm as 

a baseline, and we calculate the ratio of lifetime of the 

other three algorithms and plot them on this figure. From 

this figure, we can see that On-demand achieves the longest 

lifetime with all workloads, as it does not recharge until 

tasks start to fail or the battery is deeply depleted. Both 

Adaptive and On-demand achieve a very long system lifetime, 

96.55-97.86% and 99.72-100.00%, respectively. Adaptive's 

lifetime is 9.17% higher than Robust, as Adaptive does not 

significantly change the charging schedule; it only adaptively 

brings forward the recharge when a burst is detected and 

postpones the recharge when no bursts are coming. Robust 

uses a conservative recharging voltage level, which is why its 

total amount of operational time is 8.41 % below Adaptive. 

Based on the experimental data, we further calculated the 

average sustainability of four algorithms, according to Equa­

tion 5, and plot them in Figure 6 (b). From this figure, we 

can see that Robust achieves the longest sustain ability with 

all three workloads. The reason is that Robust keeps track 

of the largest amount of energy consumption of a burst. The 

system can continue running without a failure for a very long 

time until a larger burst can occur. In regular workloads, 
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worst case bursts do not occur often. Although lower than 

Robust, Adaptive achieves much higher sustainability than 

On-demand and Periodic in our log scale figure. Adaptive 

still has task failures since the probability-based bursty task 

estimation is not perfect. Both On-demand and Robust have 

low sustainability due to frequent task failures and their 

passive charging schedules. 

To validate our simulation results, we have simulated a set of 

experiments with data traces from real experiments. Figure 7 

(a) compares the charging results of the simulation and the 

real experiment. We can see an appropriate match between 

simulated and real battery voltage over time. Figure 7 (b) 

compares the discharging results in simulation and in two real 

experiments. A resistor circuit (equivalent to a resistance of 

22.4 ohms) is used. The experimental batteries are different but 

have the same manufacturers specifications: 3.6v AA Li-ion 

batteries rated at 900mAh. The virtual battery's curve is like­

shaped and has values only inside the variations of these real 

batteries. These two figures demonstrate that our simulations 

are consistent with real experiments. 

Overall, we can see that I) existing static battery charge 

algorithms with fixed recharging conditions, represented by 

On-demand and Periodic, do not deal with bursty tasks very 

well. They suffer from task failures and do not provide stable 

service quality over time; whereas the feedback based dynamic 

schedules achieve a 68.26% lower task failure ratio, with a 

slight sacrifice on system lifetime (3.45%) and sustainable 

time than existing algorithms. 2) Robust produces conservative 

schedules, which greatly reduce the task failure ratios based 

on the past worst case. Adaptive dynamically changes charge 

schedules based on recent bursty workload estimations. 3) 

Robust is suitable for applications that do not tolerate task 

failures, while energy and lifetime are not major concerns. 

Adaptive is better for systems that need a high task success 

ratio and also a long system lifetime with a bursty workload. 

V. STATE OF THE ART 

Related research areas include battery system designs and 

battery scheduling algorithms. Battery system designs have 

been studied extensively in recent decades. Research results in 

this field have boosted energy efficiency significantly. Authors 

of [l3] studied the impact of battery life and capacity on low 

power system designs. [14] presents a special battery system 

design for hybrid electric vehicles. In [4], authors design math­

ematical models to capture battery discharge characteristics. 

Our focus is on the battery charge scheduling algorithms, 

which can be integrated into these system platforms. 

Research works on battery modeling and scheduling algo­

rithms provided a solid thereoretical foundation for battery­

based systems. Authors of [5] describe the subject of battery 

management systems and provide detailed models. In [6], 

authors present an electrical circuit level battery model for 

performance prediction. In [1], authors describe a scheduling 

algorithm for battery discharging that uses the charge recovery 

mechanism without any additional delay in supplying the 

required power. A recent study [15] investigates battery dy­

namics, especially with varying discharge currents. Our work 

present a new battery model for lifetime prediction as well 
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as a feedback control based scheduling algorithm for battery 

discharging. In [10], authors design a battery-based energy 

scavenging system for low-power mobile sensor platforms. 

These works usually consider a regular random workload. 

In [16], authors propose an approach to dynamically balance 

battery conservation and application quality by monitoring the 

energy supply and demand and by maintaining a history of 

application energy use. Authors of [2, 3] have designed a bat­

tery system for vehicles and proposed dynamic configuration, 

charging, and discharging algorithms. These works consider a 

regular workload. Our work investigates the impact of bursty 

discharging processes on battery performance and proposes a 

control based scheduling algorithm for recharging the battery. 

VI.  CONCLUSION 

Existing battery scheduling algorithms usually charge a 

battery when its voltage level drops below a fixed level. Those 

algorithms work well with stochastic workloads. However, on 

battery-powered wireless sensor nodes, extensive workloads 

may occur in a very short time period. When such highly 

bursty workloads are considered, the existing algorithms are 

not effective or efficient. To maintain a high system per­

formance and to increase energy efficiency, we designed a 

feedback control based scheduling algorithm. Our algorithm 

is based on an empirical battery model obtained from ex­

periments. Adapting to workload and battery characterisitics, 

this algorithm achieves a 68.26% lower task failure ratio, 

with a decrease of 3.45% in the system lifetime under bursty 

workloads, compared to existing algorithms. 
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